1
|
Palma M. Advancing Breast Cancer Treatment: The Role of Immunotherapy and Cancer Vaccines in Overcoming Therapeutic Challenges. Vaccines (Basel) 2025; 13:344. [PMID: 40333213 PMCID: PMC12030785 DOI: 10.3390/vaccines13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer (BC) remains a significant global health challenge due to its complex biology, which complicates both diagnosis and treatment. Immunotherapy and cancer vaccines have emerged as promising alternatives, harnessing the body's immune system to precisely target and eliminate cancer cells. However, several key factors influence the selection and effectiveness of these therapies, including BC subtype, tumor mutational burden (TMB), tumor-infiltrating lymphocytes (TILs), PD-L1 expression, HER2 resistance, and the tumor microenvironment (TME). BC subtypes play a critical role in shaping treatment responses. Triple-negative breast cancer (TNBC) exhibits the highest sensitivity to immunotherapy, while HER2-positive and hormone receptor-positive (HR+) subtypes often require combination strategies for optimal outcomes. High TMB enhances immune responses by generating neoantigens, making tumors more susceptible to immune checkpoint inhibitors (ICIs); whereas, low TMB may indicate resistance. Similarly, elevated TIL levels are associated with better immunotherapy efficacy, while PD-L1 expression serves as a key predictor of checkpoint inhibitor success. Meanwhile, HER2 resistance and an immunosuppressive TME contribute to immune evasion, highlighting the need for multi-faceted treatment approaches. Current breast cancer immunotherapies encompass a range of targeted treatments. HER2-directed therapies, such as trastuzumab and pertuzumab, block HER2 dimerization and enhance antibody-dependent cellular cytotoxicity (ADCC), while small-molecule inhibitors, like lapatinib and tucatinib, suppress HER2 signaling to curb tumor growth. Antibody-drug conjugates (ADCs) improve tumor targeting by coupling monoclonal antibodies with cytotoxic agents, minimizing off-target effects. Meanwhile, ICIs, including pembrolizumab, restore T-cell function, and CAR-macrophage (CAR-M) therapy leverages macrophages to reshape the TME and overcome immunotherapy resistance. While immunotherapy, particularly in TNBC, has demonstrated promise by eliciting durable immune responses, its efficacy varies across subtypes. Challenges such as immune-related adverse events, resistance mechanisms, high costs, and delayed responses remain barriers to widespread success. Breast cancer vaccines-including protein-based, whole-cell, mRNA, dendritic cell, and epitope-based vaccines-aim to stimulate tumor-specific immunity. Though clinical success has been limited, ongoing research is refining vaccine formulations, integrating combination therapies, and identifying biomarkers for improved patient stratification. Future advancements in BC treatment will depend on optimizing immunotherapy through biomarker-driven approaches, addressing tumor heterogeneity, and developing innovative combination therapies to overcome resistance. By leveraging these strategies, researchers aim to enhance treatment efficacy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
| |
Collapse
|
2
|
Chavda VP. Vaccines reimagined: The peptide revolution in disease prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:329-354. [PMID: 40122650 DOI: 10.1016/bs.pmbts.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Peptide-based vaccines have emerged as a promising avenue in the realm of immunization strategies. This chapter provides an overview of the key aspects and advancements in peptide-based vaccine development. Peptides, as fragments of larger proteins, hold the potential to induce targeted immune responses while minimizing off-target effects. We discuss the principles of peptide selection, epitope identification, and delivery platforms, underscoring the importance of rational design to optimize immunogenicity. The integration of computational tools and advanced analytical methods has enabled the refinement of peptide vaccine candidates. Studies on infectious diseases, cancers, and new pathogens showcase the versatility and efficacy of peptide vaccines. As the field progresses, collaborative efforts between researchers, industry, and healthcare systems are essential to bridge the gap from laboratory research to clinical application. The future holds promise for peptide-based vaccines to contribute significantly to disease prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| |
Collapse
|
3
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
4
|
Zhang H, Ma S, Wang Y, Chen X, Li Y, Wang M, Xu Y. Development of an obesity-related multi-gene prognostic model incorporating clinical characteristics in luminal breast cancer. iScience 2024; 27:109133. [PMID: 38384850 PMCID: PMC10879711 DOI: 10.1016/j.isci.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Despite adjuvant chemotherapy and endocrine therapy in luminal breast cancer (LBC), relapses are common. Addressing this, we aim to develop a prognostic model to refine adjuvant therapy strategies, particularly for patients at high recurrence risk. Notably, obesity profoundly affects the tumor microenvironment (TME) of LBC. However, it is unclear whether obesity-related biological features can effectively screen high-risk patients. Utilizing weighted gene coexpression network analysis (WGCNA) on RNA sequencing (RNAseq) data, we identified seven obese LBC genes (OLGs) closely associated with patient prognosis. Subsequently, we developed a luminal obesity-gene clinical prognostic index (LOG-CPI), combining a 7-gene signature, TNM staging, and age. Its predictive efficacy was confirmed across validation datasets and a clinical cohort (5-year accuracy = 0.828, 0.760, 0.751, and 0.792, respectively). LOG-CPI emerges as a promising predictor for clinical prognosis and treatment response, helping distinguish molecular and immunological features in LBC patients and guiding clinical practice by identifying varying prognoses.
Collapse
Affiliation(s)
- Hengjun Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shuai Ma
- Department of Thyroid and Breast Surgery, People’s Hospital of China Medical University (Liaoning Provincial People's Hospital), Shenyang, China
| | - Yusong Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiuyun Chen
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yumeng Li
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
5
|
Vajari MK, Sanaei MJ, Salari S, Rezvani A, Ravari MS, Bashash D. Breast cancer vaccination: Latest advances with an analytical focus on clinical trials. Int Immunopharmacol 2023; 123:110696. [PMID: 37494841 DOI: 10.1016/j.intimp.2023.110696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer (BC) is one of the main causes of cancer-related death worldwide. The heterogenicity of breast tumors and the presence of tumor resistance, metastasis, and disease recurrence make BC a challenging malignancy. A new age in cancer treatment is being ushered in by the enormous success of cancer immunotherapy, and therapeutic cancer vaccination is one such area of research. Nevertheless, it has been shown that the application of cancer vaccines in BC as monotherapy could not induce satisfying anti-tumor immunity. Indeed, the application of various vaccine platforms as well as combination therapies like immunotherapy could influence the clinical benefits of BC treatment. We analyzed the clinical trials of BC vaccination and revealed that the majority of trials were in phase I and II meaning that the BC vaccine studies lack favorable outcomes or they need more development. Furthermore, peptide- and cell-based vaccines are the major platforms utilized in clinical trials according to our analysis. Besides, some studies showed satisfying outcomes regarding carbohydrate-based vaccines in BC treatment. Recent advancements in therapeutic vaccines for breast cancer were promising strategies that could be accessible in the near future.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
7
|
Zhou Y. HER2/neu-based vaccination with li-Key hybrid, GM-CSF immunoadjuvant and trastuzumab as a potent triple-negative breast cancer treatment. J Cancer Res Clin Oncol 2023; 149:6711-6718. [PMID: 36692548 PMCID: PMC10356871 DOI: 10.1007/s00432-023-04574-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Constituting 15 to 20% of breast cancer cases, the triple-negative subtype lacks effective treatments as being less responsive to hormone-associated therapies. Alternatively, a more powerful immunotherapeutic vaccination can trigger immune recognition and destruction against breast cancer by incorporating oncological antigens such as human epidermal growth factor receptor 2 (HER2/neu). Currently, HER2/neu-based vaccines have finished three phases with breast cancer patients, in conjunction with granulocyte-macrophage colony-stimulating factor (GM-CSF) that was proven to be a promising vaccine adjuvant in other cancer trials previously. METHODS Completed HER2/neu-based vaccine trials with GM-CSF immunoadjuvants for breast cancer were summarised, and additionally, the article discussed prominent findings of vaccine effectiveness in triple-negative breast cancer, regarding li-Key hybrid in vaccine design and co-administration of anti-HER2/neu trastuzumab. RESULTS Nine clinical trials of three HER2/neu epitopes, one with li-Key hybrid, were analysed with or without the presence of trastuzumab. Immunological responses and minimal toxicities were observed in these epitopes, and disease-free survival was especially improved in the triple-negative population. CONCLUSION HER2/neu-based peptide vaccine is a safe and effective approach against breast cancer, and its benefits can be potentially furthered by combining the li-Key hybrid vaccine with targeted drugs and adjuvants selected to enhance cross-presentation for exogenous vaccine antigens. Graphical abstract was created with Biorender.com (license number: HA24UHRBV4 and FP24UHRGDD).
Collapse
Affiliation(s)
- Yihan Zhou
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Ito K, Furukawa H, Inaba H, Ohshima S, Kametani Y, Maeki M, Tokeshi M, Huang X, Kabayama K, Manabe Y, Fukase K, Matsuura K. Antigen/Adjuvant-Displaying Enveloped Viral Replica as a Self-Adjuvanting Anti-Breast-Cancer Vaccine Candidate. J Am Chem Soc 2023; 145:15838-15847. [PMID: 37344812 DOI: 10.1021/jacs.3c02679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled β-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.
Collapse
Affiliation(s)
- Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Shino Ohshima
- School of Medicine, Tokai University, Isehara 259-1193, Kanagawa, Japan
| | - Yoshie Kametani
- School of Medicine, Tokai University, Isehara 259-1193, Kanagawa, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Xuhao Huang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| |
Collapse
|
9
|
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals (Basel) 2023; 16:1054. [PMID: 37513965 PMCID: PMC10383774 DOI: 10.3390/ph16071054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Breast and gynecologic cancers are significant global threats to women's health and those living with the disease require lifelong physical, financial, and social support from their families, healthcare providers, and society as a whole. Cancer vaccines offer a promising means of inducing long-lasting immune response against the disease. Among various types of cancer vaccines available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses. Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are established to be involved in the pathogenesis of female-specific cancers and hence were exploited for the development of peptide vaccines against these diseases, most of which are in the latter stages of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and prophylactic approaches for various types of female-specific cancers such as breast cancer and gynecologic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.
Collapse
Affiliation(s)
- Manju Lekshmy
- Department of Botany and Biotechnology, St. Xavier’s College, Thumba, Thiruvananthapuram 695586, Kerala, India;
| | | | | | | | | | | | - Leelamma Anila
- Department of Biochemistry, NSS College, Nilamel, Kollam 691535, Kerala, India;
| | - Vishnu Sasidharan Lathakumari
- Department of Biochemistry and Industrial Microbiology, Sree Narayana College for Women, Kollam 691001, Kerala, India;
| | - Adhira M. Nayar
- Department of Zoology, Mahatma Gandhi College, Thiruvananthapuram 695004, Kerala, India;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
10
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Chang R, Gulley JL, Fong L. Vaccinating against cancer: getting to prime time. J Immunother Cancer 2023; 11:jitc-2022-006628. [PMID: 37286302 DOI: 10.1136/jitc-2022-006628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors, cellular therapies, and T-cell engagers, have fundamentally changed our approach to treating cancer. However, successes with cancer vaccines have been more difficult to realize. While vaccines against specific viruses have been widely adopted to prevent the development of cancer, only two vaccines can improve survival in advanced disease: sipuleucel-T and talimogene laherparepvec. These represent the two approaches that have the most traction: vaccinating against cognate antigen and priming responses using tumors in situ. Here, we review the challenges and opportunities researchers face in developing therapeutic vaccines for cancer.
Collapse
Affiliation(s)
- Ryan Chang
- Hematology/Oncology, University of California, San Francisco, California, USA
| | - James L Gulley
- NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence Fong
- Hematology/Oncology, University of California, San Francisco, California, USA
| |
Collapse
|
12
|
An Updated Review on Recent Advances in the Usage of Novel Therapeutic Peptides for Breast Cancer Treatment. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Cancer Vaccines for Triple-Negative Breast Cancer: A Systematic Review. Vaccines (Basel) 2023; 11:vaccines11010146. [PMID: 36679991 PMCID: PMC9866612 DOI: 10.3390/vaccines11010146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the poorest outcomes, and is associated with a high risk of relapse and metastasis. The treatment choices for this malignancy have been confined to conventional chemotherapeutic agents, due to a lack of expression of the canonical molecular targets. Immunotherapy has been recently changing the treatment paradigm for many types of tumors, and the approach of evoking active immune responses in the milieu of breast tumors through cancer vaccines has been introduced as one of the most novel immunotherapeutic approaches. Accordingly, a number of vaccines for the treatment or prevention of recurrence have been developed and are currently being studied in TNBC patients, while none have yet received any approvals. To elucidate the efficacy and safety of these vaccines, we performed a systematic review of the available literature on the topic. After searching the PubMed, Scopus, Web of Science, Embase, Cochrane CENTRAL, and Google Scholar databases, a total of 5701 results were obtained, from which 42 clinical studies were eventually included based on the predefined criteria. The overall quality of the included studies was acceptable. However, due to a lack of reporting outcomes of survival or progression in some studies (which were presented as conference abstracts) as well as the heterogeneity of the reported outcomes and study designs, we were not able to carry out a meta-analysis. A total of 32 different vaccines have so far been evaluated in TNBC patients, with the majority belonging to the peptide-based vaccine type. The other vaccines were in the cell or nucleic acid (RNA/DNA)-based categories. Most vaccines proved to be safe with low-grade, local adverse events and could efficiently evoke cellular immune responses; however, most trials were not able to demonstrate significant improvements in clinical indices of efficacy. This is in part due to the limited number of randomized studies, as well as the limited TNBC population of each trial. However, due to the encouraging results of the currently published trials, we anticipate that this strategy could show its potential through larger, phase III randomized studies in the near future.
Collapse
|
14
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|
15
|
Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics (Basel) 2022; 12:diagnostics12122981. [PMID: 36552988 PMCID: PMC9777080 DOI: 10.3390/diagnostics12122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are an upcoming medical intervention for breast cancer. By targeting the tumor antigen, cancer vaccines can be designed to train the immune system to recognize tumor cells. Therefore, along with technological advances, the vaccine design process is now starting to be carried out with more rational methods such as designing epitope-based peptide vaccines using immunoinformatics methods. Immunoinformatics methods can assist vaccine design in terms of antigenicity and safety. Common protocols used to design epitope-based peptide vaccines include tumor antigen identification, protein structure analysis, T cell epitope prediction, epitope characterization, and evaluation of protein-epitope interactions. Tumor antigen can be divided into two types: tumor associated antigen and tumor specific antigen. We will discuss the identification of tumor antigens using high-throughput technologies. Protein structure analysis comprises the physiochemical, hydrochemical, and antigenicity of the protein. T cell epitope prediction models are widely available with various prediction parameters as well as filtering tools for the prediction results. Epitope characterization such as allergenicity and toxicity can be done in silico as well using allergenicity and toxicity predictors. Evaluation of protein-epitope interactions can also be carried out in silico with molecular simulation. We will also discuss current and future developments of breast cancer vaccines using an immunoinformatics approach. Finally, although prediction models have high accuracy, the opposite can happen after being tested in vitro and in vivo. Therefore, further studies are needed to ensure the effectiveness of the vaccine to be developed. Although epitope-based peptide vaccines have the disadvantage of low immunogenicity, the addition of adjuvants can be a solution.
Collapse
|
16
|
Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines (Basel) 2022; 10:vaccines10081249. [PMID: 36016136 PMCID: PMC9416350 DOI: 10.3390/vaccines10081249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of death in women from 20 to 59 years old. The conventional treatment includes surgery, chemotherapy, hormonal therapy, and immunotherapy. This immunotherapy is based on administering monoclonal therapeutic antibodies (passive) or vaccines (active) with therapeutic purposes. Several types of vaccines could be used as potential treatments for cancer, including whole-cell, DNA, RNA, and peptide-based vaccines. Peptides used to develop vaccines are derived from tumor-associated antigens or tumor-specific antigens, such as HER-2, MUC1, ErbB2, CEA, FRα, MAGE A1, A3, and A10, NY-ESO-1, among others. Peptide-based vaccines provide some advantages, such as low cost, purity of the antigen, and the induction of humoral and cellular immune response. In this review, we explore the different types of vaccines against breast cancer with a specific focus on the description of peptide-based vaccines, their composition, immune response induction, and the description of new potential therapeutic targets.
Collapse
|
17
|
Zhang L, Zhou X, Sha H, Xie L, Liu B. Recent Progress on Therapeutic Vaccines for Breast Cancer. Front Oncol 2022; 12:905832. [PMID: 35734599 PMCID: PMC9207208 DOI: 10.3389/fonc.2022.905832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced breast cancer is still an incurable disease mainly because of its heterogeneity and limited immunogenicity. The great success of cancer immunotherapy is paving the way for a new era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine targets include tumor-associated antigens and tumor-specific antigens. Immune responses differ in different vaccine delivery platforms. Next-generation sequencing technologies and computational analysis have recently made personalized vaccination possible. However, only a few cases benefiting from neoantigen-based treatment have been reported in breast cancer, and more attention has been given to overexpressed antigen-based treatment, especially human epidermal growth factor 2-derived peptide vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast cancer and highlight near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xipeng Zhou
- Department of oncology, Yizheng People's Hospital, Yangzhou, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
19
|
Abstract
Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Tobias J, Garner-Spitzer E, Drinić M, Wiedermann U. Vaccination against Her-2/neu, with focus on peptide-based vaccines. ESMO Open 2022; 7:100361. [PMID: 35026721 PMCID: PMC8760406 DOI: 10.1016/j.esmoop.2021.100361] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has been a milestone in combatting cancer, by complementing or even replacing classic treatments like surgery, chemotherapy, radiation, and anti-hormonal therapy. In 15%-30% of breast cancers, overexpression of the human epidermal growth factor receptor 2 (Her-2/neu) is associated with more aggressive tumor development. Passive immunization/immunotherapy with the recombinantly produced Her-2/neu-targeting monoclonal antibodies (mAbs) pertuzumab and trastuzumab has been shown to effectively treat breast cancer and lead to a significantly better prognosis. However, allergic and hypersensitivity reactions, cardiotoxicity, development of resistance, lack of immunological memory which results in continuous application over a long period, and cost-intensiveness are among the drawbacks associated with this treatment. Furthermore, intrinsic or acquired resistance is associated with the application of therapeutic mAbs, leading to the disease recurrence. Conversely, these drawbacks could be potentially overcome by vaccination, i.e. an active immunization/immunotherapy approach by activating the patient’s own immune system to target cancer, along with inducing immunological memory. This review aims to summarize the main approaches investigated and undertaken for the production of Her-2/neu vaccine candidates, with the main focus on peptide-based vaccines and their evaluation in clinical settings. Her-2/neu is overexpressed in 10%-30% of breast and gastric cancer patients and this correlates with poor clinical outcomes. Passive application of trastuzumab and pertuzumab has outstandingly improved the Her-2/neu-related clinical outcomes. Treatment with mAbs is associated with frequent administration, cost-intensiveness, and resistance. Vaccination against Her-2/neu with e.g. mimotope- or peptide-based vaccines can alternatively overcome the mAbs’ drawbacks. Such alternatives may pave the way to therapeutics which could be used as monotherapy or in combination therapies with mAbs.
Collapse
Affiliation(s)
- J Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - E Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - M Drinić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - U Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines 2021; 21:337-353. [PMID: 34932427 DOI: 10.1080/14760584.2022.2021884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the first common neoplastic malignancy and the second leading cause of death in women worldwide. Conventional treatments for BC are often associated with severe side effects and may even lead to late recurrence. For this reason, in recent years, cancer immunotherapy (e.g., cancer vaccines), a novel approach based on the specificity and amplification of acquired immune responses, has been considered as a potential candidate in particular to treat metastatic BC. AREAS COVERED In this review, we summarize and discuss the recent development of therapeutic vaccines for BC, use of specific BC cellular antigens, antigen selection, and probable causes for their insufficient effectiveness. EXPERT OPINION Despite development of several different BC vaccines strategies including protein/peptide, dendritic cell, and genetic vaccines, until now, no BC vaccine has been approved for clinical use. Most of the current BC vaccines themselves fail to bring clinical benefit to BC patients and are applied in combination with radiotherapy, chemotherapy, or targeted therapy. It is hoped that with advances in our knowledge about tumor microenvironment and the development of novel combination strategies, the tumor immunosuppressive mechanisms can be overcome and prolonged immunologic and effective anti-tumor response can be developed in patients.
Collapse
Affiliation(s)
- Maryam Abbaspour
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
You Z, Zhou W, Weng J, Feng H, Liang P, Li Y, Shi F. Application of HER2 peptide vaccines in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:489. [PMID: 34526020 PMCID: PMC8442296 DOI: 10.1186/s12935-021-02187-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background The E75 and GP2 vaccines are the few therapeutic vaccines targeting HER2 currently under clinical research for patients with breast cancer. Methods Databases, including the Cochrane Library, PubMed, Medline, Embase, and Web of Science, were used to retrieve clinical studies on E75 and GP2 vaccines. Retrieval time was from the beginning of database construction until May 31st, 2021. Results A total of 24 clinical studies were included in this analysis, including 1704 patients in the vaccinated group and 1248 patients in the control group. For the E75 vaccine, there were significant differences between the vaccinated group and the control group in the delayed-type hypersensitivity reaction (SMD = 0.685 95% CI 0.52–0.85, PHeterogeneity = 0.186, PDTH < 0.05) and the change in CD8+ T-cell numbers (SMD = − 0.864, 95% CI − 1.02 to − 0.709, PHeterogeneity = 0.085, PCD8+ T cell < 0.05) before and after injection. For the GP2 vaccine, there was a significant difference between the vaccinated group and the control group in the change in CD8+ T-cell numbers (SMD = − 0.584, 95% CI − 0.803 to − 0.294, PHeterogeneity = 0.397, PCD8+ T cell < 0.05) before and after injection. In addition, the clinical outcomes, including recurrence rate (RR = 0.568, 95% CI 0.444–0.727, PHeterogeneity = 0.955, PRecurrence < 0.05) and disease-free survival rate (RR = 1.149, 95% CI 1.050–1.256, PHeterogeneity = 0.003, PDFS < 0.05), of the E75-vaccinated group were different from those of the control group. However, we found that the overall survival rate with the E75 vaccine (RR = 1.032, 95% CI 0.998–1.067, PHeterogeneity = 0.476, POS > 0.05) was not different between the two groups. Local and systemic toxicity assessments of the two vaccines showed minimal side effects. Conclusions The E75 vaccine was effective and safe in patients with breast cancer. The GP2 vaccine could elicit a strong immune response, but more trials are needed to confirm its clinical efficacy.
Collapse
Affiliation(s)
- Zicong You
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.,Department of Thoracic and Breast Surgery, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No.6,Qinren Road,Chancheng District, Foshan, 528000, China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Junyan Weng
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Haizhan Feng
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Peiqiao Liang
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.
| |
Collapse
|
23
|
Burguin A, Diorio C, Durocher F. Breast Cancer Treatments: Updates and New Challenges. J Pers Med 2021; 11:808. [PMID: 34442452 PMCID: PMC8399130 DOI: 10.3390/jpm11080808] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer diagnosed in women worldwide. This heterogeneous disease can be classified into four molecular subtypes (luminal A, luminal B, HER2 and triple-negative breast cancer (TNBC)) according to the expression of the estrogen receptor (ER) and the progesterone receptor (PR), and the overexpression of the human epidermal growth factor receptor 2 (HER2). Current BC treatments target these receptors (endocrine and anti-HER2 therapies) as a personalized treatment. Along with chemotherapy and radiotherapy, these therapies can have severe adverse effects and patients can develop resistance to these agents. Moreover, TNBC do not have standardized treatments. Hence, a deeper understanding of the development of new treatments that are more specific and effective in treating each BC subgroup is key. New approaches have recently emerged such as immunotherapy, conjugated antibodies, and targeting other metabolic pathways. This review summarizes current BC treatments and explores the new treatment strategies from a personalized therapy perspective and the resulting challenges.
Collapse
Affiliation(s)
- Anna Burguin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
24
|
Aiga T, Manabe Y, Ito K, Chang T, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taku Aiga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keita Ito
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Tsung‐Che Chang
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Shino Ohshima
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Ayane Miura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
25
|
Aiga T, Manabe Y, Ito K, Chang TC, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co-Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self-Adjuvanting Anti-Breast-Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020; 59:17705-17711. [PMID: 32583549 DOI: 10.1002/anie.202007999] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Co-assembling vaccines composed of a lipidated HER2-derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3 CSK4 , α-GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen-specific immunostimulation properties, observed in reported self-adjuvanting vaccine candidates, by using self-assembly and adjuvant-conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co-assembly with lipidated CH401, which boosted the anti-CH401 IgG and IgM production. In particular, α-GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co-assembling vaccine design opens the door for efficient and practical self-adjuvanting vaccine development.
Collapse
Affiliation(s)
- Taku Aiga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shino Ohshima
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshie Kametani
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
26
|
Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treat Rev 2020; 84:101947. [DOI: 10.1016/j.ctrv.2019.101947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
|
27
|
Arab A, Yazdian-Robati R, Behravan J. HER2-Positive Breast Cancer Immunotherapy: A Focus on Vaccine Development. Arch Immunol Ther Exp (Warsz) 2020; 68:2. [PMID: 31915932 PMCID: PMC7223380 DOI: 10.1007/s00005-019-00566-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Clinical progress in the field of HER2-positive breast cancer therapy has been dramatically improved by understanding of the immune regulatory mechanisms of tumor microenvironment. Passive immunotherapy utilizing recombinant monoclonal antibodies (mAbs), particularly trastuzumab and pertuzumab has proved to be an effective strategy in HER2-positive breast cancer treatment. However, resistance to mAb therapy and relapse of disease are still considered important challenges in clinical practice. There are increasing reports on the induction of cellular and humoral immune responses in HER2-positive breast cancer patients. More recently, increasing efforts are focused on using HER2-derived peptide vaccines for active immunotherapy. Here, we discuss the development of various HER2-derived vaccines tested in animal models and human clinical trials. Different formulations and strategies to improve immunogenicity of the antigens in animal studies are also discussed. Furthermore, other immunotherapeutic approaches to HER2 breast cancer including, CTLA-4 inhibitors, immune checkpoint inhibitors, anti PD-1/PD-L1 antibodies are presented.
Collapse
Affiliation(s)
- Atefeh Arab
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Behravan
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, University of Waterloo, Waterloo, ON, Canada. .,Theraphage Inc., Kitchener, ON, Canada.
| |
Collapse
|
28
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
29
|
Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, De Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 2019; 12:111. [PMID: 31665051 PMCID: PMC6820969 DOI: 10.1186/s13045-019-0798-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Barchiesi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - M Mazzotta
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - A Venuti
- HPV-UNIT, UOSD Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - M Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - G Massimiani
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - S Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | - S Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, 'Sapienza' University of Rome, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Rome, Italy
| | - R De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Medical Oncology, Policlinico Universitario "A. Gemelli", Rome, Italy
| | - F Tomao
- Department of Gynecology-Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - C Natoli
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| |
Collapse
|
30
|
Lambda bacteriophage nanoparticles displaying GP2, a HER2/neu derived peptide, induce prophylactic and therapeutic activities against TUBO tumor model in mice. Sci Rep 2019; 9:2221. [PMID: 30778090 PMCID: PMC6379380 DOI: 10.1038/s41598-018-38371-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Generating a protective and long-lasting immune response is the primary goal in the expanding field of immunotherapeutic research. In current study we designed an immunogenic bacteriophage- based vaccine to induce a cytotoxic T lymphocyte activity against a mice tumor model over-expressing HER2/neu. Bacteriophage λ displaying a HER2/neu derived peptide GP2 was constructed and used as an anti-cancer vaccine in a BALB/c mouse xenograft tumor model. The results of our study indicated that phage nanoparticles displaying GP2 as a fused peptide to the gpD phage capsid protein induced a robust CTL response. Furthermore, the chimeric phage nanoparticles protected mice against HER2/neu-positive tumor challenge in both prophylactic and therapeutic settings. In conclusion, we propose that λ phage nanoparticles decorated with GP2 peptide merit further investigation for the development of peptide-based vaccines against HER2/neu overexpressing tumors.
Collapse
|
31
|
Criscitiello C, Viale G, Curigliano G. Peptide vaccines in early breast cancer. Breast 2019; 44:128-134. [PMID: 30769238 DOI: 10.1016/j.breast.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
The immune system plays a dual role of host-protecting and tumor-promoting, as elegantly expressed by the 'cancer immunoediting' hypothesis. Although breast cancer has not been traditionally considered to be immunogenic, recently there is accumulating and solid evidence on the association between immune system and breast cancer. To mount an effective anti-tumor response, host immunosurveillance must recognize tumor-specific epitopes, thus defining the antigenicity of a tumor. Neoantigens are mutant cancer peptides that arise as terminal products of the expression of somatic cancer mutations. Neoantigens and major histocompatibility complex (MHC) proteins present together to effector cells of the immune system. Neoantigen vaccines have shown promising results in inducing neoantigen-specific T-cell responses. Currently, cancer vaccines are under evaluation in breast cancer to avoid recurrences in patients at high risk despite optimal standard therapy. Given the promise of a very specific long-term antitumor immune response, the development of cancer vaccines continues is of great interest. Combinations of neoantigen vaccines and other immunotherapies are also studied to evade cancer immune escape.
Collapse
Affiliation(s)
| | - Giulia Viale
- IEO, European Institute of Oncology IRCCS, Milan Italy
| | - Giuseppe Curigliano
- IEO, European Institute of Oncology IRCCS, Milan Italy; University of Milan, Italy.
| |
Collapse
|
32
|
Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. BREAST CANCER-TARGETS AND THERAPY 2019; 11:53-69. [PMID: 30697064 PMCID: PMC6340364 DOI: 10.2147/bctt.s175360] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy has evolved dramatically with improved understanding of immune microenvironment and immunosurveillance. The immunogenicity of breast cancer is rather heterogeneous. Specific subtypes of breast cancer such as estrogen receptor (ER)-negative, human EGF receptor 2 (HER2)-positive, and triple-negative breast cancer (TNBC) have shown evidence of immunogenicity based on tumor–immune interactions. Several preclinical and clinical studies have explored the potential for immunotherapy to improve the clinical outcomes for different subtypes of breast cancer. This review describes the immune microenvironment of HER2-positive breast cancer and summarizes recent clinical advances of immunotherapeutic treatments in this breast cancer subtype. The review provides rationale and ongoing clinical evidence to the use of immune checkpoint inhibitors, therapeutic vaccines, and adoptive T cell immunotherapy in breast cancer. In addition, the present paper describes the most relevant clinical progress of strategies for the combination of immunotherapy with standard treatment modalities in HER2-positive breast cancer including chemotherapy, targeted therapy, and radiotherapy.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan,
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rami J Yaghan
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
33
|
Abstract
Resistance to therapies and disease recurrences after surgery or treatment are common challenges in breast cancer management in clinic. Active immunotherapy using human epidermal growth factor receptor 2 (HER2)-targeted vaccines represents an attractive option in combating breast cancer. Different HER2-derived vaccines have been developed over the years. Many clinical trials have been carried out in evaluating HER2-based vaccines. The authors reviewed current literature on HER2-based vaccines in clinical trials. The trials covered in this mini-review represent some of the major trials published in the past 20 years regarding the clinical use and test of HER2 vaccines. Their focus is on trials using HER2 peptide vaccines as the majority of clinical trials initiated or published used HER2 peptide-based vaccines. Findings from combination therapy trials of HER2 peptide vaccines with other treatment modalities are also presented.
Collapse
Affiliation(s)
- Naipeng Cui
- 1 Department of Breast Surgery, Affiliated Hospital of Hebei University , Baoding, China
| | - Jianhong Shi
- 2 Central Laboratory, Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University , Baoding, China
| | - Chuanwei Yang
- 3 Breast Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
34
|
Al-Awadhi A, Lee Murray J, Ibrahim NK. Developing anti-HER2 vaccines: Breast cancer experience. Int J Cancer 2018; 143:2126-2132. [PMID: 29693245 DOI: 10.1002/ijc.31551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer accounts for more than one million new cases annually and is the leading cause of death in women globally. HER2 overexpression induces cellular and humoral immune responses against the HER2 protein and is associated with higher tumor proliferation rates. Trastuzumab-based therapies are effectively and widely used as standard of care in HER2-amplified/overexpressed breast cancer patients; one cited mechanism of action is the induction of passive immunity and antibody-dependent cellular cytotoxicity against malignant breast cancer cells. These findings drove the efforts to generate antigen-specific immunotherapy to trigger the patient's immune system to target HER2-overexpressing tumor cells, which led to the development of various vaccines against the HER2 antigen. This article discusses the various anti-HER2 vaccine formulations and strategies and their potential role in the metastatic and adjuvant settings.
Collapse
Affiliation(s)
- Aydah Al-Awadhi
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James Lee Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
35
|
Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxevanis CN, Papamichail M, Peoples GE. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget 2018; 7:66192-66201. [PMID: 27589688 PMCID: PMC5323226 DOI: 10.18632/oncotarget.11751] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
GP2 is a HER2-derived, HLA-A2+ restricted peptide. Phase I studies showed GP2 administered with GM-CSF to be safe and immunogenic. Here we report the primary analysis of a prospective, randomized, multicenter phase II adjuvant trial conducted to determine the vaccine's efficacy. The trial enrolled HLA-A2+, clinically disease-free, node-positive and high-risk node-negative breast cancer patients with tumors expressing HER2 (immunohistochemistry[IHC] 1+-3+). Patients were randomized to GP2+GM-CSF versus GM-CSF alone. Disease-free survival (DFS) was analyzed in intention-to-treat (ITT) and per-treatment cohorts; pre-specified subgroup analyses were performed for patients with IHC 3+ or FISH+ disease. The trial enrolled 180 patients; 89 received GP2+GM-CSF and 91 received GM-CSF alone. The groups were well-matched for clinicopathologic characteristics. Toxicities have been minimal. The Kaplan-Meier estimated 5-year DFS rate in the ITT analyses was 88% (95% CI:78-94%) in vaccinated vs. 81% (95% CI:69-89%) (P = 0.43) in control patients after a 34 month median follow-up. In the per-treatment analysis, the estimated 5-year DFS rates were 94% (95% CI:83-98%) and 85% (73-92%) (P = 0.17). In IHC 3+/FISH+ patients, the estimated 5-year DFS rate was 94% (82-98%) in vaccinated patients (n = 51) vs. 89% (71-96%) in control patients (n = 50), (P = 0.86) in the ITT analyses and 100% vs. 89% (71-96%) in vaccinated vs. control patients in the per-treatment analyses (P = 0.08). While the overall ITT analysis did not demonstrate benefit to vaccination, this trial confirmed that the GP2 vaccine is safe and suggests that vaccination may have clinical activity, particularly in patients with HER2 overexpression who received the full vaccine series (ie per-treatment group).
Collapse
Affiliation(s)
- Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandros Ardavanis
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan M Shumway
- Department of Hematology/Oncology, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Diane F Hale
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - James L Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Sathibalan Ponniah
- Cancer Vaccine Development Laboratory, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
36
|
Abstract
Immunotherapy has shown promise in many solid tumors including melanoma and non-small cell lung cancer with an evolving role in breast cancer. Immunotherapy encompasses a wide range of therapies including immune checkpoint inhibition, monoclonal antibodies, bispecific antibodies, vaccinations, antibody-drug conjugates, and identifying other emerging interventions targeting the tumor microenvironment. Increasing efficacy of these treatments in breast cancer patients requires identification of better biomarkers to guide patient selection; recognizing when to initiate these therapies in multi-modality treatment plans; establishing novel assays to monitor immune-mediated responses; and creating combined systemic therapy options incorporating conventional treatments such as chemotherapy and endocrine therapy. This review will focus on the current role and future directions of many of these immunotherapies in breast cancer, as well as highlighting clinical trials that are investigating several of these active issues.
Collapse
|
37
|
Razazan A, Behravan J, Arab A, Barati N, Arabi L, Gholizadeh Z, Hatamipour M, Reza Nikpoor A, Momtazi-Borojeni AA, Mosaffa F, Ghahremani MH, Jaafari MR. Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One 2017; 12:e0185099. [PMID: 29045460 PMCID: PMC5646774 DOI: 10.1371/journal.pone.0185099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/06/2017] [Indexed: 01/07/2023] Open
Abstract
One of the challenging issues in vaccine development is peptide and adjuvant delivery into target cells. In this study, we developed a vaccine and therapeutic delivery system to increase cytotoxic T lymphocyte (CTL) response against a breast cancer model overexpressing HER2/neu. Gp2, a HER2/neu-derived peptide, was conjugated to Maleimide-mPEG2000-DSPE micelles and post inserted into liposomes composed of DMPC, DMPG phospholipids, and fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) containing monophosphoryl lipid A (MPL) adjuvant (DMPC-DMPG-DOPE-MPL-Gp2). BALB/c mice were immunized with different formulations and the immune response was evaluated in vitro and in vivo. ELISpot and intracellular cytokine analysis by flow cytometry showed that the mice vaccinated with Lip-DOPE-MPL-GP2 incited the highest number of IFN-γ+ in CD8+ cells and CTL response. The immunization led to lower tumor sizes and longer survival time compared to the other groups of mice immunized and treated with the Lip-DOPE-MPL-GP2 formulation in both prophylactic and therapeutic experiments. These results showed that co-formulation of DOPE and MPL conjugated with GP2 peptide not only induces high antitumor immunity but also enhances therapeutic efficacy in TUBO mice model. Lip-DOPE-MPL-GP2 formulation could be a promising vaccine and a therapeutic delivery system against HER2 positive cancers and merits further investigation.
Collapse
Affiliation(s)
- Atefeh Razazan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran Iran
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Arab
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholizadeh
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Hosein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Mirandola L, Pedretti E, Figueroa JA, Chiaramonte R, Colombo M, Chapman C, Grizzi F, Patrinicola F, Kast WM, Nguyen DD, Rahman RL, Daver N, Ruvolo P, Post SM, Bresalier RS, Chiriva-Internati M. Cancer testis antigen Sperm Protein 17 as a new target for triple negative breast cancer immunotherapy. Oncotarget 2017; 8:74378-74390. [PMID: 29088794 PMCID: PMC5650349 DOI: 10.18632/oncotarget.20102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
Breast carcinoma is a major health issue for millions of women. Current therapies have serious side effects, and are only partially effective in patients with metastatic tumors. Thus, the need for novel and less toxic therapies is urgent. Moreover, hormonal and antibody therapies effective in other subtypes are not effective in Triple Negative Breast Cancer (TNBC). Immunotherapeutic strategies directed against specific tumor-associated antigens (TAAs) and mediated by specific cytotoxic T lymphocytes (CTL) have been largely underexplored in this disease. Cancer-testis antigens (CTA) are a group of TAAs displaying the ideal characteristics of promising vaccine targets, i.e. strong immunogenicity and cancer specificity. The CTA, Sperm Protein 17 (SP17), has been found to be aberrantly expressed in different neoplasms, including ovarian and esophageal cancers, nervous system tumors and multiple myeloma, and has been suggested as a candidate target for immunotherapy. Here, we evaluated SP17 expression levels in breast cancer cell lines, invasive ductal breast carcinoma, including patients with TNBC, and adjacent non-neoplastic breast tissue, and determined whether SP17 was capable of generating SP17-specific cytotoxic T lymphocytes in vitro. We showed that SP17 is expressed in breast cancer cell lines and primary breast tumors and importantly in TNBC subtype, but not in adjacent non-tumoral breast tissue or unaffected tissues, except in male germinal cells. Furthermore, we detected specific anti-SP17 antibodies in patients' sera and we generated SP17-specific, HLA class I-restricted, cytotoxic T lymphocytes capable of efficiently killing breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Michela Colombo
- Department of Health Sciences, Universita’ degli Studi di Milano, Milano, Italy
| | - Caroline Chapman
- Bowel Cancer Screening Programme, Eastern Hub Queens Medical Centre, Nottingham University Hospitals, Nottingham, UK
| | - Fabio Grizzi
- Department of Immunology & Inflammation, Humanitas Clinical & Research Center, Milan, Italy
| | - Federica Patrinicola
- Department of Immunology & Inflammation, Humanitas Clinical & Research Center, Milan, Italy
| | - W. Martin Kast
- Departments of Obstetrics & Gynecology and Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M. Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert S. Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maurizio Chiriva-Internati
- Kiromic Inc., Houston, TX, USA
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Expression and prognostic value of HER-2/neu in primary breast cancer with sentinel lymph node metastasis. Biosci Rep 2017; 37:BSR20170121. [PMID: 28667103 PMCID: PMC5539487 DOI: 10.1042/bsr20170121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/01/2023] Open
Abstract
The present study explores the correlation of human epidermal growth factor receptor-2 (HER-2) protein expression with sentinel lymph node (SLN) metastasis and prognosis of breast cancer. The breast cancer tissues and adjacent tissues were obtained from patients with primary breast cancer. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the mRNA level of HER-2. Spearman correlation analysis was used to analyze the correlation of HER-2 expression with SLN metastasis. The disease-free survival (DFS) and overall survival (OS) of breast cancer patients were investigated. Univariate and multivariate analyses were performed to explore factors influencing SLN metastasis and prognosis of breast cancer. Compared with adjacent tissues, HER-2 expression was significantly up-regulated in breast cancer tissues. HER-2 expression was correlated with the pathological type, tumor node metastasis (TNM) staging, histological grade, blood vessel invasion, SLN metastasis, estrogen receptor (ER), and progesterone receptor (PR). The expression level of HER-2 was positively related to the SLN metastasis (r=0.548). Median DFS and OS were longer in patients with negative HER-2 expression than in patients with positive HER-2 expression. TNM staging, SLN metastasis, and expression levels of HER-2 and ER were independent factors for DFS of breast cancer patients, while TNM staging, blood vessel invasion, histological grade, SLN metastasis, and expression levels of HER-2 and PR were independent factors for OS of breast cancer patients. Our study suggests that high expression of HER-2 promoted SLN metastasis. HER-2 expression and SLN metastasis were the independent factors for the prognosis of breast cancer.
Collapse
|
40
|
Clifton GT, Litton JK, Arrington K, Ponniah S, Ibrahim NK, Gall V, Alatrash G, Peoples GE, Mittendorf EA. Results of a Phase Ib Trial of Combination Immunotherapy with a CD8+ T Cell Eliciting Vaccine and Trastuzumab in Breast Cancer Patients. Ann Surg Oncol 2017; 24:2161-2167. [PMID: 28315060 DOI: 10.1245/s10434-017-5844-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND CD8+ T cell-eliciting vaccines are being investigated in breast cancer patients. Preclinical data showed that trastuzumab increases the susceptibility of tumor cells to lysis by vaccine-generated CD8+ T cells, suggesting potential benefit of a combination immunotherapy strategy. The current trial was undertaken to demonstrate the safety of this approach. METHODS This study was designed as a dose-escalation trial enrolling clinically disease-free, human leukocyte antigen A2+ or A3+ , human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients. Patients received 6-monthly inoculations of GP2+ granulocyte-macrophage colony-stimulating factor (GM-CSF) administered concurrently with standard-of-care trastuzumab. Local and systemic toxicity, as well as left ventricular ejection fraction (LVEF) were monitored. Immunologic responses were assessed in vivo by measuring the local reaction and in vitro using an interferon-γ enzyme-linked immunosorbent spot (ELISPOT) assay. RESULTS Seventeen disease-free breast cancer patients were vaccinated. There were no dose-limiting or grade 3-5 local or systemic toxicities, and the median LVEF was unchanged from baseline after vaccination. Mean local reaction at initial inoculation was 28 ± 10 mm, increasing to 68 ± 8 mm at the final inoculation (p < 0.01). Mean ELISPOT response to GP2 increased from 47 ± 19 at baseline to 144 ± 60 (p = 0.13) after vaccination. Based on safety and immunologic data, the appropriate dose was determined to be 1000 μg of GP2 + 250 μg of GM-CSF. CONCLUSION The GP2 + GM-CSF vaccine is safe and stimulates an immunologic response when administered concurrently with trastuzumab. An ongoing phase II trial is evaluating the efficacy of combining a CD8 T-cell-eliciting vaccine with trastuzumab in HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- G Travis Clifton
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sathibalan Ponniah
- Cancer Vaccine Development Laboratory, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victor Gall
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George E Peoples
- Cancer Vaccine Development Program, San Antonio, TX, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Ladoire S, Derangère V, Arnould L, Thibaudin M, Coudert B, Lorgis V, Desmoulins I, Chaix M, Fumoleau P, Ghiringhelli F. [The anti-tumor immune response in breast cancer: Update and therapeutic perspectives]. Ann Pathol 2017; 37:133-141. [PMID: 28159406 DOI: 10.1016/j.annpat.2016.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
The role of the immune response in breast cancer is now well recognized and increasingly taken in account. The goal of this article is, in the first part, to underline its prognostic impact and to precise the immunosurvelliance, immunoselection and the immunosubversion concepts involved in the control and evasion of breast carcinoma. In the second part, therapeutic strategies for the restauration of anti-tumor immunity are developed. Vaccination strategies and checkpoints inhibitors blockade strategies are discussed as well as the immunogenic death linked to the conventional treatments of breast cancer.
Collapse
Affiliation(s)
- Sylvain Ladoire
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France.
| | - Valentin Derangère
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France; Département de pathologie et de biologie des tumeurs, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Laurent Arnould
- Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France; Département de pathologie et de biologie des tumeurs, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Marion Thibaudin
- UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France
| | - Bruno Coudert
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Veronique Lorgis
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Isabelle Desmoulins
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Marie Chaix
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| | - Pierre Fumoleau
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| | - François Ghiringhelli
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
42
|
Sanchez K, Page D, McArthur HL. Immunotherapy in breast cancer: An overview of modern checkpoint blockade strategies and vaccines. Curr Probl Cancer 2016; 40:151-162. [PMID: 27855963 DOI: 10.1016/j.currproblcancer.2016.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
Immune therapy has recently emerged as a standard-of-care strategy for the treatment of melanoma, lung cancer, bladder cancer, among other malignancies. However, the role of immune therapy in the treatment of breast cancer is still being determined. Two current strategies for harnessing the immune system to treat cancer include drugs that modulate key T cell inhibitory checkpoints and vaccines. Specifically, modern immune therapy strategies can facilitate T-cell mediated tumor regression by priming the immune system against specific tumor associated antigens, by modulating immunoregulatory signals, or both. In breast cancer, preliminary data from preclinical and early clinical studies are promising. In fact, clinical data with checkpoint blockade as monotherapy has been reported in multiple breast cancer subtypes to date, with durable responses observed in a significant proportion of women with chemotherapy resistant disease. However, because the number of genetic mutations and thus, the number of neoantigens available for immune response are modest in most breast cancers when compared with other cancers, most breast cancers may not be inherently sensitive to immune modulation and therefore may require strategies that enhance tumor associated antigen presentation if immune modulation strategies are to be effective. To that end, studies that combine checkpoint blockade with other strategies including established systemic therapies (including hormone therapy and chemotherapy), radiation therapy, and localized therapy including tumor freezing (cryoablation) are underway in breast cancer. Studies that combine checkpoint blockade with vaccines are also planned. Herein, we provide a brief summary of key components of the immune response against cancer, a rationale for the use of immune therapy in breast cancer, data from early clinical trials of checkpoint blockade and vaccine strategies in breast cancer, and future directions in the field.
Collapse
Affiliation(s)
- Katherine Sanchez
- Providence Cancer Center / Earle A. Chiles Research Institute, Portland, OR
| | - David Page
- Providence Cancer Center / Earle A. Chiles Research Institute, Portland, OR
| | | |
Collapse
|
43
|
Clifton GT, Gall V, Peoples GE, Mittendorf EA. Clinical Development of the E75 Vaccine in Breast Cancer. Breast Care (Basel) 2016; 11:116-21. [PMID: 27239173 PMCID: PMC4881244 DOI: 10.1159/000446097] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
E75 is an immunogenic peptide derived from the human epidermal growth factor receptor 2 (HER2) protein. A large amount of preclinical work evaluated the immunogenicity of E75, after which phase I trials investigated using E75 mixed with an immunoadjuvant as a vaccine. Those studies showed the vaccine to be safe and capable of stimulating an antigen-specific immune response. Subsequent to that, our group conducted trials evaluating E75 + granulocyte macrophage colony-stimulating factor (GM-CSF) in the adjuvant setting. The studies enrolled node-positive and high-risk node-negative breast cancer patients, with the goal being to determine if vaccination could decrease the recurrence risk. The studies included 187 evaluable patients: 108 vaccinated ones and 79 controls. The 5-year disease-free survival for the vaccinated patients was 89.7% compared to 80.2% for the control patients, a 48% reduction in relative risk of recurrence. Based on these data, E75 + GM-CSF, now known as NeuVax™, is being evaluated in a phase III trial. In this article, we review preclinical data and results of the early-phase trials and provide an update on the ongoing phase III study. We also present additional strategies for employing the vaccine to be included as a component of combination immunotherapy as well as in the setting of ductal carcinoma in situ as an initial step towards primary prevention.
Collapse
Affiliation(s)
- Guy T. Clifton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victor Gall
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George E. Peoples
- Cancer Vaccine Development Program, Metis Foundation, San Antonio, TX, USA
| | - Elizabeth A. Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Schneble E, Clifton GT, Hale DF, Peoples GE. Peptide-Based Cancer Vaccine Strategies and Clinical Results. Methods Mol Biol 2016; 1403:797-817. [PMID: 27076168 DOI: 10.1007/978-1-4939-3387-7_46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Active cancer immunotherapy is an exciting and developing field in oncology research. Peptide vaccines, the use of isolated immunogenic tumor-associated antigen (TAA) epitopes to generate an anticancer immune response, are an attractive option as they are easily produced and administered with minimal toxicity. Multiple TAA-derived peptides have been identified and evaluated with various vaccine strategies currently in clinical testing. Research suggests that utilizing vaccines in patients with minimal-residual disease may be a more effective strategy compared to targeting patients with widely metastatic disease as it avoids the immune suppression and tolerance associated with higher volumes of more established disease. Clinical trials also suggest that vaccines may need to be tailored and administered to specific cancer subtypes to achieve maximum efficacy. Additionally, numerous immunomodulators now in research and development show potential synergy with peptide vaccines. Our group has focused on a simpler, single-peptide strategy largely from the HER2/neu protein. We will discuss our experience thus far as well as review other peptide vaccine strategies that have shown clinical efficacy.
Collapse
Affiliation(s)
- Erika Schneble
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA.
| | - G Travis Clifton
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA
- Department of Surgical Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Diane F Hale
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA
- San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - George E Peoples
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA
| |
Collapse
|
45
|
Clifton GT, Mittendorf EA, Peoples GE. Adjuvant HER2/neu peptide cancer vaccines in breast cancer. Immunotherapy 2015; 7:1159-68. [PMID: 26567563 DOI: 10.2217/imt.15.81] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Active cancer immunotherapy remains an exciting and rapidly advancing field in oncology. Peptide cancer vaccines are an attractive therapeutic option as they are safe and easily produced and administered. Peptide cancer vaccines may be most effective in patients with a lower disease burden, when cancer tolerance is minimized. Our experience with three peptide cancer vaccines, E75, GP2 and AE37, in clinically disease-free breast cancer patients provides encouraging results that this method may be effective. Furthermore, the combined results of the initial trials suggest that the vaccine administered may need to be tailored to the specific subtype of cancer and tumor antigen expression level to achieve maximum effectiveness. The results also suggest that combining peptide vaccines with other immunotherapy may lead to a synergistic effect.
Collapse
Affiliation(s)
- Guy T Clifton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George E Peoples
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| |
Collapse
|
46
|
Peres LDP, da Luz FAC, Pultz BDA, Brígido PC, de Araújo RA, Goulart LR, Silva MJB. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnol Adv 2015; 33:1868-77. [PMID: 26523780 DOI: 10.1016/j.biotechadv.2015.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
Abstract
This review discusses peptide-based vaccines in breast cancer, immune responses and clinical outcomes, which include studies on animal models and phase I, phase I/II, phase II and phase III clinical trials. Peptide-based vaccines are powerful neoadjuvant immunotherapies that can directly target proteins expressed in tumor cells, mainly tumor-associated antigens (TAAs). The most common breast cancer TAA epitopes are derived from MUC1, HER2/neu and CEA proteins. Peptides derived from TAAs could be successfully used to elicit CD8 and CD4 T cell-specific responses. Thus, choosing peptides that adapt to natural variations of human leukocyte antigen (HLA) genes is critical. The most attractive advantage is that the target response is more specific and less toxic than for other therapies and vaccines. Prominent studies on NeuVax - E75 (epitope for HER2/neu and GM-CSF) in breast cancer and DPX-0907 (HLA-A2-TAAs) expressed in breast cancer, ovarian and prostate cancer have shown the efficacy of peptide-based vaccines as neoadjuvant immunotherapy against cancer. Future peptide vaccine strategies, although a challenge to be applied in a broad range of breast cancers, point to the development of degenerate multi-epitope immunogens against multiple targets.
Collapse
Affiliation(s)
- Lívia de Paula Peres
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Felipe Andrés Cordero da Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Brunna dos Anjos Pultz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Paula Cristina Brígido
- Laboratório de Tripanossomatídeos, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia - Universidade Federal de Uberlândia - UFU, (INGEB), Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
47
|
Desrichard A, Snyder A, Chan TA. Cancer Neoantigens and Applications for Immunotherapy. Clin Cancer Res 2015; 22:807-12. [PMID: 26515495 DOI: 10.1158/1078-0432.ccr-14-3175] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
Recent advances in immune checkpoint blockade therapy have revolutionized the treatment of cancer. Tumor-specific antigens that are generated by somatic mutation, neoantigens, can influence patient response to immunotherapy and contribute to tumor shrinkage. Recent evidence demonstrating the success of checkpoint blockade immunotherapy in boosting T-cell reactivity against patient-specific neoantigens constitutes a strong rationale for the development of personalized vaccines against these nonself peptides. With the decreasing cost of next-generation sequencing, peptide manufacturing, and improvement of in silico prediction of peptide immunogenicity, it is increasingly important to evaluate the potential use of neoantigens in both diagnosis and treatment. Specifically, these neoantigens could be useful both as predictors of immune checkpoint blockade therapy response and/or incorporated in therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Snyder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
48
|
Cherryholmes GA, Stanton SE, Disis ML. Current methods of epitope identification for cancer vaccine design. Vaccine 2015; 33:7408-7414. [PMID: 26238725 DOI: 10.1016/j.vaccine.2015.06.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
The importance of the immune system in tumor development and progression has been emerging in many cancers. Previous cancer vaccines have not shown long-term clinical benefit possibly because were not designed to avoid eliciting regulatory T-cell responses that inhibit the anti-tumor immune response. This review will examine different methods of identifying epitopes derived from tumor associated antigens suitable for immunization and the steps used to design and validate peptide epitopes to improve efficacy of anti-tumor peptide-based vaccines. Focusing on in silico prediction algorithms, we survey the advantages and disadvantages of current cancer vaccine prediction tools.
Collapse
Affiliation(s)
- Gregory A Cherryholmes
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, 850 Republican Street, Seattle, WA 98109, United States.
| | - Sasha E Stanton
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, 850 Republican Street, Seattle, WA 98109, United States.
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, 850 Republican Street, Seattle, WA 98109, United States.
| |
Collapse
|
49
|
Obeid J, Hu Y, Slingluff CL. Vaccines, Adjuvants, and Dendritic Cell Activators--Current Status and Future Challenges. Semin Oncol 2015; 42:549-61. [PMID: 26320060 DOI: 10.1053/j.seminoncol.2015.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer vaccines offer a low-toxicity approach to induce anticancer immune responses. They have shown promise for clinical benefit with one cancer vaccine approved in the United States for advanced prostate cancer. As other immune therapies are now clearly effective for treatment of advanced cancers of many histologies, there is renewed enthusiasm for optimizing cancer vaccines for use to prevent recurrence in early-stage cancers and/or to combine with other immune therapies for therapy of advanced cancers. Future advancements in vaccine therapy will involve the identification and selection of effective antigen formulations, optimization of adjuvants, dendritic cell (DC) activation, and combination therapies. In this summary we present the current practice, the broad collection of challenges, and the promising future directions of vaccine therapy for cancer.
Collapse
Affiliation(s)
- Joseph Obeid
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yinin Hu
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
50
|
Zavala VA, Kalergis AM. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology 2015; 145:182-201. [PMID: 25826229 PMCID: PMC4427384 DOI: 10.1111/imm.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Advances in understanding the mechanisms of cancer cells for evading the immune system surveillance, including how the immune system modulates the phenotype of tumours, have allowed the development of new therapies that benefit from this complex cellular network to specifically target and destroy cancer cells. Immunotherapy researchers have mainly focused on the discovery of tumour antigens that could confer specificity to immune cells to detect and destroy cancer cells, as well as on the mechanisms leading to an improved activation of effector immune cells. The Food and Drug Administration approval in 2010 of ipilumumab for melanoma treatment and of pembrolizumab in 2014, monoclonal antibodies against T-lymphocyte-associated antigen 4 and programmed cell death 1, respectively, are encouraging examples of how research in this area can successfully translate into clinical use with promising results. Currently, several ongoing clinical trials are in progress testing new anti-cancer therapies based on the enhancement of immune cell activity against tumour antigens. Here we discuss the general concepts related to immunotherapy and the recent application to the treatment of cancer with positive results that support their consideration of clinical application to patients.
Collapse
Affiliation(s)
- Valentina A Zavala
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de ChileSantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
- INSERM U1064Nantes, France
| |
Collapse
|