1
|
Shafiei M, Mardi S, Ghadimi S, Poorshahbazi H, Pourabbas R, Keykhah M, Rafiemanesh H. Efficacy and tolerability of probiotics, prebiotics, and symbiotics consumption on oral complications of patients with thyroid and head and neck cancers: a systematic review and meta-analysis. BMC Oral Health 2025; 25:677. [PMID: 40316921 PMCID: PMC12049045 DOI: 10.1186/s12903-025-05876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Oral complications following cancer treatment are a challenging issue for oncologists. Several studies have demonstrated the efficacy of biotics in the prevention and treatment of oral complications in thyroid and head and neck cancers. METHODS Following the PRISMA criteria, a systematic review and meta-analysis of included studies on efficacy, safety, dosage, and duration of treatment was performed. RESULTS A total of 12 randomized controlled trials and a total of 885 individuals were included in this meta-analysis. Our analysis showed that biotics had a slight but insignificant effect on the incidence of oral mucositis (Risk ratio (RR) = 0.90, 95% CI [0.79, 1.03]), and a significant impact on reducing the severity of oral mucositis (RR = 0.62, 95% CI [0.48, 0.80]). Biotics also had a slight but insignificant effect in developing xerostomia in thyroid and Head and neck cancer (HNC) patients. Subgroup meta-analysis demonstrated that Bifidobacterium-containing products were more effective than other blends. CONCLUSION Our findings demonstrated that biotics are effective and safe for HNC and thyroid patients suffering from oral complications.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Shayan Mardi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Soodeh Ghadimi
- School of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Helia Poorshahbazi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roozbeh Pourabbas
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammadamin Keykhah
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Venkatraman A, Davis R, Tseng WH, Thibeault SL. Microbiome and Communication Disorders: A Tutorial for Clinicians. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025; 68:148-163. [PMID: 39572259 PMCID: PMC11842070 DOI: 10.1044/2024_jslhr-24-00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
PURPOSE Emerging research in the field of microbiology has indicated that host-microbiota interactions play a significant role in regulating health and disease. Whereas the gut microbiome has received the most attention, distinct microbiota in other organs (mouth, larynx, and trachea) may undergo microbial shifts that impact disease states. A comprehensive understanding of microbial mechanisms and their role in communication and swallowing deficits may have downstream diagnostic and therapeutic implications. METHOD A literature review was completed to provide a broad overview of the microbiome, including differentiation of commensal versus pathogenic bacteria; cellular mechanisms by which bacteria interact with human cells; site-specific microbial compositional shifts in certain organs; and available reports of oral, laryngeal, and tracheal microbial dysbiosis in conditions that are associated with communication and swallowing deficits. RESULTS/CONCLUSIONS This review article is a valuable tutorial for clinicians, specifically introducing them to the concept of dysbiosis, with potential contributions to communication and swallowing deficits. Future research should delineate the role of specific pathogenic bacteria in disease pathogenesis to identify therapeutic targets.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
| | - Ruth Davis
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
| | - Wen-Hsuan Tseng
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Susan L. Thibeault
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
| |
Collapse
|
3
|
Gulig P, Swindle S, Fields M, Eisenman D. A Review of Clinical Trials Involving Genetically Modified Bacteria, Bacteriophages and Their Associated Risk Assessments. APPLIED BIOSAFETY 2024; 29:186-206. [PMID: 39735407 PMCID: PMC11669762 DOI: 10.1089/apb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Introduction Discussion of gene-modified investigational products (IPs) in clinical trials has largely focused on nucleic acid-based vectors, viral vectors, and gene-modified cellular products involving mammalian cells. Use of bacteria and bacteriophages as IPs is resurgent, and discussion of the risks associated with genetic modification of these organisms has become pertinent to the biosafety community. Methods This review article summarizes the United States Food and Drug Administration classification for IPs comprising bacteria or bacteriophages and provides an overview of clinical trials conducted to date involving genetically modified bacteria. The risk assessment for bacterial or bacteriophage-based IPs is discussed. Conclusion The risk assessment process for bacterial or bacteriophage-based IPs is different from that of gene expression vectors and mammalian cells. Greater consideration must be given to the attenuating mutations affecting virulence, replication competency, antibiotic susceptibility, and persistence in the environment. With the recent growth in clinical trials involving genetically modified bacteria, biosafety professionals and Institutional Biosafety Committees with responsibilities including oversight of clinical trials must become familiar with the associated risk assessment.
Collapse
Affiliation(s)
- Paul Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- Advarra, Columbia, Maryland, USA
| | | | - Mark Fields
- Advarra, Columbia, Maryland, USA
- Department of Ophthalmology, Yale University, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
4
|
Zhu Z, Pan W, Ming X, Wu J, Zhang X, Miao J, Cui W. The effect of probiotics on severe oral mucositis in cancer patients undergoing chemotherapy and/or radiotherapy: A meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101983. [PMID: 39187039 DOI: 10.1016/j.jormas.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Oral mucositis is a frequent adverse reaction in cancer treatment. Probiotics exhibit anti-inflammatory and immunomodulatory properties that could prevent the occurrence of severe oral mucositis (SOM) induced by chemotherapy or radiation therapy in patients. This meta-analysis aimed to investigate the influence of probiotics on the incidence of SOM in cancer patients undergoing chemotherapy and/or radiotherapy. METHODS We conducted a comprehensive search in PubMed, Embase, the Cochrane Library, and the China National Knowledge Infrastructure (CNKI) from their inception to September 2023. Dichotomous variables are analyzed with odds ratios (ORs) with 95% CIs, and statistical significance was set at a two-tailed P <0 .05. The primary outcome indicator was the effect of probiotics on SOM. Secondary outcome indicators included the effect of probiotics on oral mucositis and the ratio of diarrhoea. Statistical analysis was conducted using RevMan (5.4) and Stata 17.0 software. RESULTS The study included a total of 12 articles and involved 1055 patients. All patients had undergone either radiotherapy or chemotherapy. Our findings revealed that the experimental group, which received probiotics for treatment, exhibited a lower ratio of SOM compared to the control group that received traditional placebo treatment (OR=0.37, 95%CI [0.28, 0.50], P<0.01). Subgroup analysis revealed variations in the ratio of SOM based on therapeutic regimen, tumor type, and region. The overall ratio of oral mucositis was significantly lower in the experimental group compared to the control group (OR=0.19, 95%CI [0.09-0.39], P<0.01). The ratio of diarrhea in the two patient groups showed no significant difference (OR=0.85, 95%CI [0.24, 3.01], P>0.05). CONCLUSION The results of this meta-analysis suggest that probiotics could decrease the occurrence of SOM.
Collapse
Affiliation(s)
- ZhiYi Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang 310000, China
| | - Wenting Pan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Xianqing Ming
- Department of Stomatology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Anhui 230011, China
| | - Jiale Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100000, China
| | - Xinyue Zhang
- Department of Oral Radiology, Peking University School and Hospital of Stomatology, Beijing 100000, China
| | - Junfeng Miao
- Department of Stomatology, Jinan City People's Hospital, Jinan 271100, China
| | - Wei Cui
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration., National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, 169 Changle West Road, Xi'an, Shanxi 710000, China.
| |
Collapse
|
5
|
Yang B, Li W, Shi J. Preventive effect of probiotics on oral mucositis induced by anticancer therapy: a systematic review and meta-analysis of randomized controlled trials. BMC Oral Health 2024; 24:1159. [PMID: 39343876 PMCID: PMC11441129 DOI: 10.1186/s12903-024-04955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Oral mucositis (OM) is a prevalent and painful complication in patients undergoing anticancer treatment, which significantly impacts patients' quality of life (QoL) and adherence to therapy. The use of oral probiotics as a preventive strategy for OM has shown promise, but the clinical evidence remains inconclusive. This meta-analysis of randomized controlled trials (RCTs) aims to evaluate the efficacy of probiotics in preventing OM caused by radiotherapy and/or chemotherapy. METHODS A comprehensive search of PubMed, EMBASE, Web of Science, Cochrane Library, and ClinicalTrials.gov was conducted up to January 31, 2024, to identify eligible RCTs. The primary outcomes were the incidences of severe OM and all-grade OM. Secondary outcomes included rates of anticancer treatment completion, clinical response, requirement for enteral nutrition, time course of OM, body weight loss, QoL, and adverse events (AEs). Risk ratios (RRs) with 95% confidence intervals (CIs) were calculated. RESULTS A total of 12 RCTs involving 1,376 patients were included in the quantitative analysis. Probiotics administration significantly reduced the risk of severe OM (RR = 0.61, 95%CI: 0.53-0.72, P < 0.001) and all-grade OM (RR = 0.90, 95%CI: 0.82-0.98, P = 0.016) compared to the control group. Multi-strain probiotics formulations were more effective than single-strain probiotics in preventing severe OM (P = 0.011). There were no significant differences between the probiotics and control groups regarding anticancer treatment completion (RR = 1.03, 95%CI: 0.98-1.08, P = 0.198), clinical response to therapy (RR = 1.05, 95%CI: 0.94-1.17, P = 0.406), or the need for enteral nutrition (RR = 1.28, 95%CI: 0.49-3.35, P = 0.680). AEs related to probiotics were rare, with no serious AEs attributable to probiotics use. CONCLUSIONS Oral probiotics are both safe and effective in preventing and reducing the severity of OM in patients undergoing anticancer therapy. Multi-strain probiotics demonstrate superior efficacy compared to single-strain probiotics. Further research is warranted to confirm these findings and optimize probiotic treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oral Medicine, Shanxi Provincial People's Hospital, No. 29, Shuangtaisi Street, Taiyuan, 030012, Shanxi Province, China
| | - Wenjun Li
- Department of Oral Medicine, Shanxi Provincial People's Hospital, No. 29, Shuangtaisi Street, Taiyuan, 030012, Shanxi Province, China
| | - Jing Shi
- Department of Oral Medicine, Shanxi Provincial People's Hospital, No. 29, Shuangtaisi Street, Taiyuan, 030012, Shanxi Province, China.
| |
Collapse
|
6
|
Locker J, Serrage HJ, Ledder RG, Deshmukh S, O'Neill CA, McBain AJ. Microbiological insights and dermatological applications of live biotherapeutic products. J Appl Microbiol 2024; 135:lxae181. [PMID: 39090975 DOI: 10.1093/jambio/lxae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
As our understanding of dermatological conditions advances, it becomes increasingly evident that traditional pharmaceutical interventions are not universally effective. The intricate balance of the skin microbiota plays a pivotal role in the development of various skin conditions, prompting a growing interest in probiotics, or live biotherapeutic products (LBPs), as potential remedies. Specifically, the topical application of LBPs to modulate bacterial populations on the skin has emerged as a promising approach to alleviate symptoms associated with common skin conditions. This review considers LBPs and their application in addressing a wide spectrum of dermatological conditions with particular emphasis on three key areas: acne, atopic dermatitis, and wound healing. Within this context, the critical role of strain selection is presented as a pivotal factor in effectively managing these dermatological concerns. Additionally, the review considers formulation challenges associated with probiotic viability and proposes a personalised approach to facilitate compatibility with the skin's unique microenvironment. This analysis offers valuable insights into the potential of LBPs in dermatological applications, underlining their promise in reshaping the landscape of dermatological treatments while acknowledging the hurdles that must be overcome to unlock their full potential.
Collapse
Affiliation(s)
- Jessica Locker
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
7
|
Lin P, Zhuang J, Lai J, Cui J, Jiang D, Huang J. Efficacy of probiotics in the treatment of oral mucositis in head and neck cancer patients: A systematic review and meta-analysis. Microb Pathog 2024; 193:106785. [PMID: 38971507 DOI: 10.1016/j.micpath.2024.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/12/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES To assess the effect of probiotics in oral mucositis induced by chemotherapy or radiotherapy on patients with head and neck cancer (HNC). METHODS The PubMed, Embase, Cochrane Library, Clinical trials were screened from January 2010 to April 2024. Randomized clinical trials (RCTs) comparing the efficacy of probiotics in treatment of oral mucositis in HNC were eligible. Outcomes of interest were incidence of oral mucositis and severe oral mucositis. The PROSPERO registration number was 42 022 384 685. The Cochrane risk-of-bias tool (RoB2) was used to assess methodological quality of studies and GRADE criteria (GRADEpro) was applied for rating the certainty of evidence. Meta-analysis was performed by using RevMan 5.4. RESULTS A total of eight RCTs comprising 691 patients with HNC were included in this meta-analysis. Probiotics administration significantly reduced the incidence of SOM (RR = 0.60, 95%CI: 0.46-0.78, P = 0.0002). However, it showed no distinct advantage in reducing the overall incidence of oral mucositis (RR = 0.88, 95%CI: 0.76-1.02, P = 0.08). Subgroup analysis found more benefit for reducing SOM in multi-bacterial treated group (RR = 0.35, 95%CI: 0.17-0.73, P = 0.005) than mono-bacterial treated group (RR = 0.69, 95%CI: 0.58-0.82, P < 0.0001). In Addition, probiotics could reduce the incidence of SOM in nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (RR = 0.43, 95%CI: 0.26-0.70, P = 0.0006). CONCLUSION Probiotics reduced the incidence of SOM caused by chemotherapy or radiotherapy for HNC. The multi-bacterial combination therapy was more efficacious than the mono-bacterial therapy. Moreover, probiotics also reduced the incidence of SOM in nasopharyngeal carcinoma. However, the advantage of probiotics had not been established in the overall incidence of OM.
Collapse
Affiliation(s)
- Peixin Lin
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Jiafeng Zhuang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Jing Lai
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Ji Cui
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Danxian Jiang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Jing Huang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
8
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Belloni S, Caruso R, Giacon C, Baroni I, Conte G, Magon A, Arrigoni C. Microbiome-Modifiers for Cancer-Related Fatigue Management: A Systematic Review. Semin Oncol Nurs 2024; 40:151619. [PMID: 38503656 DOI: 10.1016/j.soncn.2024.151619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVES This study systematically investigates the evidence regarding the use of probiotics in managing cancer-related fatigue (CRF). STUDY DESIGN We conducted a systematic review of randomized controlled trials. DATA SOURCES The systematic search encompassed six databases: PubMed, CINHAL, Cochrane Database of Systematic Reviews, Web of Science, Scopus, and EMBASE, covering the period from inception to December 2023. The assessment of risk of bias employed the Cochrane risk of bias tool (RoB 2). A narrative synthesis and an exploratory meta-analysis were conducted to summarize the evidence. RESULTS Among 460 records, three studies met the eligibility criteria and were included in the review. These studies involved a total of 284 participants with colorectal and breast cancer. One study demonstrated a marginal improvement in CRF postchemotherapy in colorectal cancer patients using probiotics. Another study, also using probiotics, reported a significant reduction in CRF among colorectal cancer patients undergoing chemotherapy. Additionally, a study employing synbiotics showed a substantial decrease in CRF severity in breast cancer patients receiving chemotherapy. CONCLUSION The study presents initial but varied evidence suggesting the potential of probiotics and synbiotics as adjunctive therapies in managing CRF alongside anticancer treatments. IMPLICATIONS FOR NURSING PRACTICE In nursing practice, large-scale clinical trials are urgently needed to evaluate the effectiveness of probiotics in treating cancer-related fatigue during cancer therapy. Insights from this review could guide nurses in selecting appropriate probiotic strains and integrating microbiome modifiers into comprehensive care plans, potentially enhancing the quality of life for cancer patients.
Collapse
Affiliation(s)
- Silvia Belloni
- Gastroenterology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Rosario Caruso
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Chiara Giacon
- Department of Public Health, Experimental and Forensic Medicine, Section of Hygiene, University of Pavia, Pavia, Italy
| | - Irene Baroni
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gianluca Conte
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Arianna Magon
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Cristina Arrigoni
- Department of Public Health, Experimental and Forensic Medicine, Section of Hygiene, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Zhang L, Valentin EMDS, John TM, Jenq RR, Do KA, Hanna EY, Peterson CB, Reyes-Gibby CC. Influence of oral microbiome on longitudinal patterns of oral mucositis severity in patients with squamous cell carcinoma of the head and neck. Cancer 2024; 130:150-161. [PMID: 37688396 PMCID: PMC10872366 DOI: 10.1002/cncr.35001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND This study investigated the influence of oral microbial features on the trajectory of oral mucositis (OM) in patients with squamous cell carcinoma of the head and neck. METHODS OM severity was assessed and buccal swabs were collected at baseline, at the initiation of cancer treatment, weekly during cancer treatment, at the termination of cancer treatment, and after cancer treatment termination. The oral microbiome was characterized via the 16S ribosomal RNA V4 region with the Illumina platform. Latent class mixed-model analysis was used to group individuals with similar trajectories of OM severity. Locally estimated scatterplot smoothing was used to fit an average trend within each group and to assess the association between the longitudinal OM scores and longitudinal microbial abundances. RESULTS Four latent groups (LGs) with differing patterns of OM severity were identified for 142 subjects. LG1 has an early onset of high OM scores. LGs 2 and 3 begin with relatively low OM scores until the eighth and 11th week, respectively. LG4 has generally flat OM scores. These LGs did not vary by treatment or clinical or demographic variables. Correlation analysis showed that the abundances of Bacteroidota, Proteobacteria, Bacteroidia, Gammaproteobacteria, Enterobacterales, Bacteroidales, Aerococcaceae, Prevotellaceae, Abiotrophia, and Prevotella_7 were positively correlated with OM severity across the four LGs. Negative correlation was observed with OM severity for a few microbial features: Abiotrophia and Aerococcaceae for LGs 2 and 3; Gammaproteobacteria and Proteobacteria for LGs 2, 3, and 4; and Enterobacterales for LGs 2 and 4. CONCLUSIONS These findings suggest the potential to personalize treatment for OM. PLAIN LANGUAGE SUMMARY Oral mucositis (OM) is a common and debilitating after effect for patients treated for squamous cell carcinoma of the head and neck. Trends in the abundance of specific microbial features may be associated with patterns of OM severity over time. Our findings suggest the potential to personalize treatment plans for OM via tailored microbiome interventions.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Erin Marie D. San Valentin
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teny M. John
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ehab Y. Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cielito C. Reyes-Gibby
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Kuang X, Liu Y, Luo H, Li Q, Wu F, Fan C, Liu J. Triggerable Prodrug Nanocoating Enables On-Demand Activation of Microbial and Small-Molecular Therapeutics for Combination Treatment. J Am Chem Soc 2023; 145:26932-26946. [PMID: 37988674 DOI: 10.1021/jacs.3c10015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The synergy of living microbial and small-molecular therapeutics has been widely explored for treating a variety of diseases, while current combination strategies often suffer from low bioavailability, heterogeneous spatiotemporal distribution, and premature drug release. Here, the use of a triggerable prodrug nanocoating is reported to enable the on-demand activation of microbial and small-molecular therapeutics for combination treatment. As a proof-of-concept study, a reactive oxygen species-responsive aromatic thioacetal linker is employed to prepare cationic chitosan-drug conjugates, which can form a nanocoating on the surface of living bacteria via electrostatic interaction. Following administration, the wrapped bacteria can be prevented from in vivo insults by the shielding effect of the nanocoating and be co-delivered with the conjugated drug in a spatiotemporally synchronous manner. Upon reaching the lesion site, the upgraded reactive oxygen species trigger in situ cleavage of the thioacetal linker, resulting in the release of the conjugated drug and a linker-derived therapeutic cinnamaldehyde. Meanwhile, a charge reversal achieved by the generation of negatively charged thiolated chitosan induces the dissociation of the nanocoating, leading to synchronous release of the living bacteria. The adequate activation of the combined therapeutics at the lesion site exhibits superior synergistic treatment efficacy, as demonstrated by an in vivo assessment using a mouse model of colitis. This work presents an appealing approach to combine living microbial and small-molecular therapeutics for advanced therapy of diseases.
Collapse
Affiliation(s)
- Xiao Kuang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huilong Luo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
13
|
Ciernikova S, Sevcikova A, Drgona L, Mego M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim Biophys Acta Rev Cancer 2023; 1878:188990. [PMID: 37742728 DOI: 10.1016/j.bbcan.2023.188990] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Treatment resistance, together with acute and late adverse effects, represents critical issues in the management of cancer patients. Promising results from preclinical and clinical research underline the emerging trend of a microbiome-based approach in oncology. Favorable bacterial species and higher gut diversity are associated with increased treatment efficacy, mainly in chemo- and immunotherapy. On the other hand, alterations in the composition and activity of gut microbial communities are linked to intestinal dysbiosis and contribute to high treatment-induced toxicity. In this Review, we provide an overview of studies concerning gut microbiota modulation in patients with solid and hematologic malignancies with a focus on probiotics, prebiotics, postbiotics, and fecal microbiota transplantation. Targeting the gut microbiome might bring clinical benefits and improve patient outcomes. However, a deeper understanding of mechanisms and large clinical trials concerning microbiome and immunological profiling is warranted to identify safe and effective ways to incorporate microbiota-based interventions in routine clinical practice.
Collapse
Affiliation(s)
- Sona Ciernikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Aneta Sevcikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
14
|
Amiri Khosroshahi R, Talebi S, Zeraattalab-Motlagh S, Imani H, Rashidi A, Travica N, Mohammadi H. Nutritional interventions for the prevention and treatment of cancer therapy-induced oral mucositis: an umbrella review of systematic reviews and meta-analysis. Nutr Rev 2023; 81:1200-1212. [PMID: 36763701 DOI: 10.1093/nutrit/nuac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
CONTEXT To date, the efficacy of nutritional interventions on oral mucositis (OM) in patients with cancer, and the quality of this evidence have not been explored. OBJECTIVE The goal of this umbrella review was to provide a comprehensive evaluation of nutritional interventions for patients with cancer with OM, as well as to assess the quality of this evidence. DATA SOURCES Meta-analyses were searched for using PubMed, Scopus, and ISI Web of Science databases until December 2021, with no time restrictions. DATA EXTRACTION Meta-analyses of randomized control trials that evaluated the effects of nutritional interventions on the incidence of OM in patients with cancer had inclusion criteria for this umbrella review. Data extraction, quality assessment of meta-analyses, and primary studies were done independently by 2 authors. The Grading of Recommendations Assessment, Development, and Evaluation technique was used to grade the certainty of evidence. DATA ANALYSIS A total of 26 meta-analyses were included in this umbrella review. The results showed that honey, glutamine, and propolis can reduce the incidence of severe OM, based on moderate evidence quality. In addition, zinc supplementation significantly reduced the incidence of OM, regardless of symptom severity; however, low certainty of the evidence was observed. The effects of vitamin E, curcumin, and probiotics on OM were not statistically significant. CONCLUSION This umbrella review shows that honey, glutamine, and propolis can significantly reduce the incidence of severe OM. These findings need to be confirmed with well-designed, longitudinal randomized controlled trials. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022301010.
Collapse
Affiliation(s)
- Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Rashidi
- Hematology-Oncology and BMT Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikolaj Travica
- Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Fernández Forné Á, García Anaya MJ, Segado Guillot SJ, Plaza Andrade I, de la Peña Fernández L, Lorca Ocón MJ, Lupiáñez Pérez Y, Queipo-Ortuño MI, Gómez-Millán J. Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review. Oral Oncol 2023; 144:106488. [PMID: 37399707 DOI: 10.1016/j.oraloncology.2023.106488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.
Collapse
Affiliation(s)
- África Fernández Forné
- Department of Radiation Oncology. Punta Europa University Hospital. Algeciras, Cádiz, Spain
| | - María Jesús García Anaya
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | | | - Isaac Plaza Andrade
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain
| | | | - María Jesús Lorca Ocón
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Yolanda Lupiáñez Pérez
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain; Department of Surgical Specialties, Biochemical and Immunology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain.
| | - Jaime Gómez-Millán
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| |
Collapse
|
16
|
Guo J, Zhang H, Lu X, Xia L. Viable Bifidobacterium tablets for the prevention of chemotherapy-/radiation-induced mucositis in patients undergoing haematopoietic stem cell transplantation. Support Care Cancer 2023; 31:282. [PMID: 37074462 DOI: 10.1007/s00520-023-07755-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Mucositis is a frequent and severe complication in haematopoietic stem cell transplantation (HSCT). The effectiveness of probiotics in mucositis has been indicated by several clinical trials, but the results are still controversial. To date, studies on the influence of probiotics in HSCT are limited. Therefore, we conducted this retrospective study to evaluate the impact of viable Bifidobacterium tablets on the incidence and duration of chemotherapy-/radiation-induced mucositis in patients undergoing HSCT. METHODS Clinical data of 278 patients who underwent HSCT between May 2020 and November 2021 were retrospectively analysed. They were divided into a control group (138) and a probiotic group (140) according to whether they took viable Bifidobacterium tablets. First, we analysed the baseline data of the two groups. Then, we compared the incidence, severity and duration of mucositis between the two groups by using Mann-Whitney U test, chi-square test and Fisher's exact test according to the type of data. In order to exclude the influence of confounding factors, we further evaluated the efficacy of oral probiotics in preventing oral mucositis by Binary logistic regression analysis. RESULTS The use of viable Bifidobacterium tablets markedly reduced the incidence of oral mucositis (OM) (62.9% vs. 81.2%, p = 0.001) and mainly reduced the incidence of grades 1-2 OM (74.6% vs. 58.6%, p = 0.005). There was no significant difference in the incidence of severe (grades 3-4) OM between the two groups (6.5% vs. 4.3%, p = 0.409). The median duration of OM was shorter in the probiotic group (10 vs. 12 days, p = 0.037). The incidence and duration of diarrhoea did not differ between the two groups. Moreover, the use of viable Bifidobacterium tablets had no influence on engraftment. CONCLUSIONS Our results suggested that viable Bifidobacterium tablets could effectively reduce the incidence of grades 1-2 OM and duration of OM during the transplant process without affecting the outcome of HSCT.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hongyong Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xuan Lu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Linghui Xia
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
17
|
Villa A, Sonis ST. Radiotherapy-induced severe oral mucositis: pharmacotherapies in recent and current clinical trials. Expert Opin Investig Drugs 2023; 32:301-310. [PMID: 36932830 DOI: 10.1080/13543784.2023.2193324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Oral mucositis (OM) is among the most common, damaging side effects of head and neck radiation therapy and may interfere with patients' ability to comply with optimal treatment. AREAS COVERED The increasing unmet clinical need, recent clinical trial successes, and the commercial potential have catalyzed interest in the development of effective intervention for OM. A range of small molecules are under development - some still in the preclinical stage, but others close to NDA submission. This review will focus on those drugs which have recently been assessed in a clinical trial and those which are still under clinical study as a prevention or treatment for radiation-associated OM. EXPERT OPINION In response to the unmet clinical need, both the biotechnology and pharmacological industries have been actively pursuing an agent to prevent/treat radiation-associated OM. This effort has been catalyzed by the identification of multiple drug targets which contribute to OM's pathogenesis. The lessons learned from the many trials which have previously stumbled have led to standardization of clinical trial design, endpoint efficacy definitions, rater assessment, and data interpretation over the past decade. Consequently, results of recently completed clinical trials provide optimism that effective treatment options should be available in the not-too-distant future.
Collapse
Affiliation(s)
- Alessandro Villa
- Oral Medicine, Oral Oncology and Dentistry. Miami Cancer Institute, Baptist Health South Florida, Miami, United States
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco
| | - Stephen T Sonis
- Divisions of Oral Medicine and Dentistry, Brigham and Women's Hospital and the Dana-Farber Cancer Institute, Boston
- Biomodels, LLC and Primary Endpoint Solutions, LLC, Waltham
| |
Collapse
|
18
|
Effect of synbiotic mouthwash on oral mucositis induced by radiotherapy in oral cancer patients: a double-blind randomized clinical trial. Support Care Cancer 2022; 31:31. [PMID: 36517616 DOI: 10.1007/s00520-022-07521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Considering the complex pathobiology of oral mucositis, especially in oral cancer patients, the prevention and treatment of oral mucositis in patients undergoing radiotherapy remains an essential and clinically crucial unmet need. The present study aims to investigate and compare the effects of synbiotic mouthwash with normal saline mouthwash on the prevention and control of radiotherapy-induced oral mucositis in oral cancer patients. METHODS Double-blind, randomized clinical trial (RCT) performed on 64 oral cancer patients who underwent radiotherapy (IRCT20201106049288N1, registration date: 2020-12-23). Patients were divided randomly into the case (32 subjects) and control (32 subjects) groups. All patients underwent intensity-modulated radiotherapy and received 6000 cGY of radiotherapy in 34 fractions. All patients received the usual treatment for mucositis, but in the case group, synbiotic mouthwash was prescribed and in the control group, normal saline mouthwash was prescribed from a day before the start to the end of radiotherapy treatment. Patients were monitored every session for 6 weeks to check the progression, oral involvement severity, and mucositis grade. RESULTS The case group showed a significant reduction in the oral mucositis severity. The mucositis grade in the case group from the 7th session of oral examination was significantly lower than the control (p < 0.05), and this significant difference persisted until the last session of oral examination. Incidence rates of severe oral mucositis (grade 3) during the treatment period were 11.59% in the case and 36.45% in control (p < 0.001). CONCLUSION Synbiotic mouthwash significantly reduces and prevents oral mucositis intensity in oral cancer patients undergoing radiotherapy.
Collapse
|
19
|
Wortelboer K, Koopen AM, Herrema H, de Vos WM, Nieuwdorp M, Kemper EM. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front Med (Lausanne) 2022; 9:1077275. [PMID: 36544495 PMCID: PMC9760881 DOI: 10.3389/fmed.2022.1077275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
| | - Willem M. de Vos
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marleen Kemper
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Preventive Effect of Probiotics on Oral Mucositis Induced by Cancer Treatment: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113268. [PMID: 36362057 PMCID: PMC9656871 DOI: 10.3390/ijms232113268] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Oral mucositis is a common adverse effect of cancer therapy. Probiotics have been shown to exert anti-inflammatory and immunomodulatory effects. We performed a meta-analysis of randomized controlled trials (RCTs) to investigate whether probiotics can prevent cancer therapy−induced oral mucositis. We searched PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases for trials related to probiotics and oral mucositis published before September 2022; no language restrictions were applied. The primary outcome was the incidence of oral mucositis and severe oral mucositis. Secondary outcomes were the requirement for enteral nutrition during treatment, body weight loss, and decreased quality of life. The study has been registered in PROSPERO (number: CRD 42022302339). Eight RCTs, including 708 patients, were reviewed; however, a meta-analysis of only seven trials could be performed. Three trials using Lactobacilli-based probiotics reported that the incidence of oral mucositis in the probiotic group was significantly low (risk ratio [RR] = 0.84, 95% confidence interval [CI] = 0.77−0.93, p = 0.0004). Seven trials reported a significantly low incidence of severe oral mucositis in the probiotic group (RR = 0.65, 95% CI = 0.53−0.81, p < 0.0001). The requirement of enteral nutrition was significantly low in the probiotic group (odds ratio = 0.34, 95% CI: 0.13−0.92, p < 0.05). This study demonstrated the effectiveness of probiotics in the prevention and mitigation of cancer therapy−induced oral mucositis. We recommend the use of probiotics to prevent and treat oral mucositis during cancer therapy.
Collapse
|
21
|
Radaic A, Brody H, Contreras F, Hajfathalian M, Lucido L, Kamarajan P, Kapila YL. Nisin and Nisin Probiotic Disrupt Oral Pathogenic Biofilms and Restore Their Microbiome Composition towards Healthy Control Levels in a Peri-Implantitis Setting. Microorganisms 2022; 10:1336. [PMID: 35889055 PMCID: PMC9324437 DOI: 10.3390/microorganisms10071336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Peri-implantitis is characterized by chronic inflammation of the peri-implant supporting tissues that progressively and irreversibly leads to bone loss and, consequently, implant loss. Similar to periodontal disease, oral dysbiosis is thought to be a driver of peri-implantitis. However, managing peri-implantitis with traditional treatment methods, such as nonsurgical debridement or surgery, is not always successful. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents since they are considered safe for humans and the environment. Specifically, the probiotic Lactococcus lactis produces nisin, which has been used worldwide for food preservation. The objective of this study was to determine whether nisin and the wild-type (WT) nisin-producing L. lactis probiotic can disrupt oral pathogenic biofilms and promote a healthier oral microbiome within these oral biofilms on titanium discs. Using confocal imaging and 16S rRNA sequencing, this study revealed that nisin and WT L. lactis probiotic disrupt oral pathogenic biofilms in a peri-implantitis setting in vitro. More specifically, nisin decreased the viability of the pathogen-spiked biofilms dose-dependently from 62.53 ± 3.69% to 54.26 ± 3.35% and 44.88 ± 2.98%, respectively. Similarly, 105 CFU/mL of WT L. lactis significantly decreased biofilm viability to 52.45 ± 3.41%. Further, both treatments shift the composition, relative abundance, and diversity levels of these biofilms towards healthy control levels. A total of 1 µg/mL of nisin and 103 CFU/mL of WT L. lactis were able to revert the pathogen-mediated changes in the Proteobacteria (from 80.5 ± 2.9% to 75.6 ± 2.0%, 78.0 ± 2.8%, and 75.1 ± 5.3%, respectively) and Firmicutes (from 11.6 ± 1.6% to 15.4 ± 1.3%, 13.8 ± 1.8%, and 13.7 ± 2.6%, respectively) phyla back towards control levels. Thus, nisin and its nisin-producing L. lactis probiotic may be useful in treating peri-implantitis by promoting healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Hanna Brody
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Fernando Contreras
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Maryam Hajfathalian
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luke Lucido
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Division of Oral and Systemic Health Sciences, Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat Biomed Eng 2022; 6:910-921. [PMID: 35411114 DOI: 10.1038/s41551-022-00871-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
Antibiotic-induced alterations in the gut microbiota are implicated in many metabolic and inflammatory diseases, increase the risk of secondary infections and contribute to the emergence of antimicrobial resistance. Here we report the design and in vivo performance of an engineered strain of Lactococcus lactis that altruistically degrades the widely used broad-spectrum antibiotics β-lactams (which disrupt commensal bacteria in the gut) through the secretion and extracellular assembly of a heterodimeric β-lactamase. The engineered β-lactamase-expression system does not confer β-lactam resistance to the producer cell, and is encoded via a genetically unlinked two-gene biosynthesis strategy that is not susceptible to dissemination by horizontal gene transfer. In a mouse model of parenteral ampicillin treatment, oral supplementation with the engineered live biotherapeutic minimized gut dysbiosis without affecting the ampicillin concentration in serum, precluded the enrichment of antimicrobial resistance genes in the gut microbiome and prevented the loss of colonization resistance against Clostridioides difficile. Engineered live biotherapeutics that safely degrade antibiotics in the gut may represent a suitable strategy for the prevention of dysbiosis and its associated pathologies.
Collapse
|
23
|
Wu L, Bao F, Li L, Yin X, Hua Z. Bacterially mediated drug delivery and therapeutics: Strategies and advancements. Adv Drug Deliv Rev 2022; 187:114363. [PMID: 35649449 DOI: 10.1016/j.addr.2022.114363] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
It was already clinically apparent 150 years ago that bacterial therapy could alleviate diseases. Recently, a burgeoning number of researchers have been using bacterial regimens filled with microbial therapeutic leads to diagnose and treat a wide range of disorders and diseases, including cancers, inflammatory diseases, metabolic disorders and viral infections. Some bacteria that were designed to have low toxicity and high efficiency in drug delivery have been used to treat diseases successfully, especially in tumor therapy in animal models or clinical trials, thanks to the progress of genetic engineering and synthetic bioengineering. Therefore, genetically engineered bacteria can serve as efficient drug delivery vehicles, carrying nucleic acids or genetic circuits that encode and regulate therapeutic payloads. In this review, we summarize the development and applications of this approach. Strategies for genetically modifying strains are described in detail, along with their objectives. We also describe some controlled strategies for drug delivery and release using these modified strains as carriers. Furthermore, we discuss treatment methods for various types of diseases using engineered bacteria. Tumors are discussed as the most representative example, and other diseases are also briefly described. Finally, we discuss the challenges and prospects of drug delivery systems based on these bacteria.
Collapse
|
24
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
25
|
Arab A, Karimi E, Bagherniya M, Sathyapalan T, Sahebkar A. The effect of probiotic and synbiotic consumption on the most prevalent chemotherapy-related complications: A systematic review of current literature. Curr Med Chem 2022; 29:5462-5473. [PMID: 35430970 DOI: 10.2174/0929867329666220415114343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND To date, many investigations have employed pro-/synbiotic to examine their effects on chemotherapy-related side effects; nevertheless, their findings are inconclusive. To address this issue, we carried out a systematic review to explore the effect of pro-/synbiotic consumption on chemotherapy-related side effects, including nausea, vomiting, mucositis, diarrhea, and constipation in adults using randomized controlled trials (RCTs). METHODS The electronic databases, including PubMed, Scopus, and ISI Web of Sciences, were searched systematically from the earliest available date to March 2021 to identify eligible studies. The quality of the enrolled studies was done based on the Cochrane Collaboration Risk of Bias tool. RESULTS A total of 10 studies involving 788 individuals were included in the current systematic review with a sample size ranging from 25 to 200, and the mean age ranged from 51.04 to 66.91 years. The findings of this study imply that probiotics consumption may be more effective in terms of mucositis compared to other complications. CONCLUSION Further good-quality RCTs with better methodology are called to determine whether and how pro-/synbiotics can prevent or treat chemotherapy-induced side effects. The current systematic review findings may help investigators for future studies regarding the selection study population and probiotic strains.
Collapse
Affiliation(s)
- Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 PMCID: PMC12053541 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
Affiliation(s)
- Jacqueline N Chu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chem X 2022; 13:100196. [PMID: 35498967 PMCID: PMC9039921 DOI: 10.1016/j.fochx.2021.100196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology improves probiotics therapeutic approaches. Engineering technologies contribute to design probiotics mechanisms of action. Edition of proteolytic systems induce the generation of specific bioactive peptides. Engineered probiotics should be evaluated as therapeutic agents in clinical trials. Therapeutical and technological uses of engineered probiotics are still controversial.
Synthetic biology is employed for the study and design of engineered microbes with new and improved therapeutic functions. The main advantage of synthetic biology is the selective genetic manipulation of living organisms with desirable beneficial effects such as probiotics. Engineering technologies have contributed to the edition of metabolic processes involved in the mechanisms of action of probiotics, such as the generation of bioactive peptides. Hence, current information related to bioactive peptides, produced by different engineering probiotics, with antimicrobial, antiviral, antidiabetic, and antihypertensive activities, as well as their potential use as functional ingredients, is discussed here. Besides, the effectiveness and safety aspects of these bioactive peptides were also described.
Collapse
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Aarón Fernando González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Audry Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| |
Collapse
|
28
|
Feng J, Gao M, Zhao C, Yang J, Gao H, Lu X, Ju R, Zhang X, Zhang Y. Oral Administration of Probiotics Reduces Chemotherapy-Induced Diarrhea and Oral Mucositis: A Systematic Review and Meta-Analysis. Front Nutr 2022; 9:823288. [PMID: 35299763 PMCID: PMC8922230 DOI: 10.3389/fnut.2022.823288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
Abstract
Background Chemotherapy generally causes serious diarrhea and oral mucositis in cancer patients, and subsequently affects treatment. Oral administration of probiotics provides a therapeutic choice to address these limitations. This study aims to conduct a systematic review and meta-analysis on the efficacy of oral probiotic use in the management of the chemotherapy-induced adverse reactions, and to summarize the mechanisms underlying the action. Methods We searched PubMed, Embase, ClinicalTrials.gov, and Web of Science from the start of the study to its completion on Dec. 31, 2021. Risk of bias was assessed using Cochrane Collaboration's Tool. Statistical analysis of the acquired data was performed via the RevMan and the Stata Statistical Software. The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO registration number: CRD42020220650). Results Twelve randomized controlled trials including 1,013 patients were recruited and analyzed via the standard procedure of meta-analysis. In contrast to the control group, orally taking probiotics significantly decreased the risk of chemotherapy-induced diarrhea (≥ 1 grade) (RR = 0.70; 95% Cl: 0.56, 0.88; P = 0.002) and oral mucositis (≥ 1 grade) (RR: 0.84; 95% Cl: 0.78, 0.91; P < 0.00001) at all grades. Further analysis found that severe diarrhea (≥ 2 grades) (RR: 0.50; 95% Cl: 0.32, 0.78; P = 0.002) and severe oral mucositis also significantly declined (≥ 3 grades) (RR: 0.66; 95% Cl: 0.55, 0.79; P < 0.00001) after oral probiotic use. Interestingly, the beneficial effects of probiotics displayed statistically significant only in Asian patients. Importantly, the more species of bacteria they took, the lower the incidences of the adverse reactions occurred. We used Egger's test P value to confirm that there is no publication bias. Conclusions This meta-analysis demonstrated that orally administrated probiotics has a potential to decrease chemotherapy-induced diarrhea and oral mucositis incidences. However, the efficacy of oral probiotic use against the adverse reactions needs to be further verified through more clinical trials, and the species and number of probiotics have to be optimized and standardized prior to clinical applications. Systematic Review Registration https://www.crd.york.ac.uk, identifier: 220650.
Collapse
Affiliation(s)
- Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Chengcheng Zhao
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ju
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Brennan AM. Development of Synthetic Biotics as Treatments for Human Diseases. Synth Biol (Oxf) 2022; 7:ysac001. [PMID: 35350191 PMCID: PMC8944296 DOI: 10.1093/synbio/ysac001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/19/2021] [Accepted: 01/29/2022] [Indexed: 12/02/2022] Open
Abstract
Advances in synthetic biology have allowed the generation of strains of bacteria that are genetically altered to have specific therapeutic benefits. These synthetic biotics, also widely referred to as engineered living therapeutics, have tremendous potential as a new therapeutic modality, and several have advanced into the clinic and human testing. This review outlines some of the unique attributes of synthetic biotics as well as some of the challenges in their development as prescription products. Regulatory considerations are discussed, and a case study of a program that has advanced into Phase 2 testing is provided: SYNB1618 for the treatment of PKU.
Collapse
|
30
|
Mirza MA, Aruna D, Irukulla M. Efficacy of Bacillus clausii UBBC - 07 spores in the amelioration of oral mucositis in head and neck cancer patients undergoing radiation therapy. Cancer Treat Res Commun 2022; 31:100523. [PMID: 35101832 DOI: 10.1016/j.ctarc.2022.100523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The natural flora of healthy mucosa offer protection to the host. The loss of this barrier during radiotherapy enhances insults from physical, chemical and microbial agents. METHODOLOGY A randomized, double blind, placebo-controlled, parallel study on forty-six patients who underwent radiotherapy for head and neck cancers was undertaken. Patients were randomized either to standard treatment plus Bacillus clausii UBBC07 or standard treatment plus placebo. Bacillus clausii UBBC07 was given as an oral suspension of 2 billion spores twice every day for 30 days or until completion of total fractions of radiation. Grading of the mucositis was performed using CTCAE v.4.03 severity scale. The time taken for the appearance, resolution and severity of mucositis was evaluated. RESULTS There was a significant increase (p < 0.01) in median time for the onset of mucositis i.e., 10 days in test and 8 days in control groups respectively. The median time for remission was found to be 12 days in test and 14 days in the control group (p < 0.05). Grade IV mucositis was observed in no patients in test group and 2 patients in the control group (p < 0.05). No adverse events attributed to the Bacillus clausii were seen. Bacillus clausii UBBC07 therapy delayed the onset, decreased the time to remission and displayed strong impact on suppressing the occurrence of high-grade mucositis amongst the test group. CONCLUSIONS This study provides a positive trend that probiotics like Bacillus clausii UBBC07 spores could act as a tool to ameliorate oral mucositis.
Collapse
Affiliation(s)
- Mehdi Ali Mirza
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India.
| | - D Aruna
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Monica Irukulla
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
31
|
The science of mucositis. Support Care Cancer 2022; 30:2915-2917. [PMID: 35067733 DOI: 10.1007/s00520-022-06840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
32
|
Yang Y, Lin Z, Lin Q, Bei W, Guo J. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis 2022; 13:62. [PMID: 35039476 PMCID: PMC8763889 DOI: 10.1038/s41419-022-04504-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Trefoil factor 3 (TFF3) is the last small-molecule peptide found in the trefoil factor family, which is mainly secreted by intestinal goblet cells and exerts mucosal repair effect in the gastrointestinal tract. Emerging evidence indicated that the TFF3 expression profile and biological effects changed significantly in pathological states such as cancer, colitis, gastric ulcer, diabetes mellitus, non-alcoholic fatty liver disease, and nervous system disease. More importantly, mucosal protection would no longer be the only effect of TFF3, it gradually exhibits carcinogenic activity and potential regulatory effect of nervous and endocrine systems, but the inner mechanisms remain unclear. Understanding the molecular function of TFF3 in specific diseases might provide a new insight for the clinical development of novel therapeutic strategies. This review provides an up-to-date overview of the pathological effects of TFF3 in different disease and discusses the binding proteins, signaling pathways, and clinical application.
Collapse
Affiliation(s)
- Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Quanyou Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
33
|
Lacerda DC, Trindade da Costa PC, Paulino do Nascimento LC, de Brito Alves JL. Probiotics for gastrointestinal health and disease treatment. PROBIOTICS FOR HUMAN NUTRITION IN HEALTH AND DISEASE 2022:431-448. [DOI: 10.1016/b978-0-323-89908-6.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Gugnacki P, Sierko E. Is There an Interplay between Oral Microbiome, Head and Neck Carcinoma and Radiation-Induced Oral Mucositis? Cancers (Basel) 2021; 13:5902. [PMID: 34885015 PMCID: PMC8656742 DOI: 10.3390/cancers13235902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck carcinoma is one of the most common human malignancy types and it ranks as the sixth most common cancer worldwide. Nowadays, a great potential of microbiome research is observed in oncology-investigating the effect of oral microbiome in oncogenesis, occurrence of treatment side effects and response to anticancer therapies. The microbiome is a unique collection of microorganisms and their genetic material, interactions and products residing within the mucous membranes. The aim of this paper is to summarize current research on the oral microbiome and its impact on the development of head and neck cancer and radiation-induced oral mucositis. Human microbiome might determine an oncogenic effect by, among other things, inducing chronic inflammatory response, instigating cellular antiapoptotic signals, modulation of anticancer immunity or influencing xenobiotic metabolism. Influence of oral microbiome on radiation-induced oral mucositis is expressed by the production of additional inflammatory cytokines and facilitates progression and aggravation of mucositis. Exacerbated acute radiation reaction and bacterial superinfections lead to the deterioration of the patient's condition and worsening of the quality of life. Simultaneously, positive effects of probiotics on the course of radiation-induced oral mucositis have been observed. Understanding the impact on the emerging acute radiation reaction on the composition of the microflora can be helpful in developing a multifactorial model to forecast the course of radiation-induced oral mucositis. Investigating these processes will allow us to create optimized and personalized preventive measures and treatment aimed at their formation mechanism. Further studies are needed to better establish the structure of the oral microbiome as well as the dynamics of its changes before and after therapy. It will help to expand the understanding of the biological function of commensal and pathogenic oral microbiota in HNC carcinogenesis and the development of radiation-induced oral mucositis.
Collapse
Affiliation(s)
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 15-025 Bialystok, Poland;
| |
Collapse
|
35
|
Salivary Trefoil Factor Family (TFF) Peptides and Their Roles in Oral and Esophageal Protection: Therapeutic Potential. Int J Mol Sci 2021; 22:ijms222212221. [PMID: 34830103 PMCID: PMC8624312 DOI: 10.3390/ijms222212221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.
Collapse
|
36
|
Abstract
The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development. We present notable advances in the creation of engineered cells that harbour synthetic gene circuits capable of biological sensing and computation of signals derived from intracellular or extracellular biomarkers. We categorize and describe these developments based on the cell scaffold (human or microbial) and the site at which the engineered cell exerts its therapeutic function within its human host. The design of cell-based therapeutics with synthetic biology is a rapidly growing strategy in medicine that holds great promise for the development of effective treatments for a wide variety of human diseases.
Collapse
|
37
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
38
|
Spacova I, De Boeck I, Bron PA, Delputte P, Lebeer S. Topical Microbial Therapeutics against Respiratory Viral Infections. Trends Mol Med 2021; 27:538-553. [PMID: 33879402 DOI: 10.1016/j.molmed.2021.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Emerging evidence suggests that microbial therapeutics can prevent and treat respiratory viral diseases, especially when applied directly to the airways. This review presents established beneficial effects of locally administered microbial therapeutics against respiratory viral diseases and the inferred related molecular mechanisms. Several mechanisms established in the intestinal probiotics field as well as novel, niche-specific insights are relevant in the airways. Studies at cellular and organism levels highlight biologically plausible but strain-specific and host and virus context-dependent mechanisms, underlying the potential of beneficial bacteria. Large-scale clinical studies can now be rationally designed to provide a bench-to-bedside translation of the multifactorial bacterial mechanisms within the host respiratory tract, to diminish the incidence and severity of viral infections and the concomitant complications.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke De Boeck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Peter A Bron
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium. @uantwerpen.be
| |
Collapse
|
39
|
Sieow BFL, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to Treat: Reprograming Bacteria for Cancer Treatment. Trends Cancer 2020; 7:447-464. [PMID: 33303401 DOI: 10.1016/j.trecan.2020.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Recent advancements in cancer biology, microbiology, and bioengineering have spurred the development of engineered live biotherapeutics for targeted cancer therapy. In particular, natural tumor-targeting and probiotic bacteria have been engineered for controlled and sustained delivery of anticancer agents into the tumor microenvironment (TME). Here, we review the latest advancements in the development of engineered bacteria for cancer therapy and additional engineering strategies to potentiate the delivery of therapeutic payloads. We also explore the use of combination therapies comprising both engineered bacteria and conventional anticancer therapies for addressing intratumor heterogeneity. Finally, we discuss prospects for the development and clinical translation of engineered bacteria for cancer prevention and treatment.
Collapse
Affiliation(s)
- Brendan Fu-Long Sieow
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School of Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Kwok Soon Wun
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - In Young Hwang
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Matthew Wook Chang
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
40
|
Ochiai Y, Yamaguchi J, Kokuryo T, Yokoyama Y, Ebata T, Nagino M. Trefoil Factor Family 1 Inhibits the Development of Hepatocellular Carcinoma by Regulating β-Catenin Activation. Hepatology 2020; 72:503-517. [PMID: 31733149 DOI: 10.1002/hep.31039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Recent studies have suggested that trefoil factor family 1 (TFF1) functions as a tumor suppressor in gastric and pancreatic carcinogenesis. APPROACH AND RESULTS To investigate the role of TFF1 in hepatocarcinogenesis, we performed immunohistochemical staining of surgically resected human liver samples, transfected a TFF1 expression vector into hepatocellular carcinoma (HCC) cell lines, and employed a mouse model of spontaneous HCC development (albumin-cyclization recombination/Lox-Stop-Lox sequence-Kirsten rat sarcoma viral oncogene homologG12D [KC]); the model mouse strain was bred with a TFF1-knockout mouse strain to generate a TFF1-deficient HCC mouse model (KC/TFF1-/- ). TFF1 expression was found in some human samples with HCC. Interestingly, TFF1-positive cancer cells showed a staining pattern contradictory to that of proliferating cell nuclear antigen, and aberrant DNA hypermethylation in TFF1 promoter lesions was detected in HCC samples, indicating the tumor-suppressive role of TFF1. In vitro, induction of TFF1 expression resulted in impaired proliferative activity and enhanced apoptosis in HCC cell lines (HuH7, HepG2, and HLE). These anticancer effects of TFF1 were accompanied by the loss of nuclear β-catenin expression, indicating inactivation of the β-catenin signaling pathway by TFF1. In vivo, TFF1 deficiency in KC mice accelerated the early development and growth of HCC, resulting in poor survival rates. In addition, immunohistochemistry revealed that the amount of nuclear-localized β-catenin was significantly higher in KC/TFF1-/- mice than in KC mice and that human HCC tissue showed contradictory expression patterns for β-catenin and TFF1, confirming the in vitro observations. CONCLUSIONS TFF1 might function as a tumor suppressor that inhibits the development of HCC by regulating β-catenin activity.
Collapse
Affiliation(s)
- Yosuke Ochiai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
41
|
Engineering the gut microbiota to treat chronic diseases. Appl Microbiol Biotechnol 2020; 104:7657-7671. [PMID: 32696297 PMCID: PMC7484268 DOI: 10.1007/s00253-020-10771-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
Gut microbes play vital roles in host health and disease. A number of commensal bacteria have been used as vectors for genetic engineering to create living therapeutics. This review highlights recent advances in engineering gut bacteria for the treatment of chronic diseases such as metabolic diseases, cancer, inflammatory bowel diseases, and autoimmune disorders. KEY POINTS: • Bacterial homing to tumors has been exploited to deliver therapeutics in mice models. • Engineered bacteria show promise in mouse models of metabolic diseases. • Few engineered bacterial treatments have advanced to clinical studies.
Collapse
|
42
|
Sant Ana G, Normando AGC, De Toledo I, Dos Reis PED, Guerra ENS. Topical Treatment of Oral Mucositis in Cancer Patients: A Systematic Review of Randomized Clinical Trials. Asian Pac J Cancer Prev 2020; 21:1851-1866. [PMID: 32711408 PMCID: PMC7573410 DOI: 10.31557/apjcp.2020.21.7.1851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Evidence-based protocols of topical therapy for oral mucositis (OM) induced by chemoradiotherapy (CRT) are continuously established and updated. Thus, the present systematic review aims to evaluate the scientific literature in terms of effectiveness of topical treatment of OM in cancer patients undergoing CRT. Materials and Methods: This systematic review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Checklist. Randomized clinical trials were identified through electronic database searches on CINAHL, Cochrane Library, LILACS, Livivo, PubMed, SCOPUS, and Web of Science. Grey literature was also assessed on Google Scholar, Open Grey, and ProQuest. The risk of bias in the included studies was assessed by the Cochrane Collaboration Risk of Bias Tool. RESULTS Twenty-three randomized clinical trials (n=1169 patients) met the inclusion criteria. Twenty-three different topical agents were examined and categorized into five groups: analgesics (30.4%), natural agents (21.7%), other topical agents (21.7%), antimicrobial agents (17.4%), and growth factors (8.8%). Of the included studies, 50% presented a resolution of OM within 14 days. Topical natural agents yielded good results with average resolution time of 3-7 days. The included studies generally demonstrated that patients treated with mouthwashes presented superior benefits compared to the control, depending on OM severity. CONCLUSION Topical agents effectively reduced the severity of OM lesions and pain intensity in patients receiving chemoradiotherapy, although the effects varied by agent type. However, the heterogeneity in the results of these topical intervention studies underscores the need for standardized clinical trial methodologies. CLINICAL RELEVANCE Topical agents were effective in patients with severe OM lesions receiving chemoradiotherapy and are a good alternative of home care in relation to pain control, reduction of inflammation and consequent improvement in quality of life.<br />.
Collapse
Affiliation(s)
- Geisa Sant Ana
- Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | | | - Isabela De Toledo
- Health Sciences Faculty, University of Brasília, Brasília, Brazil.,Brazilian Centre of Evidence Based Research, University of Santa Catarina, Florianopolis, Brazil
| | | | | |
Collapse
|
43
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
44
|
Braga Emidio N, Brierley SM, Schroeder CI, Muttenthaler M. Structure, Function, and Therapeutic Potential of the Trefoil Factor Family in the Gastrointestinal Tract. ACS Pharmacol Transl Sci 2020; 3:583-597. [PMID: 32832864 DOI: 10.1021/acsptsci.0c00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Trefoil factor family peptides (TFF1, TFF2, and TFF3) are key players in protecting, maintaining, and repairing the gastrointestinal tract. Accordingly, they have the therapeutic potential to treat and prevent a variety of gastrointestinal disorders associated with mucosal damage. TFF peptides share a conserved motif, including three disulfide bonds that stabilize a well-defined three-loop-structure reminiscent of a trefoil. Although multiple functions have been described for TFF peptides, their mechanisms at the molecular level remain poorly understood. This review presents the status quo of TFF research relating to gastrointestinal disorders. Putative TFF receptors and protein partners are described and critically evaluated. The therapeutic potential of these peptides in gastrointestinal disorders where altered mucosal biology plays a crucial role in the underlying etiology is discussed. Finally, areas of investigation that require further research are addressed. Thus, this review provides a comprehensive update on TFF literature as well as guidance toward future research to better understand this peptide family and its therapeutic potential for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medicial Research Insittitue (FHMRI), Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Heuer J, Heuer F, Stürmer R, Harder S, Schlüter H, Braga Emidio N, Muttenthaler M, Jechorek D, Meyer F, Hoffmann W. The Tumor Suppressor TFF1 Occurs in Different Forms and Interacts with Multiple Partners in the Human Gastric Mucus Barrier: Indications for Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21072508. [PMID: 32260357 PMCID: PMC7177788 DOI: 10.3390/ijms21072508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
TFF1 is a protective peptide of the Trefoil Factor Family (TFF), which is co-secreted with the mucin MUC5AC, gastrokine 2 (GKN2), and IgG Fc binding protein (FCGBP) from gastric surface mucous cells. Tff1-deficient mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas, indicating that Tff1 is a tumor suppressor. As a hallmark, TFF1 contains seven cysteine residues with three disulfide bonds stabilizing the conserved TFF domain. Here, we systematically investigated the molecular forms of TFF1 in the human gastric mucosa. TFF1 mainly occurs in an unusual monomeric form, but also as a homodimer. Furthermore, minor amounts of TFF1 form heterodimers with GKN2, FCGBP, and an unknown partner protein, respectively. TFF1 also binds to the mucin MUC6 in vitro, as shown by overlay assays with synthetic 125I-labeled TFF1 homodimer. The dominant presence of a monomeric form with a free thiol group at Cys-58 is in agreement with previous studies in Xenopus laevis and mouse. Cys-58 is likely highly reactive due to flanking acid residues (PPEEEC58EF) and might act as a scavenger for extracellular reactive oxygen/nitrogen species protecting the gastric mucosa from damage by oxidative stress, e.g., H2O2 generated by dual oxidase (DUOX).
Collapse
Affiliation(s)
- Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nayara Braga Emidio
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
46
|
Cho SW, Yim J, Seo SW. Engineering Tools for the Development of Recombinant Lactic Acid Bacteria. Biotechnol J 2020; 15:e1900344. [DOI: 10.1002/biot.201900344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sung Won Cho
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jaewoo Yim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
47
|
Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, Wagner DA, West KA, Degar AJ, Brennan AM, Miller PF. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 2020; 11:11/475/eaau7975. [PMID: 30651324 DOI: 10.1126/scitranslmed.aau7975] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/08/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
The intestine is a major source of systemic ammonia (NH3); thus, capturing part of gut NH3 may mitigate disease symptoms in conditions of hyperammonemia such as urea cycle disorders and hepatic encephalopathy. As an approach to the lowering of blood ammonia arising from the intestine, we engineered the orally delivered probiotic Escherichia coli Nissle 1917 to create strain SYNB1020 that converts NH3 to l-arginine (l-arg). We up-regulated arginine biosynthesis in SYNB1020 by deleting a negative regulator of l-arg biosynthesis and inserting a feedback-resistant l-arg biosynthetic enzyme. SYNB1020 produced l-arg and consumed NH3 in an in vitro system. SYNB1020 reduced systemic hyperammonemia, improved survival in ornithine transcarbamylase-deficient spfash mice, and decreased hyperammonemia in the thioacetamide-induced liver injury mouse model. A phase 1 clinical study was conducted including 52 male and female healthy adult volunteers. SYNB1020 was well tolerated at daily doses of up to 1.5 × 1012 colony-forming units administered for up to 14 days. A statistically significant dose-dependent increase in urinary nitrate, plasma 15N-nitrate (highest dose versus placebo, P = 0.0015), and urinary 15N-nitrate was demonstrated, indicating in vivo SYNB1020 activity. SYNB1020 concentrations reached steady state by the second day of dosing, and excreted cells were alive and metabolically active as evidenced by fecal arginine production in response to added ammonium chloride. SYNB1020 was no longer detectable in feces 2 weeks after the last dose. These results support further clinical development of SYNB1020 for hyperammonemia disorders including urea cycle disorders and hepatic encephalopathy.
Collapse
Affiliation(s)
| | - Yves A Millet
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | | | | | - Eugene Antipov
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Yossi Dagon
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - David A Wagner
- Metabolic Solutions Inc., 460 Amherst Street, Nashua, NH 03063, USA
| | - Kip A West
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Paul F Miller
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Systematic review of natural and miscellaneous agents, for the management of oral mucositis in cancer patients and clinical practice guidelines - part 2: honey, herbal compounds, saliva stimulants, probiotics, and miscellaneous agents. Support Care Cancer 2020; 28:2457-2472. [PMID: 32056010 DOI: 10.1007/s00520-019-05256-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To update the clinical practice guidelines for the management of oral mucositis (OM) that were developed by the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO). This part focuses on honey, herbal compounds, saliva stimulants, probiotics, and miscellaneous agents. METHODS A systematic review was conducted by the Mucositis Study Group of MASCC/ISOO. The body of evidence for each intervention, in each clinical setting, was assigned an evidence level. The findings were added to the database used to develop the 2014 MASCC/ISOO clinical practice guidelines. Based on the evidence level, one of the following guidelines were determined: Recommendation, Suggestion, No Guideline Possible. RESULTS A total of 78 papers were identified within the scope of this section, of which 49 were included in this review and merged with nine publications that were reported in the previous guidelines update. A new Suggestion was made for honey (combined topical and systemic delivery) for the prevention of OM in head and neck cancer patients receiving radiotherapy with or without chemotherapy. A new Suggestion clarified that chewing gum is not effective for the prevention of OM in pediatric patients with hematological or solid cancer treated with chemotherapy. No guideline was possible for other interventions. CONCLUSIONS Numerous natural products and herbal remedies were studied for the management of OM. Of the agents reviewed in this systematic review, a guideline in favor was made for honey (combined topical and systemic), while a guideline against was made for chewing gum. Additional research is warranted to clarify the potential of other interventions.
Collapse
|
49
|
Villa A, Sonis ST. An update on pharmacotherapies in active development for the management of cancer regimen-associated oral mucositis. Expert Opin Pharmacother 2020; 21:541-548. [DOI: 10.1080/14656566.2020.1718652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alessandro Villa
- Divisions of Oral Medicine and Dentistry, Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oral Medicine, Infection and Immunity. Harvard School of Dental Medicine, Boston, MA, USA
- Primary Endpoint Solutions, Watertown, MA, USA
| | - Stephen T. Sonis
- Divisions of Oral Medicine and Dentistry, Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oral Medicine, Infection and Immunity. Harvard School of Dental Medicine, Boston, MA, USA
- Primary Endpoint Solutions, Watertown, MA, USA
| |
Collapse
|
50
|
Shu Z, Li P, Yu B, Huang S, Chen Y. The effectiveness of probiotics in prevention and treatment of cancer therapy-induced oral mucositis: A systematic review and meta-analysis. Oral Oncol 2020; 102:104559. [PMID: 31923856 DOI: 10.1016/j.oraloncology.2019.104559] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 02/01/2023]
Abstract
Oral mucositis (OM) is a common and troublesome adverse side effect of many cancer therapy modalities (chemotherapy, radiotherapy, and chemo-radiotherapy), which can cause pain, ulceration, dysphagia, malnutrition, even treatment interruption. Probiotics may be effective in preventing and treating of cancer therapy-induced OM. We performed a systematic review and meta-analysis of the effectiveness of probiotics in prevention and treatment of cancer therapy-induced OM. Four databases and one trial registry were searched as of the 12th of May 2019 to identify all eligible randomized controlled trials (RCT). Five studies involving 435 patients were included in this study. Methodological quality and outcomes were evaluated in every study included. Pooled results showed a moderate heterogeneity (P = 0.15, I2 = 44%). The pooled RRs indicated that the use of probiotics decreased the risk of OM for grade ≥3 (RR = 0.66, 95%CI = 0.54-0.81, P < 0.0001) as well as all grades (RR = 0.83, 95% CI = 0.72-0.97, P = 0.02). There was no significant difference between probiotics and placebo for cancer therapy completion rate (RR = 1.14, 95%CI = 0.65-2.00, P = 0.64). The subgroup analysis indicated that the use of probiotics was not statistically significant for patients receiving chemo-radiotherapy (RR = 0.52, 95% CI = 0.26-1.04, P = 0.07). In conclusion, probiotics may reduce the incidence and mitigate the severity of cancer therapy-induced OM. Further trials with a randomized, double-blind and multicentric study design are needed to confirm this effect. The PROSPERO registration number of this systematic review and meta-analysis is CRD42019130414.
Collapse
Affiliation(s)
- Zekai Shu
- The 2nd Clinical Medical College of Zhejiang Chinese Medical University, China
| | - Peijing Li
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, China; Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, China
| | | | - Shuang Huang
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, China; Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, China
| | - Yuanyuan Chen
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, China; Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, China.
| |
Collapse
|