1
|
Ou Y, Chu GCY, Lyu J, Yin L, Lim A, Zhai N, Cui X, Lewis MS, Edderkaoui M, Pandol SJ, Wang R, Zhang Y. Overcoming Resistance in Prostate Cancer Therapy Using a DZ-Simvastatin Conjugate. Mol Pharm 2024; 21:873-882. [PMID: 38229228 PMCID: PMC11025579 DOI: 10.1021/acs.molpharmaceut.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Prostate cancer (PC), particularly its metastatic castration-resistant form (mCRPC), is a leading cause of cancer-related deaths among men in the Western world. Traditional systemic treatments, including hormonal therapy and chemotherapy, offer limited effectiveness due to tumors' inherent resistance to these therapies. Moreover, they often come with significant side effects. We have developed a delivery method using a tumor-cell-specific heptamethine carbocyanine dye (DZ) designed to transport therapeutic agents directly to tumor cells. This research evaluated simvastatin (SIM) as the antitumor payload because of its demonstrated chemopreventive effects on human cancers and its well-documented safety profile. We designed and synthesized a DZ-SIM conjugate for tumor cell targeting. PC cell lines and xenograft tumor models were used to assess tumor-cell targeting specificity and killing activity and to investigate the corresponding mechanisms. DZ-SIM treatment effectively killed PC cells regardless of their androgen receptor status or inherent therapeutic resistance. The conjugate targeted and suppressed xenograft tumor formation without harming normal cells of the host. In cancer cells, DZ-SIM was enriched in subcellular organelles, including mitochondria, where the conjugate formed adducts with multiple proteins and caused the loss of transmembrane potential, promoting cell death. The DZ-SIM specifically targets PC cells and their mitochondria, resulting in a loss of mitochondrial function and cell death. With a unique subcellular targeting strategy, the conjugate holds the potential to outperform existing chemotherapeutic drugs. It presents a novel strategy to circumvent therapeutic resistance, offering a more potent treatment for mCRPC.
Collapse
Affiliation(s)
- Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ji Lyu
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Liyuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ning Zhai
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Michael S. Lewis
- Department of Pathology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| |
Collapse
|
2
|
Jiang K, Bai L, Wang C, Xiao X, Cheng Z, Peng H, Liu S. The Aurora kinase inhibitor AT9283 inhibits Burkitt lymphoma growth by regulating Warburg effect. PeerJ 2023; 11:e16581. [PMID: 38099309 PMCID: PMC10720464 DOI: 10.7717/peerj.16581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To investigate the effect of the kinase inhibitor AT9283 on Burkitt lymphoma (BL) cells and elucidate the underlying mechanisms. Methods The effect of AT9283 on the proliferation of BL cell lines was tested using the MTT assay. Apoptosis and cell cycle were measured by flow cytometry. The proteins associated with the cell cycle, apoptosis, and the Warburg effect were detected using Western blotting. Alterations in glycolytic metabolism in terms of glucose intake and lactate concentrations were determined by glucose and lactate assays. Results The current study utilized the GEPIA, the Human Protein Atlas (HAP) database and immunohistochemistry to conduct analyses, which revealed a high expression of Aurora kinases and Warburg effect-related proteins in malignant B-cell lymphoma tissues. AT9283 significantly inhibited the cell proliferation of BL cells and induced G2/M arrest. Additionally, AT9283 induced apoptosis in BL cells and reversed the Warburg effect by increasing glucose uptake and reducing lactate production. Moreover, the protein expression of hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase A was significantly suppressed by AT9283, possibly through the inhibition of c-Myc and HIF-1α protein expression. Conclusion The reversal of the Warburg effect in BL cells and the subsequent inhibition of cell proliferation and induction of apoptosis were observed by targeting Aurora A and Aurora B with AT9283. This finding may present new therapeutic options and targets for BL.
Collapse
Affiliation(s)
- Kaiming Jiang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Bai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Mrdenovic S, Wang Y, Yin L, Chu GCY, Ou Y, Lewis MS, Heffer M, Posadas EM, Zhau HE, Chung LWK, Edderkaoui M, Pandol SJ, Wang R, Zhang Y. A cisplatin conjugate with tumor cell specificity exhibits antitumor effects in renal cancer models. BMC Cancer 2023; 23:499. [PMID: 37268911 PMCID: PMC10236852 DOI: 10.1186/s12885-023-10878-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and is notorious for its resistance to both chemotherapy and small-molecule inhibitor targeted therapies. Subcellular targeted cancer therapy may thwart the resistance to produce a substantial effect. METHODS We tested whether the resistance can be circumvented by subcellular targeted cancer therapy with DZ-CIS, which is a chemical conjugate of the tumor-cell specific heptamethine carbocyanine dye (HMCD) with cisplatin (CIS), a chemotherapeutic drug with limited use in ccRCC treatment because of frequent renal toxicity. RESULTS DZ-CIS displayed cytocidal effects on Caki-1, 786-O, ACHN, and SN12C human ccRCC cell lines and mouse Renca cells in a dose-dependent manner and inhibited ACHN and Renca tumor formation in experimental mouse models. Noticeably, in tumor-bearing mice, repeated DZ-CIS use did not cause renal toxicity, in contrast to the CIS-treated control animals. In ccRCC tumors, DZ-CIS treatment inhibited proliferation markers but induced cell death marker levels. In addition, DZ-CIS at half maximal inhibitory concentration (IC50) sensitized Caki-1 cells to small-molecule mTOR inhibitors. Mechanistically, DZ-CIS selectively accumulated in ccRCC cells' subcellular organelles, where it damages the structure and function of mitochondria, leading to cytochrome C release, caspase activation, and apoptotic cancer cell death. CONCLUSIONS Results from this study strongly suggest DZ-CIS be tested as a safe and effective subcellular targeted cancer therapy.
Collapse
Affiliation(s)
- Stefan Mrdenovic
- Division of Hematology, Department of Internal Medicine, University Hospital Osijek, Osijek, Croatia
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Internal Medicine, Family Medicine and History of Medicine, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Yanping Wang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lijuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Departments of Pathology, Cedars-Sinai Medical Center and the VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Edwin M Posadas
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haiyen E Zhau
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Pathology, Cedars-Sinai Medical Center and the VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 3059, 90048, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Muhammad Usama S, Gao Z, Arancillo M, Burgess K. Cytotoxicities of Tumor-Seeking Dyes: Impact on Future Clinical Trials. ChemMedChem 2023; 18:e202200561. [PMID: 36630600 PMCID: PMC10010615 DOI: 10.1002/cmdc.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Heptamethine (Cy7) dyes with meso-Cl substituents injected intravenously (iv) into mice accumulate in tumors and persist there over several days. We believe this occurs via meso-Cl displacement by the only free cysteine residues of albumin; therefore, conjugating tumor-seeking dyes with fragments can increase selective therapeutic delivery to tumors and drug residence. This strategy has elevated significance recently because the first tumor-seeking dye-drug conjugate has moved into clinical trials. Options for further clinical research include modifying the dye, and use of preformed albumin adducts instead of dyes alone. Herein we show correlations of cytotoxicities, lipophilicities, organelle localization, apoptosis, cell-cycle arrest, wound healing/migration assays, and reactivities/affinities with human serum albumin are difficult to observe. However, our studies arrived at an important conclusion: preformed dye-drug-HSA adducts are less cytotoxic, and therefore preferable for subsequent clinical work, relative to direct injection of meso-Cl-containing forms.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Zhe Gao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Maritess Arancillo
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| |
Collapse
|
5
|
Veryutin DA, Doroshenko IA, Martynova EA, Sapozhnikova KA, Svirshchevskaya EV, Shibaeva AV, Markova AA, Chistov AA, Borisova NE, Shuvalov MV, Korshun VA, Alferova VA, Podrugina TA. Probing tricarbocyanine dyes for targeted delivery of anthracyclines. Biochimie 2023; 206:12-23. [PMID: 36179940 DOI: 10.1016/j.biochi.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Along with bright fluorescence in the near-IR range, heptamethine carbocyanine dyes possess affinity to cancer cells. Thus, these dyes could be utilized as fluorescent labels and vectors for drug delivery as covalent conjugates with cytotoxic compounds. To test the properties, structure-activity relationship, and scope of such conjugates, we synthesized drug-dye dyads of tricarbocyanine dyes with anthracycline drug daunorubicin. We used hydrophilic zwitterionic and hydrophobic positively charged benzoindoline-benzothiazole-based heptamethine dyes as terminal alkyne derivatives and N-acylated or oxime-linked daunorubicin as azido-derivatives. These two alkynes and two azides were coupled to each other by Cu-catalyzed Huisgen-Meldal-Sharpless cycloaddition (click reaction) to afford four conjugates. Molecules based on hydrophobic dyes possess submicromolar cytotoxicity to HCT116 cells. Cytotoxicity, cell penetration, intracellular distribution, apoptosis induction and the effect of antioxidants on toxicity were evaluated. The results show that the structure of the cyanine-anthracycline conjugate (hydrophilicity/hydrophobicity, charge, linker, attachment site) is important for its biological activity, thus, expansion of the chemical space of such conjugates could provide new molecular research tools for diagnostics and therapy.
Collapse
Affiliation(s)
- Dmitry A Veryutin
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia; Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Irina A Doroshenko
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | | | | | | | | | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalya E Borisova
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Maxim V Shuvalov
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia; Gause Institute of New Antibiotics, Moscow, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | | |
Collapse
|
6
|
Wang R, Wang X, Yin L, Yin L, Chu GCY, Hu P, Ou Y, Zhang Y, Lewis MS, Pandol SJ. Breast Cancer MCF-7 Cells Acquire Heterogeneity during Successive Co-Culture with Hematopoietic and Bone Marrow-Derived Mesenchymal Stem/Stromal Cells. Cells 2022; 11:3553. [PMID: 36428982 PMCID: PMC9688235 DOI: 10.3390/cells11223553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
During disease progression and bone metastasis, breast tumor cells interact with various types of bystander cells residing in the tumor microenvironment. Such interactions prompt tumor cell heterogeneity. We used successive co-culture as an experimental model to examine cancer-bystander cell interaction. RMCF7-2, a clone of the human breast cancer MCF-7 cells tagged with a red fluorescent protein, was tracked for morphologic, behavioral, and gene expression changes. Co-cultured with various types of hematopoietic cells, RMCF7-2 adopted stable changes to a rounded shape in suspension growth of red fluorescent cells, from which derivative clones displayed marked expressional changes of marker proteins, including reduced E-cadherin and estrogen receptor α, and loss of progesterone receptor. In a successive co-culture with bone marrow-derived mesenchymal stem/stromal cells, the red fluorescent clones in suspension growth changed once more, adopting an attachment growth, but in diversified shapes. Red fluorescent clones recovered from the second-round co-culture were heterogeneous in morphology, but retained the altered marker protein expression while displaying increased proliferation, migration, and xenograft tumor formation. Interaction with bystander cells caused permanent morphologic, growth behavioral, and gene expressional changes under successive co-culture, which is a powerful model for studying cancer cell heterogeneity during breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xudong Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liyuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lijuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peizhen Hu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael S. Lewis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Ou Y, Wang R, Chu GCY, Elmadbouh OHM, Lim A, Chung LWK, Edderkaoui M, Zhang Y, Pandol SJ. Novel DZ-SIM Conjugate Targets Cancer Mitochondria and Prolongs Survival in Pancreatic Ductal Adenocarcinoma. ADVANCED THERAPEUTICS 2022; 5:2200021. [PMID: 36590644 PMCID: PMC9797106 DOI: 10.1002/adtp.202200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease with no effective therapeutics. We have developed a novel targeted therapy drug consisting of a tumor-targeting ligand, near-infrared (NIR) organic heptamethine carbocyanine dye (HMCD), and HMG-CoA inhibitor simvastatin (SIM), and assessed its efficacy in PDAC. PDAC cell specific targeting of DZ-SIM was measured by determining the fluorescence in cells and animals. Mitochondrial bioenergetics and functions were measured by Seahorse and flow cytometry, respectively. Apoptosis was assessed by DNA fragmentation, AnnexinV/Propidium Iodide staining, and TUNEL. Markers of cell invasion, epithelial-to-mesenchymal transition, and cancer stemness were measured. The effect of DZ-SIM on survival, tumor growth and metastasis was measured in the Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) transgenic mice and in syngeneic and subcutaneous PDAC models. NIR fluorescence imaging showed specific localization of DZ-SIM to cancer, but not to normal cells and tissues. DZ-SIM significantly inhibited tumor growth and re-sensitized therapeutically resistant PDAC cells to conventional therapies. DZ-SIM killed cancer cells through unique pathways involving decreasing mitochondrial bioenergetics, including oxygen consumption and ATP production, and increasing ROS production. Mitochondrial depletion prevented the effect of DZ-SIM. Administration of DZ-SIM in 3 PDAC animal models resulted in a marked increase in survival and a decrease in tumor growth and metastasis.
Collapse
Affiliation(s)
- Yan Ou
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- 2nd affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruoxiang Wang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gina Chia-Yi Chu
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Omer Hany Miligy Elmadbouh
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adrian Lim
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland Wei-Kuo Chung
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mouad Edderkaoui
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- University of California at Los Angeles, California
| | - Yi Zhang
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen Jacob Pandol
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- University of California at Los Angeles, California
| |
Collapse
|
8
|
Yin L, Zhang Y, Yin L, Ou Y, Lewis MS, Wang R, Zhau HE, Zhou Q, Chung LWK. Novel Mitochondria-Based Targeting Restores Responsiveness in Therapeutically Resistant Human Lung Cancer Cells. Mol Cancer Ther 2021; 20:2527-2538. [PMID: 34583981 PMCID: PMC9559783 DOI: 10.1158/1535-7163.mct-20-1095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/08/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Cisplatin and tyrosine kinase inhibitors (TKI) are recommended to treat non-small cell lung cancer (NSCLC). However, ubiquitously acquired drug resistance in patients with NSCLC diminishes their therapeutic efficacy. Strategies for overcoming cisplatin and TKI resistance are an unmet medical need. We previously described a group of near-infrared heptamethine carbocyanine fluorescent dyes, referred to as DZ, with tumor-homing properties via differentially expressed organic anion-transporting polypeptides on cancer cells. This group of organic dyes can deliver therapeutic payloads specifically to tumor cells in the form of a chemical conjugate. We synthesized DZ-simvastatin (DZ-SIM) initially to target cholesterol biosynthesis in lung cancer cells. DZ-SIM killed both cisplatin-sensitive and cisplatin-resistant as well as EGFR-TKI-sensitive and EGFR-TKI-resistant lung cancer cells. This conjugate specifically accumulated in and effectively inhibited the growth of xenograft tumors formed by NSCLC cells resistant to first-generation (H1650) and third-generation (PC9AR) EGFR TKIs. DZ-SIM induced cell death by targeting mitochondrial structure and function. We concluded that DZ-SIM could be a promising novel therapy for overcoming drug resistance in patients with NSCLC.
Collapse
Affiliation(s)
- Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi Zhang
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lijuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan Ou
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ruoxiang Wang
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Corresponding authors: Leland W. K. Chung, Ph.D., Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 103, Los Angeles, CA, 90048, USA, Tel.: (310) 423-7622, FAX: (310) 423-8543, ; Qinghua Zhou, M.D., Ph.D., No. 37, Guoxue Alley, Chengdu, 610041, China, , Ruoxiang Wang, M.D., Ph.D., Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA, Tel.: (310) 423-9541, FAX: (310) 423-8543,
| | - Haiyen E. Zhau
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Corresponding authors: Leland W. K. Chung, Ph.D., Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 103, Los Angeles, CA, 90048, USA, Tel.: (310) 423-7622, FAX: (310) 423-8543, ; Qinghua Zhou, M.D., Ph.D., No. 37, Guoxue Alley, Chengdu, 610041, China, , Ruoxiang Wang, M.D., Ph.D., Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA, Tel.: (310) 423-9541, FAX: (310) 423-8543,
| | - Leland W. K. Chung
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Corresponding authors: Leland W. K. Chung, Ph.D., Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 103, Los Angeles, CA, 90048, USA, Tel.: (310) 423-7622, FAX: (310) 423-8543, ; Qinghua Zhou, M.D., Ph.D., No. 37, Guoxue Alley, Chengdu, 610041, China, , Ruoxiang Wang, M.D., Ph.D., Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA, Tel.: (310) 423-9541, FAX: (310) 423-8543,
| |
Collapse
|
9
|
Mrdenovic S. Development of small molecule fluorescent dye drug conjugates in targeted cancer therapy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:261-263. [PMID: 34541024 PMCID: PMC8446769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Stefan Mrdenovic
- Department of Hematology, Department of Internal Medicine, University Hospital OsijekOsijek, Croatia, EU
- Department of Internal Medicine, Family Medicine, and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of OsijekOsijek, Croatia, EU
| |
Collapse
|
10
|
Zhang Y, Xiang J, Zhu N, Ge H, Sheng X, Deng S, Chen J, Yu L, Zhou Y, Shen J. Curcumin in combination with homoharringtonine suppresses lymphoma cell growth by inhibiting the TGF-β/Smad3 signaling pathway. Aging (Albany NY) 2021; 13:18757-18768. [PMID: 34324434 PMCID: PMC8351727 DOI: 10.18632/aging.203319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Both homoharringtonine (HHT) and curcumin exhibit anti-proliferative effects on lymphoma cells, but the effects of combined HHT and curcumin treatment remain unclear. Here, we investigated the effects of HHT/curcumin combination on the proliferation, apoptosis, and invasion in lymphoma cells. CCK-8, flow cytometry, and transwell assays were used to assess proliferation, apoptosis, and invasion of U937 and Raji cells. p-Smad3, E-cadherin, and N-cadherin expression were also measured in Raji cells using Western blot assays. Combination of HHT and curcumin synergistically inhibited U937 and Raji cell proliferation and invasion. In addition, the combination treatment markedly increased apoptosis of Raji cells as evidenced by increased Bax, cleaved caspase 3, and cleaved caspase 9 expression. Meanwhile, the combination treatment promoted anti-tumor mechanisms in Raji cells as indicated by decreases in p-Smad3 and N-cadherin and increases in E-cadherin. In vivo experiments showed that the combination treatment suppressed tumor growth in a mouse Raji xenograft model. Our findings indicate that combination of HHT and curcumin inhibited lymphoma cell growth by downregulating the TGF-β/Smad3 pathway. These results suggest that HHT combined with curcumin might be a promising therapeutic approach for the treatment of lymphoma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Ni Zhu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Xianfu Sheng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Shu Deng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Junfa Chen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Lihong Yu
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yan Zhou
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
11
|
Cho YS, Do MH, Duong Thanh H, Moon C, Kim K, Cho SH, Kim H, Ha HH, Jung C. A heptamethine cyanine dye serves as a potential marker for myeloid-derived suppressor cells. Am J Cancer Res 2021; 11:2853-2866. [PMID: 34249432 PMCID: PMC8263665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with inhibitory effects on T cell-mediated immune response. MDSCs accumulate under many pathological conditions, including cancers, to avoid anticancer immunity. Unlike mouse MDSCs, common specific surface markers for human MDSCs are not clearly defined, mainly due to the complexity of MDSC subsets. In this study, we investigate specific responses of the infrared dye MHI-148 to MDSCs. Mice bearing 4T1 breast cancer cells were established, and splenocytes were isolated. Flow cytometric analyses demonstrated that MHI-148 was reactive to over 80% of MDSC-specific cells manifesting CD11b+/Gr-1+ acquired from both tumor-bearing mice and naive mice. Cells sorted positive for either CD11b/Gr-1 or MHI-148 were also identical to their counterparts (99.7% and 97.7%, respectively). MHI-148, however, was not reactive to lymphocyte or monocyte populations. To determine whether MHI-148-reactive cells exert inhibitory effects on T cell proliferation, an EdU-based T cell assay was performed. MHI-148 reactive cells significantly reduced T cell proliferation with increased arginase activity and nitrite production. In an attempt to test MHI-148 as a marker for human MDSCs, MHI-148 was specifically reactive to CD11b+/CD33+/CD14- granulocytic MDSCs acquired from selected cancer patients. This study demonstrates that the near-infrared dye MHI-148 specifically reacts to mouse splenocytes with known MDSC-specific markers that have T cell suppressive functions. The dye also selectively binds to a subpopulation of immature myeloid cells acquired from cancer patients. While it is not clear how MHI-148 specifically stains MDSCs, this dye can be a novel tool to detect MDSCs and to predict the prognosis of human cancer patients.
Collapse
Affiliation(s)
- Young-Suk Cho
- Department of Anatomy, Chonnam National University Medical SchoolGwangju 61469, Korea
| | - Manh-Hung Do
- Department of Anatomy, Chonnam National University Medical SchoolGwangju 61469, Korea
| | - Hien Duong Thanh
- Department of Anatomy, Chonnam National University Medical SchoolGwangju 61469, Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National UniversityGwangju 61186, Korea
| | - Kwonseop Kim
- College of Pharmacy, Chonnam National UniversityGwangju, Korea
| | - Sang-Hee Cho
- Department of Hemato-Oncology, Chonnam National University Medical SchoolGwangju 61469, Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National UniversitySunchon, Jeonnam 57922, Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National UniversitySunchon, Jeonnam 57922, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical SchoolGwangju 61469, Korea
| |
Collapse
|
12
|
Wang Z, Chen M, Fang X, Hong H, Yao Y, Huang H. KIF15 is involved in development and progression of Burkitt lymphoma. Cancer Cell Int 2021; 21:261. [PMID: 33985517 PMCID: PMC8117549 DOI: 10.1186/s12935-021-01967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Burkitt lymphoma (BL) is a highly aggressive, fast-growing B-cell non-Hodgkin's lymphoma, manifested in several subtypes, including sporadic, endemic, and immunodeficiency-related forms, the mechanism of which is still not clear. Abundant evidence reported that KIF15 was involved in the progression of human cancer. The emphasis of this study is to explore the functions of KIF15 in the development of BL. METHODS Firstly, tumor and normal tissues were collected for detecting expression of KIF15 in BL. Lentivirus-mediated shRNA knockdown of KIF15 was used to construct BL cell model, which was verified by qRT-PCR and Western Blot. The cell proliferation was detected by CCK8 assay, cell apoptosis and cell cycle were measured through flow cytometry. Transwell assay was conducted to detect the migration. RESULTS We first found that KIF15 is highly expressed in BL. Knockdown of KIF15 can inhibit proliferation and migration, promote apoptosis and arrest the cell cycle. Moreover, KIF15 is involved in BL cell activity through regulating expression of apoptosis-related proteins (Caspase3, Caspase8, HTRA, IGFBP-6, p53, SMAC, sTNF-R1, TNF-β and Bcl-2) and downstream pathways, such as p-Akt, CCND1, CDK6 and PIK3CA. CONCLUSIONS These findings justify the search for small molecule inhibitors targeting KIF15 as a novel therapeutic strategy in BL.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - Meiting Chen
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - Xiaojie Fang
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - Huangming Hong
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Yuyi Yao
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - He Huang
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
13
|
Teh J, Tripathi M, Reichel D, Sagong B, Montoya R, Zhang Y, Wagner S, Saouaf R, Chung LWK, Perez JM. Intraoperative assessment and postsurgical treatment of prostate cancer tumors using tumor-targeted nanoprobes. Nanotheranostics 2021; 5:57-72. [PMID: 33391975 PMCID: PMC7738944 DOI: 10.7150/ntno.50095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Successful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival. For these reasons, a theranostics fluorescent nanoparticle could be developed to assist in the visualization of PCa tumor margins, while also delivering chemotherapeutic drug after surgery. Methods: Ferumoxytol (FMX) conjugated to the fluorescent dye and PCa targeting agent, heptamethine carbocyanine (HMC), yielded the HMC-FMX nanoprobe that was tested in vitro with various PCa cell lines and in vivo with both subcutaneous and orthotopic PCa mouse models. Visualization of these tumors via NIRF imaging after administration of HMC-FMX was performed. In addition, delivery of chemotherapeutic drug and their effect on tumor growth was also assessed. Results: HMC-FMX internalized into PCa cells, labeling these cells and PCa tumors in mice with near infrared fluorescence, facilitating tumor margin visualization. HMC-FMX was also able to deliver drugs to these tumors, reducing cell migration and slowing down tumor growth. Conclusion: HMC-FMX specifically targeted PCa tumors in mice allowing for the visualization of tumor margins by NIRF imaging. Furthermore, delivery of anticancer drugs by HMC-FMX effectively reduced prostate tumor growth and reduced cell migration in vitro. Thus, HMC-FMX can potentially translate into the clinic as a nanotheranostics agent for the intraoperative visualization of PCa tumor margins, and post-operative treatment of tumors with HMC-FMX loaded with anticancer drugs.
Collapse
Affiliation(s)
- James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Current address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bien Sagong
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ricardo Montoya
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rola Saouaf
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Department of Medicine, Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - J Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Yang X, Hou Z, Wang D, Mou Y, Guo C. Design, synthesis and biological evaluation of novel heptamethine cyanine dye-erlotinib conjugates as antitumor agents. Bioorg Med Chem Lett 2020; 30:127557. [DOI: 10.1016/j.bmcl.2020.127557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
|
15
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
16
|
Choi PJ, Cooper E, Schweder P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Park TIH, Jose J. PARP inhibitor cyanine dye conjugate with enhanced cytotoxic and antiproliferative activity in patient derived glioblastoma cell lines. Bioorg Med Chem Lett 2020; 30:127252. [PMID: 32527552 DOI: 10.1016/j.bmcl.2020.127252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/30/2023]
Abstract
We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC50: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment. We envisage such conjugates to be worth exploring for their utility in the treatment of various brain cancers.
Collapse
Affiliation(s)
- Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, 2 Park Road, Auckland, New Zealand
| | - Richard Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
17
|
Usama SM, Park GK, Nomura S, Baek Y, Choi HS, Burgess K. Role of Albumin in Accumulation and Persistence of Tumor-Seeking Cyanine Dyes. Bioconjug Chem 2020; 31:248-259. [PMID: 31909595 DOI: 10.1021/acs.bioconjchem.9b00771] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some heptamethine cyanine dyes accumulate in solid tumors in vivo and persist there for several days. The reasons why they accumulate and persist in tumors were incompletely defined, but explanations based on uptake into cancer cells via organic anion transporting polypeptides (OATPs) have been widely discussed. All cyanine-based "tumor-seeking dyes" have a chloride centrally placed on the heptamethine bridge (a "meso-chloride"). We were intrigued and perplexed by the correlation between this particular functional group and tumor uptake, so the following study was designed. It features four dyes (1-Cl, 1-Ph, 5-Cl, and 5-Ph) with complementary properties. Dye 1-Cl is otherwise known as MHI-148, and 1-Ph is a close analog wherein the meso-chloride has been replaced by a phenyl group. Data presented here shows that both 1-Cl and 1-Ph form noncovalent adducts with albumin, but only 1-Cl can form a covalent one. Both dyes 5-Cl and 5-Ph have a methylene (CH2) unit replaced by a dimethylammonium functionality (N+Me2). Data presented here shows that both these dyes 5 do not form tight noncovalent adducts with albumin, and only 5-Cl can form a covalent one (though much more slowly than 1-Cl). In tissue culture experiments, uptake of dyes 1 is more impacted by the albumin in the media than by the pan-OATP uptake inhibitor (BSP) that has been used to connect uptake of tumor-seeking dyes in vivo with the OATPs. Uptake of 1-Cl in media containing fluorescein-labeled albumin gave a high degree of colocalization of intracellular fluorescence. No evidence was found for the involvement of OATPs in uptake of the dyes into cells in media containing albumin. In an in vivo tumor model, only the two dyes that can form albumin adducts (1-Cl and 5-Cl) gave intratumor fluorescence that persisted long enough to be clearly discerned over the background (∼4 h); this fluorescence was still observed at 48 h. Tumors could be imaged with a higher contrast if 5-Cl is used instead of 1-Cl, because 5-Cl is cleared more rapidly from healthy tissues. Overall, the evidence is consistent with in vitro and in vivo results and indicates that the two dyes in the test series that accumulate in tumors and persist there (1-Cl and 5-Cl, true tumor-seeking dyes) do so as covalent albumin adducts trapped in tumor tissue via uptake by some cancer cells and via the enhanced permeability and retention (EPR) effect.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry , Texas A & M University , College Station , Texas 77842 , United States
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Shinsuke Nomura
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Kevin Burgess
- Department of Chemistry , Texas A & M University , College Station , Texas 77842 , United States
| |
Collapse
|