1
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. BIOLOGY 2023; 12:508. [PMID: 37106709 PMCID: PMC10136320 DOI: 10.3390/biology12040508] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Circadian rhythms in mammals are coordinated by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Light and other environmental inputs change the timing of the SCN neural network oscillator, which, in turn, sends output signals that entrain daily behavioral and physiological rhythms. While much is known about the molecular, neuronal, and network properties of the SCN itself, the circuits linking the outside world to the SCN and the SCN to rhythmic outputs are understudied. In this article, we review our current understanding of the synaptic and non-synaptic inputs onto and outputs from the SCN. We propose that a more complete description of SCN connectivity is needed to better explain how rhythms in nearly all behaviors and physiological processes are generated and to determine how, mechanistically, these rhythms are disrupted by disease or lifestyle.
Collapse
Affiliation(s)
| | - Jeff R. Jones
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
4
|
DeCarlo AA, Hammes N, Johnson PL, Shekhar A, Samuels BC. Dual Orexin Receptor Antagonist Attenuates Increases in IOP, ICP, and Translaminar Pressure Difference After Stimulation of the Hypothalamus in Rats. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35234838 PMCID: PMC8899853 DOI: 10.1167/iovs.63.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Intraocular pressure (IOP) remains the only modifiable risk factor for glaucoma progression. Our previous discovery that stimulation of nuclei within the hypothalamus can modulate IOP, intracranial pressure (ICP), and translaminar pressure difference (TLPD) fluctuations led us to investigate this pathway further. Our purpose was to determine the role of orexin neurons, primarily located in the dorsomedial hypothalamus (DMH) and perifornical (PeF) regions of the hypothalamus, in modulating these pressures. METHODS Sprague Dawley rats were pretreated systemically with a dual orexin receptor antagonist (DORA-12) at 30 mg/Kg (n = 8), 10 mg/Kg (n = 8), or vehicle control (n = 8). The IOP, ICP, heart rate (HR), and mean arterial pressure (MAP) were recorded prior to and following excitation of the DMH/PeF using microinjection of the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline methiodide (BMI). RESULTS Administration of the DORA at 30 mg/Kg significantly attenuated peak IOP by 5.2 ± 3.6 mm Hg (P = 0.007). During the peak response period (8-40 minutes), the area under the curve (AUC) for the 30 mg/Kg DORA cohort was significantly lower than the control cohort during the same period (P = 0.04). IOP responses for peak AUC versus DORA dose, from 0 to 30 mg/Kg, were linear (R2 = 0.18, P = 0.04). The ICP responses during the peak response period (4-16 minutes) versus DORA dose were also linear (R2 = 0.24, P = 0.014). Pretreatment with DORA significantly decreased AUC for the TLPD following stimulation of the DMH/PeF (10 mg/kg, P = 0.045 and 30 mg/kg, P = 0.015). CONCLUSIONS DORAs have the potential to attenuate asynchronous changes in IOP and in ICP and to lessen the extent of TLPDs that may result from central nervous system (CNS) activation.
Collapse
Affiliation(s)
- Arthur A. DeCarlo
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, Alabama, United States
| | - Nathan Hammes
- Indiana University School of Medicine, Department of Ophthalmology, Indianapolis, Indiana, United States,Microsoft Corporation, Redmond, Washington, United States
| | - Philip L. Johnson
- Indiana University School of Medicine, Department of Anatomy, Cell Biology, and Physiology, Indianapolis, Indiana, United States
| | - Anantha Shekhar
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania, United States
| | - Brian C. Samuels
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
6
|
Villar-Martinez MD, Goadsby PJ. Dim the Lights: A Narrative Review of Photophobia in Migraine. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A preference for darkness is one of the main associated features in people with migraine, the cause remaining a mystery until some decades ago. In this article, we describe the epidemiology of photophobia in migraine and explain the pathophysiological mechanisms following an anatomical structure. In addition, we review the current management of migraine and photophobia. Ongoing characterization of patients with photophobia and its different manifestations continues to increase our understanding of the intricate pathophysiology of migraine and vice versa. Detailed phenotyping of the patient with photophobia is encouraged.
Collapse
|
7
|
Modulation of the Rat Intergeniculate Leaflet of the Thalamus Network by Norepinephrine. Neuroscience 2021; 469:1-16. [PMID: 34174371 DOI: 10.1016/j.neuroscience.2021.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Circadian rhythms are regulated by a set of brain structures, one of which is the Intergeniculate Leaflet of the Thalamus (IGL). The most recognised role of the IGL is the integration of a variety of stimuli affecting rhythmicity, such as lighting conditions, received by the eye, or light-independent (non-photic) cues, the information about which is delivered via the activation of the non-specific projections. One of them is the norepinephrinergic system originating in the brainstem Locus Coeruleus (LC). In order to investigate the effect of norepinephrine (NE) on the IGL neurons we have performed ex vivo recordings using the extracellular multi-electrode array technique as well as the intracellular whole-cell patch clamp. Using both agonists and antagonists of specific NE receptor subtypes, we confirmed the presence of functional α1-, α2- and β-adrenergic receptors within the investigated structure, allowing NE to exert multiple types of effects on different IGL neurons, mainly depolarisation of the neurons projecting to the Suprachiasmatic Nuclei - the master circadian pacemaker, and various responses exhibited by the cells creating the connection with the contralateral IGL. Moreover, NE was shown to affect IGL cells both directly and via modulation of the synaptic network, in particular the miniature inhibitory postsynaptic currents. To the best of our knowledge, these are the first studies to confirm the effects of NE on the activity of the IGL network.
Collapse
|
8
|
Markwell EL, Feigl B, Zele AJ. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin Exp Optom 2021; 93:137-49. [DOI: 10.1111/j.1444-0938.2010.00479.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Emma L Markwell
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| | - Beatrix Feigl
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| | - Andrew J Zele
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| |
Collapse
|
9
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
10
|
|
11
|
Wu XS, Wang YC, Liu TT, Wang L, Sun XH, Wang LQ, Weng SJ, Zhong YM. Morphological alterations of intrinsically photosensitive retinal ganglion cells after ablation of mouse photoreceptors with selective photocoagulation. Exp Eye Res 2019; 188:107812. [PMID: 31550445 DOI: 10.1016/j.exer.2019.107812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
In this work, we investigated changes in the morphology of intrinsically photosensitive retinal ganglion cells (ipRGCs), M1 subtype, and pupillary light reflex following local and selective ablation of photoreceptors in mice. Laser photocoagulation was used to selectively destroy four patches of photoreceptors per eye at around 4 papillary diameters from the optic disc and at the 3, 6, 9, and 12 o'clock positions between the retinal vessels in the adult mouse retina, leaving cells in the inner retina intact. Morphological parameters of individual M1 cells specifically labeled by the antibody against melanopsin (PA1-780), including dendritic field size, total dendritic length, and dendritic branch number, were examined 1, 2, 4, and 8 weeks after photocoagulation with Neurolucida software. A considerable reduction in these parameters in M1 cells in the "lesioned areas" was found at all the four time points after photocoagulation, as compared with those in the "unlesioned areas". Although M1 cells in the lesioned areas showed significant changes as early as 1 week after laser treatment and the changes gradually increased, reaching a peak value at 2 weeks, morphological restoration was clearly seen in these cells over time. However, no difference in the morphological parameters of M1 cells was observed between the unlesioned areas of laser-treated mice and the corresponding areas of age-matched normal mice without laser lesions. Fluorescence intensity of the somata of melanopsin-positive M1 cells located inside the lesioned areas was significantly decreased at all the four time points after photocoagulation, whereas no changes in pupillary light reflex were detected at different light irradiations, indicating that photocoagulation-induced local photoreceptor loss and alterations of ipRGCs may be insufficient to cause abnormalities in non-image-forming (NIF) visual functions. The results suggest that intact photoreceptors could be crucial for maintaining the expression levels of melanopsin and normal morphology of M1 cells.
Collapse
Affiliation(s)
- Xiao-Sha Wu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Yong-Chen Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Ting-Ting Liu
- Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai, 200031, PR China
| | - Lu Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Xing-Huai Sun
- Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai, 200031, PR China
| | - Li-Qin Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Shi-Jun Weng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Yong-Mei Zhong
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
12
|
Berry M, Ahmed Z, Logan A. Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Prog Retin Eye Res 2019; 71:57-67. [DOI: 10.1016/j.preteyeres.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
13
|
Association between Retinal Nerve Fiber Layer Thickness and Eye Fatigue. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3014567. [PMID: 30809534 PMCID: PMC6364103 DOI: 10.1155/2019/3014567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
Eye fatigue is a common health problem across all age groups. Herein, we explored the correlation between eye fatigue and thickness of the retinal nerve fiber layer (NFL). Included in the NFL are intrinsically photosensitive retinal ganglion cells (ipRGCs), which are associated with trigeminal pain. This retrospective cross-sectional study included outpatients with best-corrected visual acuity above 20/30 in both eyes and without dry eye, glaucoma, or retinal disease. A total of 1981 patients were initially enrolled and 377 patients were declared as eligible for the study analysis. We tested subjects for the presence of major ocular symptoms and measured thickness of ganglion cell complex (GCC) using optical coherence tomography. A total of 377 outpatients (46.4% men, mean age of 57.1 years) were enrolled for analysis, based on the interview-reported prevalence of six eye symptom, as follows: 31.5% for eye fatigue, 19.2% for blurring, 18.6% for dryness, 15.7% for photophobia, 13.5% for irritation, and 4.6% for pain. The macular GCC was significantly thicker in subjects with eye fatigue compared to the group not reporting eye fatigue (103.8 μm versus 100.3 μm, P = 0.014). Regression analysis identified eye fatigue (P = 0.026, β=0.122, adjusted for age and sex) and dryness (P =0.024, β=0.130) as significantly correlated with the macular GCC thickness, while the full macular thickness showed no significant correlation. In conclusions, eye fatigue and dryness were positively associated with thickness of the macular GCC. Nonvisual symptoms might therefore play a role in the development of eye fatigue.
Collapse
|
14
|
Stinchcombe AR, Mouland JW, Wong KY, Lucas RJ, Forger DB. Multiplexing Visual Signals in the Suprachiasmatic Nuclei. Cell Rep 2018; 21:1418-1425. [PMID: 29117548 DOI: 10.1016/j.celrep.2017.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/24/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The suprachiasmatic nuclei (SCN), the site of the mammalian circadian (daily) pacemaker, contains thousands of interconnected neurons, some of which receive direct retinal input. Here, we study the fast (<1 s) responses of SCN neurons to visual stimuli with a large-scale mathematical model tracking the ionic currents and voltage of all SCN neurons. We reconstruct the SCN network connectivity and reject 99.99% of theoretically possible SCN networks by requiring that the model reproduces experimentally determined receptive fields of SCN neurons. The model shows how the SCN neuronal network can enhance circadian entrainment by sensitizing a population of neurons in the ventral SCN to irradiance. This SCN network also increases the spatial acuity of neurons and increases the accuracy of a simulated subconscious spatial visual task. We hypothesize that much of the fast electrical activity within the SCN is related to the processing of spatial information.
Collapse
Affiliation(s)
- Adam R Stinchcombe
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA
| | - Joshua W Mouland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Li X, Li X. The Antidepressant Effect of Light Therapy from Retinal Projections. Neurosci Bull 2018; 34:359-368. [PMID: 29430586 DOI: 10.1007/s12264-018-0210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
Observations from clinical trials have frequently demonstrated that light therapy can be an effective therapy for seasonal and non-seasonal major depression. Despite the fact that light therapy is known to have several advantages over antidepressant drugs like a low cost, minimal side-effects, and fast onset of therapeutic effect, the mechanism underlying light therapy remains unclear. So far, it is known that light therapy modulates mood states and cognitive functions, involving circadian and non-circadian pathways from retinas into brain. In this review, we discuss the therapeutic effect of light on major depression and its relationship to direct retinal projections in the brain. We finally emphasize the function of the retino-raphe projection in modulating serotonin activity, which probably underlies the antidepressant effect of light therapy for depression.
Collapse
Affiliation(s)
- Xiaotao Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
16
|
The organization of melanopsin-immunoreactive cells in microbat retina. PLoS One 2018; 13:e0190435. [PMID: 29304147 PMCID: PMC5755760 DOI: 10.1371/journal.pone.0190435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2-5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.
Collapse
|
17
|
Johnson EN, Westbrook T, Shayesteh R, Chen EL, Schumacher JW, Fitzpatrick D, Field GD. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol 2017; 527:328-344. [PMID: 29238991 DOI: 10.1002/cne.24377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate the pupillary light reflex, circadian entrainment, and may contribute to luminance and color perception. The diversity of ipRGCs varies from rodents to primates, suggesting differences in their contributions to retinal output. To further understand the variability in their organization and diversity across species, we used immunohistochemical methods to examine ipRGCs in tree shrew (Tupaia belangeri). Tree shrews share membership in the same clade, or evolutionary branch, as rodents and primates. They are highly visual, diurnal animals with a cone-dominated retina and a geniculo-cortical organization resembling that of primates. We identified cells with morphological similarities to M1 and M2 cells described previously in rodents and primates. M1-like cells typically had somas in the ganglion cell layer, with 23% displaced to the inner nuclear layer (INL). However, unlike M1 cells, they had bistratified dendritic fields ramifying in S1 and S5 that collectively tiled space. M2-like cells had dendritic fields restricted to S5 that were smaller and more densely branching. A novel third type of melanopsin immunopositive cell was identified. These cells had somata exclusively in the INL and monostratified dendritic fields restricted to S1 that tiled space. Surprisingly, these cells immunolabeled for tyrosine hydroxylase, a key component in dopamine synthesis. These cells immunolabeled for an RGC marker, not amacrine cell markers, suggesting that they are dopaminergic ipRGCs. We found no evidence for M4 or M5 ipRGCs, described previously in rodents. These results identify some organizational features of the ipRGC system that are canonical versus species-specific.
Collapse
Affiliation(s)
- Elizabeth N Johnson
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina.,Wharton Neuroscience Initiative, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teleza Westbrook
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | - Rod Shayesteh
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | - Emily L Chen
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Greg D Field
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
18
|
Brown TM. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. ACTA ACUST UNITED AC 2017; 219:1779-92. [PMID: 27307539 PMCID: PMC4920240 DOI: 10.1242/jeb.132167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Circadian clocks are a near-ubiquitous feature of biology, allowing organisms to optimise their physiology to make the most efficient use of resources and adjust behaviour to maximise survival over the solar day. To fulfil this role, circadian clocks require information about time in the external world. This is most reliably obtained by measuring the pronounced changes in illumination associated with the earth's rotation. In mammals, these changes are exclusively detected in the retina and are relayed by direct and indirect neural pathways to the master circadian clock in the hypothalamic suprachiasmatic nuclei. Recent work reveals a surprising level of complexity in this sensory control of the circadian system, including the participation of multiple photoreceptive pathways conveying distinct aspects of visual and/or time-of-day information. In this Review, I summarise these important recent advances, present hypotheses as to the functions and neural origins of these sensory signals, highlight key challenges for future research and discuss the implications of our current knowledge for animals and humans in the modern world.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus. J Neurosci 2017; 36:5252-63. [PMID: 27170123 DOI: 10.1523/jneurosci.4599-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/25/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN.
Collapse
|
20
|
Hanna L, Walmsley L, Pienaar A, Howarth M, Brown TM. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol 2017; 595:3621-3649. [PMID: 28217893 DOI: 10.1113/jp273850] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. ABSTRACT Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Collapse
Affiliation(s)
- Lydia Hanna
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Abigail Pienaar
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Sweeney NT, James KN, Nistorica A, Lorig-Roach RM, Feldheim DA. Expression of transcription factors divides retinal ganglion cells into distinct classes. J Comp Neurol 2017; 527:225-235. [PMID: 28078709 DOI: 10.1002/cne.24172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) are tasked with transmitting all light information from the eye to the retinal recipient areas of the brain. RGCs can be classified into many different types by morphology, gene expression, axonal projections, and functional responses to different light stimuli. Ultimately, these classification systems should be unified into an all-encompassing taxonomy. Toward that end, we show here that nearly all RGCs express either Islet-2 (Isl2), Tbr2, or a combination of Satb1 and Satb2. We present gene expression data supporting the hypothesis that Satb1 and Satb2 are expressed in ON-OFF direction-selective (DS) RGCs, complementing our previous work demonstrating that RGCs that express Isl2 and Tbr2 are non-DS and non-image-forming, respectively. Expression of these transcription factors emerges at distinct embryonic ages and only in postmitotic cells. Finally, we demonstrate that these transcription factor-defined RGC classes are born throughout RGC genesis.
Collapse
Affiliation(s)
- Neal T Sweeney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Kiely N James
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Andreea Nistorica
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Ryan M Lorig-Roach
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - David A Feldheim
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
22
|
Ksendzovsky A, Pomeraniec IJ, Zaghloul KA, Provencio JJ, Provencio I. Clinical implications of the melanopsin-based non-image-forming visual system. Neurology 2017; 88:1282-1290. [PMID: 28251921 DOI: 10.1212/wnl.0000000000003761] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/06/2017] [Indexed: 01/06/2023] Open
Abstract
Since the discovery of the non-image-forming visual system, tremendous research efforts have been dedicated to understanding its mechanisms and functional roles. Original functions associated with the melanopsin system include the photoentrainment of circadian sleep-wake cycles and the pupillary light reflex. Recent findings, however, suggest a much broader involvement of this system in an array of physiologic responses to light. This newfound insight into the underlying function of the non-image-forming system has revealed the many connections to human pathology and attendant disease states, including seasonal affective disorder, migraine, glaucoma, inherited mitochondrial optic neuropathy, and sleep dysregulation of aging. In this review, the authors discuss in detail the clinical implications of the melanopsin system.
Collapse
Affiliation(s)
- Alexander Ksendzovsky
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville.
| | - I Jonathan Pomeraniec
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| | - Kareem A Zaghloul
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| | - J Javier Provencio
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| | - Ignacio Provencio
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| |
Collapse
|
23
|
Leonidov AV. On optical receivers in the pathway implicated in regulating the human circadian rhythm. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916060117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey. Mol Brain 2016; 9:78. [PMID: 27535380 PMCID: PMC4989352 DOI: 10.1186/s13041-016-0255-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets.
Collapse
|
25
|
Park JH, Paul MJ, Butler MP, Zucker I. Binocular Interactions in the Entrainment and Phase Shifting of Locomotor Activity Rhythms in Syrian Hamsters. J Biol Rhythms 2016; 20:49-59. [PMID: 15654070 DOI: 10.1177/0748730404272967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To assess binocular interactions and possible ocular dominance in entrainment of circadian rhythms, Syrian hamsters maintained in LL were subjected for several weeks to schedules of eye occlusion with opaque contact lenses. In separate groups, the opaque lens was inserted into the left or right eye for 12 h at the same clock time each day. The left and right eyes of other groups were alternately occluded for 12 h each day, with initial occlusion of either the left or right eye for different groups. Amajority of hamsters entrained their locomotor activity rhythm when 1 eye was occluded for 12 h. The modified visual input imposed by covering 1 eye is sufficient to induce entrainment. Locomotor rhythms of most animals in which the 2 eyes were alternately occluded for 12 h each day phasedelayed onset of activity during the 1st few days of the lensing procedure; activity onset then free ran with • < 24 h for several weeks until entraining with • of 24 h regardless of whether the left or right eye was initially occluded. Entrainment eventually occurred when activity onset coincided with occlusion of the eye contralateral to the one that was first lensed. Photic and nonphotic explanations for eventual entrainment of locomotor rhythms are discussed, and evidence for asymmetrical photic input from the 2 eyes to the SCN is considered
Collapse
Affiliation(s)
- Jin Ho Park
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA.
| | | | | | | |
Collapse
|
26
|
Shanks JA, Ito S, Schaevitz L, Yamada J, Chen B, Litke A, Feldheim DA. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus. J Neurosci 2016. [PMID: 27170123 DOI: 10.6080/k07d2s2f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
UNLABELLED Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN.
Collapse
Affiliation(s)
- James A Shanks
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064, and
| | - Laura Schaevitz
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, Department of Biology, Trinity College, Hartford, Connecticut 06106
| | - Jena Yamada
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Alan Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064, and
| | - David A Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064,
| |
Collapse
|
27
|
Abstract
The suprachiasmatic nucleus (SCN) receives direct retinal input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) for circadian photoentrainment. Interestingly, the SCN is the only brain region that receives equal inputs from the left and right eyes. Despite morphological assessments showing that axonal fibers originating from ipRGCs cover the entire SCN, physiological evidence suggests that only vasoactive intestinal polypeptide (VIP)/gastrin-releasing peptide (GRP) cells located ventrally in the SCN receive retinal input. It is still unclear, therefore, which subpopulation of SCN neurons receives synaptic input from the retina and how the SCN receives equal inputs from both eyes. Here, using single ipRGC axonal tracing and a confocal microscopic analysis in mice, we show that ipRGCs have elaborate innervation patterns throughout the entire SCN. Unlike conventional retinal ganglion cells (RGCs) that innervate visual targets either ipsilaterally or contralaterally, a single ipRGC can bilaterally innervate the SCN. ipRGCs form synaptic contacts with major peptidergic cells of the SCN, including VIP, GRP, and arginine vasopressin (AVP) neurons, with each ipRGC innervating specific subdomains of the SCN. Furthermore, a single SCN-projecting ipRGC can send collateral inputs to many other brain regions. However, the size and complexity of the axonal arborizations in non-SCN regions are less elaborate than those in the SCN. Our results provide a better understanding of how retinal neurons connect to the central circadian pacemaker to synchronize endogenous circadian clocks with the solar day.
Collapse
|
28
|
Orlowska-Feuer P, Allen AE, Storchi R, Szkudlarek HJ, Lewandowski MH. The contribution of inner and outer retinal photoreceptors to infra-slow oscillations in the rat olivary pretectal nucleus. Eur J Neurosci 2016; 43:823-33. [PMID: 26804179 DOI: 10.1111/ejn.13184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 12/28/2022]
Abstract
A subpopulation of olivary pretectal nucleus (OPN) neurons discharges action potentials in an oscillatory manner, with a period of approximately two minutes. This 'infra-slow' oscillatory activity depends on synaptic excitation originating in the retina. Signals from rod-cone photoreceptors reach the OPN via the axons of either classic retinal ganglion cells or intrinsically photosensitive retinal ganglion cells (ipRGCs), which use melanopsin for photon capturing. Although both cell types convey light information, their physiological functions differ considerably. The aim of the present study was to disentangle how rod-cone and melanopsin photoresponses contribute to generation of oscillatory activity. Pharmacological manipulations of specific phototransduction cascades were used whilst recording extracellular single-unit activity in the OPN of anaesthetized rats. The results show that under photopic conditions (bright light), ipRGCs play a major role in driving infra-slow oscillations, as blocking melanopsin phototransmission abolishes or transiently disturbs oscillatory firing of the OPN neurons. On the other hand, blocking rod-cone phototransmission does not change firing patterns in photopic conditions. However, under mesopic conditions (moderate light), when melanopsin phototransmission is absent, blocking rod-cone signalling causes disturbances or even the disappearance of oscillations implying that classic photoreceptors are of greater importance under moderate light. Evidence is provided that all photoreceptors are required for the generation of oscillations in the OPN, although their roles in driving the rhythm are determined by the lighting conditions, consistent with their relative sensitivities. The results further suggest that maintained retinal activity is crucial to observe infra-slow oscillatory activity in the OPN.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Annette E Allen
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Riccardo Storchi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hanna J Szkudlarek
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
29
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
31
|
Abstract
There is a growing recognition that the coordinated timing of behavioral, physiologic, and metabolic circadian rhythms is a requirement for a healthy body and mind. In mammals, the primary circadian oscillator is the hypothalamic suprachiasmatic nucleus (SCN), which is responsible for circadian coordination throughout the organism. Temporal homeostasis is recognized as a complex interplay between rhythmic clock gene expression in brain regions outside the SCN and in peripheral organs. Abnormalities in this intricate circadian orchestration may alter sleep patterns and contribute to the pathophysiology of affective disorders.
Collapse
|
32
|
Pickard GE, So KF, Pu M. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neurosci Biobehav Rev 2015; 57:118-31. [PMID: 26363667 PMCID: PMC4646079 DOI: 10.1016/j.neubiorev.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, United States; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Department of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Ophthalmology, The University of Hong Kong, Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China; Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
33
|
Langel JL, Smale L, Esquiva G, Hannibal J. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus. Front Neuroanat 2015; 9:93. [PMID: 26236201 PMCID: PMC4500959 DOI: 10.3389/fnana.2015.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.
Collapse
Affiliation(s)
- Jennifer L Langel
- Neuroscience Program, Michigan State University East Lansing, MI, USA
| | - Laura Smale
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA ; Department of Zoology, Michigan State University East Lansing, MI, USA
| | - Gema Esquiva
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark ; Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
34
|
Walmsley L, Brown TM. Eye-specific visual processing in the mouse suprachiasmatic nuclei. J Physiol 2015; 593:1731-43. [PMID: 25652666 DOI: 10.1113/jphysiol.2014.288225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Internal circadian clocks are important regulators of mammalian biology, acting to coordinate physiology and behaviour in line with daily changes in the environment. At present, synchronisation of the circadian system to the solar cycle is believed to rely on a quantitative assessment of total ambient illumination, provided by a bilateral projection from the retina to the suprachiasmatic nuclei (SCN). It is currently unclear, however, whether this photic integration occurs at the level of individual cells or within the SCN network. Here we use extracellular multielectrode recordings from the SCN of anaesthetised mice to show that most SCN neurons receive visual input from just one eye. While we find that binocular inputs to a subset of cells are important for rapid responses to changes in illumination, we find no evidence indicating that individual SCN cells are capable of reporting the average light intensity across the whole visual field. As a result of these local irradiance coding properties, our data establish that photic integration is primarily mediated at the level of the SCN network and suggest that accurate assessments of global light levels would be impaired by non-uniform illumination of either eye.
Collapse
Affiliation(s)
- Lauren Walmsley
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
35
|
Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells. PLoS One 2015; 10:e0117967. [PMID: 25714375 PMCID: PMC4340921 DOI: 10.1371/journal.pone.0117967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.
Collapse
|
36
|
Porter AJ, Pillidge K, Tsai YC, Dudley JA, Hunt SP, Peirson SN, Brown LA, Stanford SC. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice(1). GENES BRAIN AND BEHAVIOR 2015; 14:189-99. [PMID: 25558794 PMCID: PMC4415486 DOI: 10.1111/gbb.12195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 01/16/2023]
Abstract
Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: 'Hom') wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents ('Het', derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors.
Collapse
Affiliation(s)
- A J Porter
- Department of Neuroscience, Physiology and Pharmacology
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Meyers BS, Demertzis ZD, Lynch AM, Li BY, Wachter RD, Abufarha FS, Dulka EA, Pack W, Zhao X, Wong KY. The rat retina has five types of ganglion-cell photoreceptors. Exp Eye Res 2015; 130:17-28. [PMID: 25450063 PMCID: PMC4276437 DOI: 10.1016/j.exer.2014.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/30/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells' synaptic photoresponses were far more transient than those of M2-M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs' melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings.
Collapse
Affiliation(s)
- Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew P Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brian A Benenati
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin S Meyers
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Zachary D Demertzis
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew M Lynch
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin Y Li
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rebecca D Wachter
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fady S Abufarha
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Eden A Dulka
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Weston Pack
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
38
|
Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014; 522:2231-48. [PMID: 24752373 DOI: 10.1002/cne.23588] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we characterized the occurrence of PACAP in melanopsin-expressing ipRGCs and in the retinal target areas in the brain visualized by the anterograde tracer cholera toxin subunit B (CtB) in combination with PACAP staining. In the retina, PACAP and melanopsin were found to be costored in 99% of melanopsin-expressing cells characterized as inner and outer stratifying melanopsin RGCs. Two macaque monkeys were anesthetized and received a unilateral intravitreal injection of CtB. Bilateral retinal projections containing colocalized CtB and PACAP immunostaining were identified in the SCN, the lateral geniculate complex including the pregeniculate nucleus, the pretectal olivary nucleus, the nucleus of the optic tract, the brachium of the superior colliculus, and the superior colliculus. In conclusion, PACAP-immunoreactive projections with colocalized CtB represent retinal projections of ipRGCs in the macaque monkey, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing.
Collapse
Affiliation(s)
- J Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, DK2400, NV, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
39
|
T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. J Neurosci 2014; 34:13083-95. [PMID: 25253855 DOI: 10.1523/jneurosci.1027-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4.
Collapse
|
40
|
Valiente-Soriano FJ, García-Ayuso D, Ortín-Martínez A, Jiménez-López M, Galindo-Romero C, Villegas-Pérez MP, Agudo-Barriuso M, Vugler AA, Vidal-Sanz M. Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina. Front Neuroanat 2014; 8:131. [PMID: 25477787 PMCID: PMC4238377 DOI: 10.3389/fnana.2014.00131] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023] Open
Abstract
Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a+RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina.
Collapse
Affiliation(s)
- Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Maria Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Anthony A Vugler
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology London, UK
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| |
Collapse
|
41
|
Cui Q, Ren C, Sollars PJ, Pickard GE, So KF. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2014; 284:845-853. [PMID: 25446359 PMCID: PMC4637166 DOI: 10.1016/j.neuroscience.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions.
Collapse
Affiliation(s)
- Q Cui
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - C Ren
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - P J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - G E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-F So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China; Department of Ophthalmology, University of Hong Kong, Hong Kong.
| |
Collapse
|
42
|
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Optom Vis Sci 2014; 91:894-903. [PMID: 24879087 DOI: 10.1097/opx.0000000000000284] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are a class of photoreceptors with established roles in non-image-forming processes. Their contributions to image-forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. Intrinsically photosensitive retinal ganglion cells can be divided into five ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioral marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma, and hereditary optic neuropathy. We briefly review the anatomical distributions, projections, and basic physiological mechanisms of ipRGCs and their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the PLR can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction.
Collapse
|
43
|
Hannibal J, Kankipati L, Strang C, Peterson B, Dacey D, Gamlin P. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014. [DOI: 10.1002/cne.23555] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Hannibal
- Department of Clinical Biochemistry; Bispebjerg Hospital; DK2400, NV Copenhagen Denmark
| | - L. Kankipati
- Department of Ophthalmology; University of Alabama at Birmingham; Birmingham Alabama 35233
| | - C.E. Strang
- Department of Vision Sciences; University of Alabama at Birmingham; Birmingham Alabama 35233
| | - B.B. Peterson
- Department of Biological Structure and the National Primate Research Center; University of Washington; Seattle Washington 98195
| | - D. Dacey
- Department of Biological Structure and the National Primate Research Center; University of Washington; Seattle Washington 98195
| | - P.D. Gamlin
- Department of Ophthalmology; University of Alabama at Birmingham; Birmingham Alabama 35233
| |
Collapse
|
44
|
Ramsey DJ, Ramsey KM, Vavvas DG. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Semin Ophthalmol 2013; 28:406-421. [PMID: 24010846 DOI: 10.3109/08820538.2013.825294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Daily changes in the light-dark cycle are the principal environmental signal that enables organisms to synchronize their internal biology with the 24-hour day-night cycle. In humans, the visual system is integral to photoentrainment and is primarily driven by a specialized class of intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin (OPN4) in the inner retina. These cells project through the retinohypothalamic tract (RHT) to the suprachiasmatic nuclei (SCN) of the hypothalamus, which serves as the body's master biological clock. At the same time, the retina itself possesses intrinsic circadian oscillations, exemplified by diurnal fluctuations in visual sensitivity, neurotransmitter levels, and outer segment turnover rates. Recently, it has been noted that both central and peripheral oscillators share a molecular clock consisting of an endogenous, circadian-driven, transcription-translation feedback loop that cycles with a periodicity of approximately 24 hours. This review will cover the role that melanopsin and ipRGCs play in the circadian organization of the visual system.
Collapse
Affiliation(s)
- David J Ramsey
- Retina Service, Harvard Medical School, Massachusetts Eye and Ear Infirmary and Mass General Hospital , Boston, Massachusetts , USA
| | | | | |
Collapse
|
45
|
Abstract
Investigators typically study one function of the circadian visual system at a time, be it photoreception, transmission of photic information to the suprachiasmatic nucleus (SCN), light control of rhythm phase, locomotor activity, or gene expression. There are good reasons for such a focused approach, but sometimes it is advantageous to look at the broader picture, asking how all the parts and functions complete the whole. Here, several seemingly disparate functions of the circadian visual system are examined. They share common characteristics with respect to regulation by light and, to the extent known, share a common input neuroanatomy. The argument presented is that the 3 hypothalamically mediated effects of light for which there are the most data, circadian clock phase shifts, suppression of nocturnal locomotion (“negative masking”), and suppression of nocturnal pineal function, are regulated by a common photic input pathway terminating in the SCN. For each, light triggers a relatively fixed interval response that is irradiance-dependent, the effective stimulus can be very brief light exposure, and the response continues to completion in the absence of additional light. The presence of a triggered, fixed-length response interval is of particular importance to the understanding of the circuitry and mechanisms regulating circadian rhythm phase shifts because it implies that the SCN clock response to light is not instantaneous. It also may explain why certain stimuli (neuropeptide Y or novel wheel running) administered many minutes after light exposure are able to block light-induced phase shifts. The understanding of negative masking is complicated by the fact that it can be represented as a positive change, that is, light-induced sleep, not just as a reduction in locomotion. Acute nocturnal light exposure also induces adrenal hormone secretion and a rapid drop in body temperature, physiological responses that appear to be regulated similarly to the other light effects. The likelihood of a common regulatory basis for the several responses suggests that additional light-induced responses will be forthcoming and raises questions about the relationships between light, SCN cellular anatomy, the molecular clockworks of SCN neurons, and SCN throughput mechanisms for regulating disparate downstream activities.
Collapse
Affiliation(s)
- Lawrence P. Morin
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
46
|
|
47
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
48
|
Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet. Neuroscience 2013; 228:315-24. [DOI: 10.1016/j.neuroscience.2012.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/21/2022]
|
49
|
Granados-Fuentes D, Herzog ED. The clock shop: coupled circadian oscillators. Exp Neurol 2012; 243:21-7. [PMID: 23099412 DOI: 10.1016/j.expneurol.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
Abstract
Daily rhythms in neural activity underlie circadian rhythms in sleep-wake and other daily behaviors. The cells within the mammalian suprachiasmatic nucleus (SCN) are intrinsically capable of 24-h timekeeping. These cells synchronize with each other and with local environmental cycles to drive coherent rhythms in daily behaviors. Recent studies have identified a small number of neuropeptides critical for this ability to synchronize and sustain coordinated daily rhythms. This review highlights the roles of specific intracellular and intercellular signals within the SCN that underlie circadian synchrony.
Collapse
|
50
|
Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Allingham RR. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci 2012; 53:7328-35. [PMID: 23033392 PMCID: PMC3487489 DOI: 10.1167/iovs.12-10632] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/14/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Intraocular pressure (IOP) fluctuation has recently been identified as a risk factor for glaucoma progression. Further, decreases in intracranial pressure (ICP), with postulated increases in the translaminar pressure gradient across the lamina cribrosa, has been reported in glaucoma patients. We hypothesized that circadian fluctuations in IOP and the translaminar pressure gradient are influenced, at least in part, by central autonomic regulatory neurons within the dorsomedial and perifornical hypothalamus (DMH/PeF). This study examined whether site-directed chemical stimulation of DMH/PeF neurons evoked changes in IOP, ICP, and the translaminar pressure gradient. METHODS The GABA(A) receptor antagonist bicuculline methiodide (BMI) was stereotaxically microinjected into the DMH/PeF region of isoflurane-anesthetized male Sprague-Dawley rats (n = 19). The resulting peripheral cardiovascular (heart rate [HR] and mean arterial pressure [MAP]), IOP, and ICP effects were recorded and alterations in the translaminar pressure gradient calculated. RESULTS Chemical stimulation of DMH/PeF neurons evoked significant increases in HR (+69.3 ± 8.5 beats per minute); MAP (+22.9 ± 1.6 mm Hg); IOP (+7.1 ± 1.9 mm Hg); and ICP (+3.6 ± 0.7 mm Hg) compared with baseline values. However, the peak IOP increase was significantly delayed compared with ICP (28 vs. 4 minutes postinjection), resulting in a dramatic translaminar pressure gradient fluctuation. CONCLUSIONS Chemical stimulation of DMH/PeF neurons evokes substantial increases in IOP, ICP, and the translaminar pressure gradient in the rat model. Given that the DMH/PeF neurons may be a key effector pathway for circadian regulation of autonomic tone by the suprachiasmatic nucleus, these findings will help elucidate novel mechanisms modulating circadian fluctuations in IOP and the translaminar pressure gradient.
Collapse
Affiliation(s)
- Brian C. Samuels
- From the Eugene and Marilyn Glick Eye Institute, the
- Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; the
| | | | | | - Anantha Shekhar
- Stark Neuroscience Research Institute, and the Departments of
- Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; the
- Indiana Clinical Translational Sciences Institute, Indianapolis, Indiana; and the
| | | | | |
Collapse
|