1
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
2
|
Black JM, Jacobs RJ, Phillips JR, Acosta ML. The changing scope of Optometry in New Zealand: historical perspectives, current practice and research advances. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1587476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Joanna M. Black
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Robert J. Jacobs
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - John R. Phillips
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
4
|
Kalloniatis M, Nivison-Smith L, Chua J, Acosta ML, Fletcher EL. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review. Exp Eye Res 2015; 150:106-21. [PMID: 26521764 DOI: 10.1016/j.exer.2015.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Abstract
Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies.
Collapse
Affiliation(s)
- M Kalloniatis
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - L Nivison-Smith
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
| | - J Chua
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - M L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - E L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Nivison-Smith L, Sun D, Fletcher EL, Marc RE, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol 2014; 521:2416-38. [PMID: 23348566 DOI: 10.1002/cne.23305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022]
Abstract
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | |
Collapse
|
6
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
7
|
Chua J, Nivison-Smith L, Fletcher EL, Trenholm S, Awatramani GB, Kalloniatis M. Early remodeling of müller cells in therd/rdmouse model of retinal dystrophy. J Comp Neurol 2013; 521:2439-53. [DOI: 10.1002/cne.23307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/11/2012] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
|
8
|
Mapping cation entry in photoreceptors and inner retinal neurons during early degeneration in the P23H-3 rat retina. Vis Neurosci 2013; 30:65-75. [PMID: 23557623 DOI: 10.1017/s0952523813000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The proline-23-histidine line 3 (P23H-3) transgenic rat carries a human opsin gene mutation leading to progressive photoreceptor loss characteristic of human autosomal dominant retinitis pigmentosa. The aim of the present study was to evaluate neurochemical modifications in the P23H-3 retina as a function of development and degeneration. Specifically, we investigated the ion channel permeability of photoreceptors by tracking an organic cation, agmatine (1-amino-4-guanidobutane, AGB), which permeates through nonspecific cation channels. We also investigated the activity of ionotropic glutamate receptors in distinct populations of bipolar, amacrine, and ganglion cells using AGB tracking in combination with macromolecular markers. We found elevated cation channel permeation in photoreceptors as early as postnatal day 12 (P12) suggesting that AGB labeling is an early indicator of impending photoreceptor degeneration. However, bipolar, amacrine, or ganglion cells displayed normal responses secondary to ionotropic glutamate receptor activation even at P138 when about one half of the photoreceptor layer was lost and apoptosis and gliosis were observed. These results suggest that possible therapeutic windows as downstream neurons in inner retina appear to retain normal function with regard to AGB permeation when photoreceptors are significantly reduced but not lost.
Collapse
|
9
|
Nivison-Smith L, Collin SP, Zhu Y, Ready S, Acosta ML, Hunt DM, Potter IC, Kalloniatis M. Retinal amino acid neurochemistry of the southern hemisphere lamprey, Geotria australis. PLoS One 2013; 8:e58406. [PMID: 23516473 PMCID: PMC3596384 DOI: 10.1371/journal.pone.0058406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/04/2013] [Indexed: 01/01/2023] Open
Abstract
Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun P. Collin
- School of Animal Biology and the University of Western Australia Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah Ready
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - David M. Hunt
- School of Animal Biology and the University of Western Australia Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Ian C. Potter
- School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma. J Neurosci 2013; 32:15859-76. [PMID: 23136425 DOI: 10.1523/jneurosci.0038-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.
Collapse
|
11
|
de Souza CF, Kalloniatis M, Polkinghorne PJ, McGhee CN, Acosta ML. Functional and anatomical remodeling in human retinal detachment. Exp Eye Res 2012; 97:73-89. [DOI: 10.1016/j.exer.2012.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/01/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
12
|
de Souza CF, Kalloniatis M, Polkinghorne PJ, McGhee CN, Acosta ML. Functional activation of glutamate ionotropic receptors in the human peripheral retina. Exp Eye Res 2012; 94:71-84. [DOI: 10.1016/j.exer.2011.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/22/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
|
13
|
Chen YP, Chiao CC. Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells. Brain Res 2011; 1427:10-22. [PMID: 22071563 DOI: 10.1016/j.brainres.2011.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 09/15/2011] [Accepted: 10/09/2011] [Indexed: 11/24/2022]
Abstract
It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity.
Collapse
Affiliation(s)
- Yin-Peng Chen
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|
14
|
Gunn DJ, Gole GA, Barnett NL. Specific amacrine cell changes in an induced mouse model of glaucoma. Clin Exp Ophthalmol 2011; 39:555-63. [PMID: 21176046 DOI: 10.1111/j.1442-9071.2010.02488.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND To investigate retinal cell population changes under chronic elevated intraocular pressure in an inducible mouse model of glaucoma. METHODS Chronic unilateral ocular hypertension was induced in 40 C57BL6/J mice by ablation of the limbal episcleral veins. After 5, 20, 40 and 60 days of elevated intraocular pressure, specific retinal cell types were identified and/or quantified by immunohistochemistry for protein kinase C α, glial fibrillary acidic protein, parvalbumin and calretinin. Apoptotic cells were identified by TUNEL and cleaved caspase-3 immunohistochemistry. RESULTS Elevations in intraocular pressure in the range 22-30 mmHg were developed and sustained in mice for up to 60 days. Protein kinase C α immunoreactivity localized to bipolar cells was unchanged. We observed a rapid increase in glial fibrillary acidic protein expression in Müller cells and a progressive loss of parvalbumin-labelled ganglion cells. After 60 days of elevated intraocular pressure, calretinin-immunoreactive cell counts declined by 55.4% and 46.4% in the inner nuclear and ganglion cell layers, respectively. However, at all time points examined, the markers of cell death were only observed in the ganglion cell layer, not in the inner nuclear layer. CONCLUSIONS In addition to ganglion cell death and reactive Müller cell changes, chronic experimental elevation of intraocular pressure alters calcium-binding protein immunohistochemistry in amacrine cells. However, these changes are not indicative of amacrine cell loss but may represent early indicators of cellular distress that precede physiological dysfunction or cell death.
Collapse
Affiliation(s)
- David J Gunn
- The University of Queensland, Perinatal Research Centre, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
15
|
Chua J, Fletcher EL, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol 2009; 514:473-91. [PMID: 19350664 DOI: 10.1002/cne.22029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinitis pigmentosa reflects a family of diseases that result in retinal photoreceptor death and functional blindness. The natural course of retinal changes secondary to photoreceptor degeneration involves anatomical remodeling (cell process alterations and soma displacement) and neurochemical remodeling. Anatomical remodeling predominantly occurs late in the disease process and cannot explain the significant visual deficits that occur very early in the disease process. Neurochemical remodeling includes modified glutamate receptor disposition and altered responses secondary to functional activation of glutamate receptors. We investigated the neurochemical remodeling of retinal neurons in the rd/rd (rd1) mouse retina by tracking the functional activation of glutamate receptors with a cation probe, agmatine. We provide evidence that bipolar cells and amacrine cells undergo selective remodeling of glutamate receptors during the early phases of retinal degeneration. These early neurochemical changes in the rd/rd mouse retina include the expression of aberrant functional ionotropic glutamate receptors on the cone ON bipolar cells from postnatal day 15 (P15), poor functional activation of metabotropic glutamate receptors on both rod and cone ON bipolar cells throughout development/degeneration, and poor functional activation of N-methyl-D-aspartate receptors on amacrine cells from P15. Our results suggest that major neurochemical remodeling occurs prior to anatomical remodeling, and likely accounts for the early visual deficits in the rd/rd mouse retina.
Collapse
Affiliation(s)
- Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Private Bag 92010, Auckland, New Zealand
| | | | | |
Collapse
|
16
|
Redenti S, Neeley WL, Rompani S, Saigal S, Yang J, Klassen H, Langer R, Young MJ. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 2009; 30:3405-14. [PMID: 19361860 DOI: 10.1016/j.biomaterials.2009.02.046] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/28/2009] [Indexed: 12/30/2022]
Abstract
Retinal degenerations cause permanent visual loss and affect millions world-wide. Presently, a novel treatment highlights the potential of using biodegradable polymer scaffolds to induce differentiation and deliver retinal progenitor cells for cell replacement therapy. In this study, we engineered and analyzed a micro-fabricated polymer, poly(glycerol sebacate) (PGS) scaffold, whose useful properties include biocompatibility, elasticity, porosity, and a microtopology conducive to mouse retinal progenitor cell (mRPC) differentiation. In vitro proliferation assays revealed that PGS held up to 86,610 (+/-9993) mRPCs per square millimeter, which were retained through simulated transplantations. mRPCs adherent to PGS differentiated toward mature phenotypes as evidenced by changes in mRNA, protein levels, and enhanced sensitivity to glutamate. Transplanted composites demonstrated long-term mRPC survival and migrated cells exhibited mature marker expression in host retina. These results suggest that combining mRPCs with PGS scaffolds for subretinal transplantation is a practical strategy for advancing retinal tissue engineering as a restorative therapy.
Collapse
Affiliation(s)
- Stephen Redenti
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hu RG, Lim J, Donaldson PJ, Kalloniatis M. Characterization of the cystine/glutamate transporter in the outer plexiform layer of the vertebrate retina. Eur J Neurosci 2008; 28:1491-502. [DOI: 10.1111/j.1460-9568.2008.06435.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sun D, Bui BV, Vingrys AJ, Kalloniatis M. Alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion in the rat retina. J Comp Neurol 2008; 505:131-46. [PMID: 17729268 DOI: 10.1002/cne.21470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies of retinal ischemia/reperfusion indicate a disparity between the anatomical and functional results; while a large number of rod bipolar cells remain postischemia, there is a significant reduction in the amplitude of the scotopic b-wave of the electroretinogram (ERG). We investigated the alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion and suggest a mechanism for the decrease in b-wave amplitude. A cation channel probe (agmatine, 1-amino-4-guanidobutane, AGB) was used to assess cellular ion channel activity in neurochemically identified cells secondary to endogenous glutamate release or pharmacological manipulations. By applying the "neurochemical truth point" principle (Sun et al. [2007a] J Comp Neurol, this issue), we have been able to confirm the loss of specific subpopulations of neurons. ERG was used to assess gross retinal function, with parameters of the ERG model providing insight into changes in the phototransduction cascade and sensitivity of postreceptoral glutamate receptors. Following ischemia/reperfusion, rod bipolar cells maintained 2-amino-4-phosphonobutyric acid-responsive metabotropic glutamate receptors and displayed no change in sensitivity to flashes of light as assessed by ERG. Therefore, the loss in b-wave amplitude is likely due to alterations in photoreceptoral glutamate release detected as a change in postsynaptic AGB permeation into rod bipolar cells. Bipolar cell to amacrine cell signaling was also altered. The robust AGB entry into cholinergic amacrine cells was virtually absent in retinas that had undergone ischemia/reperfusion but remained in the AII amacrine cells. Such results suggest a loss of glutamate receptors and/or a change in receptor subunit expression in subpopulations of inner retinal neurons. Although many cells retain their characteristic neurochemical labeling following ischemia/reperfusion, caution should be used when assuming cells participate in functional retinal circuits based solely on the persistence of neurochemical labeling.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
19
|
Yu TY, Acosta ML, Ready S, Cheong YL, Kalloniatis M. Light exposure causes functional changes in the retina: increased photoreceptor cation channel permeability, photoreceptor apoptosis, and altered retinal metabolic function. J Neurochem 2007; 103:714-24. [PMID: 17623037 DOI: 10.1111/j.1471-4159.2007.04766.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Light exposure induces retinal photoreceptor degeneration and retinal remodeling in both the normal rat retina and in animal models of retinal degeneration. Although cation entry is one of the triggers leading to apoptosis, it is unclear if this event occurs in isolation, or whether a number of pathways lead to photoreceptor apoptosis following light exposure. Following light exposure, we investigated the characteristics of cation entry, apoptotic markers [using terminal deoxynucleotidyl transferase (EC 2.7.7.31) dUTP nick-end labeling (TUNEL) labeling] and metabolic properties of retina from Sprague-Dawley (SD) rats and a rat model of retinitis pigmentosa [proline-23-histidine (P23H) rat]. Assessment of cation channel permeability using agmatine (AGB) labeling showed that excessive cation gating accompanied the series of anomalies that occur prior to photoreceptor loss. Increased AGB labeling in photoreceptors was seen in parallel with the appearance of apoptotic photoreceptors detected by TUNEL labeling with only a smaller proportion of cells colocalizing both markers. However, SD and P23H retinal photoreceptors differed in the amounts and colocalization of AGB gating and TUNEL labeling as a function of light exposure. Finally, reduced retinal lactate dehydrogenase levels were found in SD and P23H rat retinas after a 24-h light exposure period. Short-term (2 h) exposure of the P23H rat retina caused an increase in lactate dehydrogenase activity suggesting increased metabolic demand. These results suggest that energy availability may be exacerbated during the early stages of light exposure in susceptible retinas. Also, the concomitant observation of increased ion gating and TUNEL labeling suggest the existence of at least two possible mechanisms in light-damaged retinas in both SD and the P23H rat retina.
Collapse
Affiliation(s)
- Tzu-Ying Yu
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
20
|
Catalani E, Cervia D, Martini D, Bagnoli P, Simonetti E, Timperio AM, Casini G. Changes in neuronal response to ischemia in retinas with genetic alterations of somatostatin receptor expression. Eur J Neurosci 2007; 25:1447-59. [PMID: 17425570 DOI: 10.1111/j.1460-9568.2007.05419.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ischemia is a primary cause of neuronal death in retinal diseases. The repertoire of expressed transmitter receptors would determine the neurons' responses to ischemic damage, and peptidergic receptors may be involved. With a new in vitro model of the ischemic mouse retina, we investigated whether an altered expression of somatostatin receptors could modulate retinal responses to ischemia. We used retinas of somatostatin receptor 1 (sst(1)) knock out (KO) mice, where sst(2) are over-expressed and over-functional, and of sst(2) KO mice. TUNEL analysis of ischemic retinas showed a marked reduction of cell death in sst(1) KO retinas, while there were no differences between wild-type (WT) and sst(2) KO retinas. In addition, caspase-3 mRNA expression was also reduced in sst(1) KO as compared to WT retinas. An immunohistochemical analysis demonstrated that different cell populations responded differently to the ischemic insult, and that the persistence of some immunohistochemical markers was greater in sst(1) KO than in WT or in sst(2) KO retinas. In particular, rod bipolar cell survival was markedly improved in sst(1) KO retinas, while it was dramatically decreased in sst(2) KO retinas. Furthermore, consistent with a role of glutamate excitotoxicity in ischemia-induced neuronal death, retinal glutamate release was observed to increase under ischemic conditions, but this increase was significantly reduced in sst(1) KO retinas. These observations demonstrate that an increased presence of functional sst(2) protects against retinal ischemia, thus implementing the background for the use of sst(2) analogs in therapies of retinal diseases such as glaucoma or diabetic retinopathy.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Dipartimento di Scienze Ambientali, Università della Tuscia, Largo dell'Università snc, Blocco D, 01100 Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Acosta ML, Bumsted O'Brien KM, Tan SS, Kalloniatis M. Emergence of cellular markers and functional ionotropic glutamate receptors on tangentially dispersed cells in the developing mouse retina. J Comp Neurol 2007; 506:506-23. [DOI: 10.1002/cne.21561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Sun D, Vingrys AJ, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol 2007; 505:92-113. [PMID: 17729258 DOI: 10.1002/cne.21478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We established a metabolic and functional profile map of the normal rat retina, given the premise that: 1) amino acid neurochemistry reflects metabolic integrity and cellular identity, and 2) the permeation of a cation channel probe, agmatine (1-amino-4-guanidobutane, AGB), reflects cation channel functionality. The purpose was to provide a unique method of simultaneously assessing the metabolic and functional characteristics of the normal retina, upon which a comparison can be made to disease models. Quantitative pattern recognition analysis of overlapping amino acid and AGB expression profiles was used to provide a statistically robust classification of all neural elements according to their metabolic and functional characteristics. This classification was spatially complete and with single-cell resolution. The resulting classification demonstrated 28 statistically separable theme classes dominated by characteristic glutamate, GABA, glycine, and/or taurine profiles, with each of the neuronal theme classes containing further subtypes. The inclusion of a functional parameter (AGB mapping) in the classification process nearly doubled the number of neural elements that could be ascribed a neurochemical/cation profile, compared to when amino acid labeling was used alone. Strong endogenous glutamate gated AGB labeling was observed in horizontal cells, rod bipolar cells, cholinergic amacrine cells, and AII amacrine cells. The resulting amino acid and AGB profile matrix constitutes a nomogram for assessing cellular responses to experimental challenges in models of ocular disease.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | |
Collapse
|
23
|
Acosta ML, Chua J, Kalloniatis M. Functional activation of glutamate ionotropic receptors in the developing mouse retina. J Comp Neurol 2006; 500:923-41. [PMID: 17177257 DOI: 10.1002/cne.21225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ionotropic glutamate receptors have been associated with early development of the visual process by regulating cell differentiation, cell motility, and synaptic contacts. We determined the expression of functional ionotropic glutamate receptors during development of the mouse retina by assessing 1-amino-4-guanidobutane (agmatine; AGB) immunolabelling after application of a range of glutamate analogs. Colocalization of AGB with calretinin and islet-1 allowed the identification of functional receptors in neurochemically defined neurons. Activation with kainate (KA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA) resulted in AGB entry into neurons consistent with that found previous receptor subunit localization studies in the developing retina. Temporal analysis revealed that application of 50 microM KA activated receptors as early as embryonic day 18 in the ventricular zone and in the ganglion cell layer, whereas 30 muM AMPA activated cells predominantly in the ganglion cell layer. Cholinergic amacrine cells showed functional KA and AMPA receptors upon their insertion into the conventional amacrine cell layer from postnatal day 1 (P1). OFF cone bipolar cells showed functional KA receptors from P6, at a developmental age when they are known to make contact with ganglion cells. NMDA activation led to diffuse AGB labeling at birth among cells in the ganglion cell layer, whereas, at P1, regularly spaced cholinergic amacrine cells in the conventional amacrine cell layer started to be responsive to NMDA. Non-NMDA receptors were first to show functional activation in the developing retina, and cholinergic amacrine cells displayed functional ionotropic glutamate receptors after reaching their final destination.
Collapse
Affiliation(s)
- Monica L Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|