1
|
Moser AY, Brown WY, Bizo LA, Andrew NR, Taylor MK. Biosecurity Dogs Detect Live Insects after Training with Odor-Proxy Training Aids: Scent Extract and Dead Specimens. Chem Senses 2021; 45:179-186. [PMID: 31919506 DOI: 10.1093/chemse/bjaa001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detector dogs could be trained to find invasive insect pests at borders before they establish in new areas. However, without access to the live insects themselves, odor training aids are needed to condition dogs to their scent. This proof-of-concept study assessed 2 potential training aids for insect detection: a scent extract and dead specimens of the target species. Using Musgraveia sulciventris (Hemiptera: Tessaratomidae) as an experimental model, gas chromatography-mass spectrometry (GC-MS) analyses were carried out to compare the chemical headspaces that make up the odors of live specimens and these 2 training aids. This was then followed by canine scent-detection testing to investigate biosecurity detector dogs' (n = 4) responses to training in an ecologically valid context. Both the scent extract and the dead specimens shared the majority of their volatile organic compounds (VOCs) with live insects. Of the dogs trained with scent extract (n = 2), both were able to detect the live insects accurately, and of those trained with dead specimens (n = 2), one detected the live insects accurately. These findings lend support for these training aids as odor-proxies for live insects-particularly scent extract, which is a relatively novel product with the potential for broad application to facilitate and improve insect-detection training.
Collapse
Affiliation(s)
- Ariella Y Moser
- Canine and Equine Research Group, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Wendy Y Brown
- Canine and Equine Research Group, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Lewis A Bizo
- School of Psychology, University of New England, Armidale, NSW, Australia
| | - Nigel R Andrew
- Insect Ecology Lab, Zoology, University of New England, Armidale, NSW, Australia
| | - Michelle K Taylor
- Chemistry, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
2
|
Yoder WM, Gaynor LS, Burke SN, Setlow B, Smith DW, Bizon JL. Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning. Neurobiol Aging 2017; 53:122-137. [PMID: 28259065 DOI: 10.1016/j.neurobiolaging.2017.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 11/28/2022]
Abstract
Emerging evidence suggests that aging is associated with a reduced ability to distinguish perceptually similar stimuli in one's environment. As the ability to accurately perceive and encode sensory information is foundational for explicit memory, understanding the neurobiological underpinnings of discrimination impairments that emerge with advancing age could help elucidate the mechanisms of mnemonic decline. To this end, there is a need for preclinical approaches that robustly and reliably model age-associated perceptual discrimination deficits. Taking advantage of rodents' exceptional olfactory abilities, the present study applied rigorous psychophysical techniques to the evaluation of discrimination learning in young and aged F344 rats. Aging did not influence odor detection thresholds or the ability to discriminate between perceptually distinct odorants. In contrast, aged rats were disproportionately impaired relative to young on problems that required discriminations between perceptually similar olfactory stimuli. Importantly, these disproportionate impairments in discrimination learning did not simply reflect a global learning impairment in aged rats, as they performed other types of difficult discriminations on par with young rats. Among aged rats, discrimination deficits were strongly associated with spatial learning deficits. These findings reveal a new, sensitive behavioral approach for elucidating the neural mechanisms of cognitive decline associated with normal aging.
Collapse
Affiliation(s)
- Wendy M Yoder
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Leslie S Gaynor
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - David W Smith
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
4
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
5
|
Falasconi M, Gutierrez-Galvez A, Leon M, Johnson BA, Marco S. Cluster analysis of rat olfactory bulb responses to diverse odorants. Chem Senses 2012; 37:639-53. [PMID: 22459165 DOI: 10.1093/chemse/bjs045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system.
Collapse
Affiliation(s)
- Matteo Falasconi
- Department of Chemistry and Physics, University of Brescia and CNR-IDASC, Via Valotti 9, 25133 Brescia, Italy
| | | | | | | | | |
Collapse
|
6
|
Objective display and discrimination of floral odors from Amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose. SENSORS 2012; 12:2152-61. [PMID: 22438757 PMCID: PMC3304159 DOI: 10.3390/s120202152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/16/2022]
Abstract
As olfactory perceptions vary from person to person, it is difficult to describe smells objectively. In contrast, electronic noses also detect smells with their sensors, but in addition describe those using electronic signals. Here we showed a virtual connection method between a human nose perceptions and electronic nose responses with the smell of standard gases. In this method, Amorphophallus titanum flowers, which emit a strong carrion smell, could objectively be described using an electronic nose, in a way resembling the skill of sommeliers. We could describe the flower smell to be close to that of a mixture of methyl mercaptan and propionic acid, by calculation of the dilution index from electronic resistances. In other words, the smell resembled that of "decayed cabbage, garlic and pungent sour" with possible descriptors. Additionally, we compared the smells of flowers which bloomed on different dates and at different locations and showed the similarity of odor intensities visually, in standard gas categories. We anticipate our assay to be a starting point for a perceptive connection between our noses and electronic noses.
Collapse
|
7
|
Bautze V, Bär R, Fissler B, Trapp M, Schmidt D, Beifuss U, Bufe B, Zufall F, Breer H, Strotmann J. Mammalian-Specific OR37 Receptors Are Differentially Activated by Distinct Odorous Fatty Aldehydes. Chem Senses 2012; 37:479-93. [DOI: 10.1093/chemse/bjr130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Abaffy T, Defazio AR. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility. BMC Res Notes 2011; 4:137. [PMID: 21548958 PMCID: PMC3118157 DOI: 10.1186/1756-0500-4-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/06/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. FINDINGS Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. CONCLUSIONS No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1600 NW 10thAve, Miami, 33136, Fl, USA.
| | | |
Collapse
|
9
|
Johnson BA, Woo CC, Zeng Y, Xu Z, Hingco EE, Ong J, Leon M. Prolonged stimulus exposure reveals prolonged neurobehavioral response patterns. J Comp Neurol 2010; 518:1617-29. [PMID: 20232477 DOI: 10.1002/cne.22299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although it has been shown repeatedly that minimum response times in sensory systems can be quite short, organisms more often continue to respond to sensory stimuli over considerably longer periods of time. The continuing response to sensory stimulation may be a more realistic assessment of natural sensory responses, so we determined for how long a stimulus would evoke a response in naïve, freely moving animals. Specifically, we determined for how long such rats responded to odorants during continuous passive exposures by monitoring their sniffing with whole-body plethysmography. We found that naïve rats continue to sniff odorants vigorously for up to 3 minutes, much longer than what has been reported for highly trained, highly motivated rats. Patterns of 2-deoxyglucose (2-DG) uptake in the glomerular layer of the rat olfactory bulb also were seen after only 1-5 minutes of odorant exposure, overlapping with the period of increased respiration to odorants. Moreover, these 2-DG uptake patterns closely resembled the patterns that emerge from prolonged odorant exposures, suggesting that activity mapping over prolonged periods can identify areas of activity that are present when rats are still attending and responding to odorant stimuli. Given these findings, it seems important to consider the possibility that prolonged exposure to other sensory stimuli will reveal more realistic neural response patterns.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Leon M, Johnson BA. Is there a space-time continuum in olfaction? Cell Mol Life Sci 2009; 66:2135-50. [PMID: 19294334 PMCID: PMC2705728 DOI: 10.1007/s00018-009-0011-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/18/2009] [Accepted: 02/23/2009] [Indexed: 11/22/2022]
Abstract
The coding of olfactory stimuli across a wide range of organisms may rely on fundamentally similar mechanisms in which a complement of specific odorant receptors on olfactory sensory neurons respond differentially to airborne chemicals to initiate the process by which specific odors are perceived. The question that we address in this review is the role of specific neurons in mediating this sensory system--an identity code--relative to the role that temporally specific responses across many neurons play in producing an olfactory perception--a temporal code. While information coded in specific neurons may be converted into a temporal code, it is also possible that temporal codes exist in the absence of response specificity for any particular neuron or subset of neurons. We review the data supporting these ideas, and we discuss the research perspectives that could help to reveal the mechanisms by which odorants become perceptions.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
11
|
Johnson BA, Xu Z, Ali SS, Leon M. Spatial representations of odorants in olfactory bulbs of rats and mice: similarities and differences in chemotopic organization. J Comp Neurol 2009; 514:658-73. [PMID: 19363812 PMCID: PMC4429802 DOI: 10.1002/cne.22046] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous studies, we mapped glomerular layer 2-deoxyglucose uptake evoked by hundreds of both systematically related and chemically distinct odorants in rat olfactory bulbs. To determine which principles of chemotopic organization revealed in these studies may be more fundamental and which may be more species typical, we now have characterized patterns of responses to 30 of these odorants in mice. We found that only a few odorants evoked their multiple foci of peak activity in exactly the same locations in the two species. In mice, as in rats, odorants that shared molecular features evoked overlapping patterns, but the locations of the feature-responsive domains often differed in rats and mice. In rats, increasing carbon number within a homologous series of aliphatic odorants is generally associated with rostral and ventral progressions of activity within domains responding to odorant functional group and/or hydrocarbon backbone. Such chemotopic progressions were not obvious in mice, which instead showed more abrupt differences in activated glomeruli within the domains for odorants differing by a single methylene group. Despite the differences, quantitative relationships between overall uptake patterns exhibited a similar organization with respect to odorant chemistry for the two species, probably as a result of partial overlaps of peak domains and more extensive overlaps in large, low-activity areas for rats and mice. We conclude that clustering responses to shared odorant features may be a general strategy for odor coding but that the specific locations of high-activity domains may be unique to a species.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
Systematic mapping studies involving 365 odorant chemicals have shown that glomerular responses in the rat olfactory bulb are organized spatially in patterns that are related to the chemistry of the odorant stimuli. This organization involves the spatial clustering of principal responses to numerous odorants that share key aspects of chemistry such as functional groups, hydrocarbon structural elements, and/or overall molecular properties related to water solubility. In several of the clusters, responses shift progressively in position according to odorant carbon chain length. These response domains appear to be constructed from orderly projections of sensory neurons in the olfactory epithelium and may also involve chromatography across the nasal mucosa. The spatial clustering of glomerular responses may serve to "tune" the principal responses of bulbar projection neurons by way of inhibitory interneuronal networks, allowing the projection neurons to respond to a narrower range of stimuli than their associated sensory neurons. When glomerular activity patterns are viewed relative to the overall level of glomerular activation, the patterns accurately predict the perception of odor quality, thereby supporting the notion that spatial patterns of activity are the key factors underlying that aspect of the olfactory code. A critical analysis suggests that alternative coding mechanisms for odor quality, such as those based on temporal patterns of responses, enjoy little experimental support.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
13
|
Finger TE. Editor's remarks: Chemotopic odorant coding in a mammalian olfactory system, Johnson et al., J Comp Neurol 503:1–34. J Comp Neurol 2007. [DOI: 10.1002/cne.21437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Johnson BA, Arguello S, Leon M. Odorants with multiple oxygen-containing functional groups and other odorants with high water solubility preferentially activate posterior olfactory bulb glomeruli. J Comp Neurol 2007; 502:468-82. [PMID: 17366613 PMCID: PMC2219924 DOI: 10.1002/cne.21322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In past studies in which we mapped 2-deoxyglucose uptake evoked by systematically different odorant chemicals across the entire rat olfactory bulb, glomerular responses could be related to each odorant's particular oxygen-containing functional group. In the present study we tested whether aliphatic odorants containing two such functional groups (esters, ketones, acids, alcohols, and ethers) would stimulate the combination of glomerular regions that are associated with each of the functional groups separately, or whether they would evoke unique responses in different regions of the bulb. We found that these very highly water-soluble molecules rarely evoked activity in the regions responding to the individual functional groups; instead, they activated posterior glomeruli located about halfway between the dorsal and ventral extremes in both the lateral and the medial aspects of the bulb. Additional highly water-soluble odorants, including very small molecules with single oxygenic groups, also strongly stimulated these posterior regions, resulting in a statistically significant correlation between posterior 2-deoxyglucose uptake and molecular properties associated with water solubility. By showing that highly water-soluble odorants stimulate a part of the bulb associated with peripheral and ventral regions of the epithelium, our results challenge a prevalent notion that such odorants would activate class I odorant receptors located in zone 1 of the olfactory epithelium, which projects to the dorsal aspect of the bulb.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | |
Collapse
|
15
|
Scott JW, Acevedo HP, Sherrill L, Phan M. Responses of the rat olfactory epithelium to retronasal air flow. J Neurophysiol 2007; 97:1941-50. [PMID: 17215498 PMCID: PMC2225990 DOI: 10.1152/jn.01305.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very nonpolar, hydrophobic odorants were used. Although the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the nonpolar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recordings from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally versus retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes.
Collapse
Affiliation(s)
- John W Scott
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
16
|
Johnson BA, Ong J, Lee K, Ho SL, Arguello S, Leon M. Effects of double and triple bonds on the spatial representations of odorants in the rat olfactory bulb. J Comp Neurol 2007; 500:720-33. [PMID: 17154254 PMCID: PMC2219952 DOI: 10.1002/cne.21198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many naturally occurring volatile chemicals that are detected through the sense of smell contain unsaturated (double or triple) carbon-carbon bonds. These bonds can affect odors perceived by humans, yet in a prior study of unsaturated hydrocarbons we found only very minor effects of unsaturated bonds. In the present study, we tested the possibility that unsaturated bonds affect the recognition of oxygen-containing functional groups, because humans perceive odor differences between such molecules. We therefore compared spatial activity patterns across the entire glomerular layer of the rat olfactory bulb evoked by oxygen-containing odorants differing systematically in the presence, position, number, and stereochemistry of unsaturated bonds. We quantified activity patterns by mapping [(14)C]2-deoxyglucose uptake into anatomically standardized data matrices, which we compared statistically. We found that the presence and number of unsaturated bonds consistently affected activity patterns, with the largest effect related to the presence of a triple bond. Effects of bond saturation included a loss of activity in glomeruli strongly activated by the corresponding saturated odorants and/or the presence of activity in areas not stimulated by the corresponding saturated compounds. The position of double bonds also affected patterns of activity, but cis vs. trans configuration had no measurable impact in all five sets of stereoisomers that we studied. These results simultaneously indicate the importance of interactions between carbon-carbon bond types and functional groups in the neural coding of odorant chemical information and highlight the emerging concept that the rat olfactory system is more sensitive to certain types of chemical differences than others.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Youngentob SL, Johnson BA, Leon M, Sheehe PR, Kent PF. Predicting odorant quality perceptions from multidimensional scaling of olfactory bulb glomerular activity patterns. Behav Neurosci 2006; 120:1337-45. [PMID: 17201479 PMCID: PMC2222860 DOI: 10.1037/0735-7044.120.6.1337] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Odorants and their perceptions differ along multiple dimensions, requiring that a critical examination of any putative neural code directly assess the multidimensional nature of the encoding process. Previous work has examined simple, systematic odorant differences that, regardless of coding strategy, would be expected to produce simple, systematic predictions in neural and behavioral responses. In the present study, an odorant identification confusion matrix task that extracts precise quality relationships across odorants was used to determine whether spatially specific glomerular activity patterns predict perceptual quality relationships for odorants that cannot easily be classified a priori along a single chemical dimension. Multidimensional scaling (MDS) analysis of odorant pattern similarity measures derived from the comparison of [14C]-2-deoxyglucose glomerular activity pattern data yielded a two-dimensional odorant activity space that was highly significantly predictive of similarly obtained odorant perceptual spaces, uniformly across animals. These results strongly support the relevance of global spatial patterns in the olfactory bulb to the encoding of odor quality.
Collapse
Affiliation(s)
- Steven L Youngentob
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
18
|
Ho SL, Johnson BA, Chen AL, Leon M. Differential responses to branched and unsaturated aliphatic hydrocarbons in the rat olfactory system. J Comp Neurol 2006; 499:519-32. [PMID: 17029262 PMCID: PMC2214840 DOI: 10.1002/cne.21139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an effort to understand mammalian olfactory processing, we have been describing the responses to systematically different odorants in the glomerular layer of the main olfactory bulb of rats. Previously, we demonstrated chemotopically organized and distinct olfactory responses to a homologous series of straight-chained alkanes that consisted of purely hydrocarbon structures, indicating that hydrocarbon chains could serve as molecular features in the combinatorial coding of odorant information. To better understand the processing of hydrocarbon odorants, we now have examined responses to other types of chemical changes in these kinds of molecules, namely, branching and carbon-carbon bond saturation. To this end, we used the [14C]2-deoxyglucose method to determine glomerular responses to a group of eight-carbon branched alkane isomers, unsaturated octenes (double-bonded), and octynes (triple-bonded). In contrast to the differential responses we observed previously for straight-chained alkanes of differing carbon number, the rat olfactory system was not particularly sensitive to these variations in branching and bond saturation. This result was unexpected, given the distinct molecular conformations and property profiles of the odorants. The similarity in activity patterns was paralleled by a similarity in spontaneous perceptual responses measured using a habituation assay. These results demonstrate again the functional relationship between bulbar activity patterns and odor perception. The results further suggest that the olfactory system does not respond equally to all aspects of odorant chemistry, functioning as a specific, rather than a general, chemical analysis system.
Collapse
Affiliation(s)
- Sabrina L Ho
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA.
| | | | | | | |
Collapse
|
19
|
Johnson BA, Xu Z, Pancoast P, Kwok J, Ong J, Leon M. Differential specificity in the glomerular response profiles for alicyclic, bicyclic, and heterocyclic odorants. J Comp Neurol 2006; 499:1-16. [PMID: 16958095 PMCID: PMC2214841 DOI: 10.1002/cne.21093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As part of our ongoing effort to relate stimulus to response in the olfactory system, we tested the hypothesis that the unique chemical structures and odors of various cyclic odorants would be associated with unique spatial response patterns in the glomerular layer of the rat olfactory bulb. To this end, rats were exposed to sets of odorants, including monocyclic hydrocarbons, bicyclic compounds, and various heterocyclic structures containing oxygen or nitrogen in the ring. Relative activity across the entire layer was assessed by mapping uptake of 2-deoxyglucose into anatomically standardized data matrices. Whereas monocyclic hydrocarbons evoked patterns similar to those evoked by open-chained hydrocarbon odorants, a set of bicyclic compounds with structures and odors similar to camphor evoked uptake in paired ventral domains not previously associated with any other odorant chemical structures. Despite their unique odors as judged by humans, heterocyclic odorants either evoked uptake in previously characterized areas corresponding to their functional groups or stimulated weak or patchy patterns involving isolated glomeruli. Although the patchiness of the patterns may be partially related to the rigidity of the compounds, which would be expected to restrict their interactions to only a few receptors, the weakness of the patterns suggests the possibility of species-specific odorant representations. We conclude that, whereas some of the novel cyclic structures indeed were represented by unique patterns in the rat bulb, other unique structures were poorly represented, even when they evoked intense and unique odors in humans.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Farahbod H, Johnson BA, Minami SS, Leon M. Chemotopic representations of aromatic odorants in the rat olfactory bulb. J Comp Neurol 2006; 497:350-66. [PMID: 16736464 PMCID: PMC2224900 DOI: 10.1002/cne.20982] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our laboratory has characterized spatial patterns of evoked neural activity across the entire glomerular layer of the rat olfactory bulb using primarily aliphatic odorants that differ systematically in functional groups and hydrocarbon structures. To represent more fully the true range of odorant chemistry, we investigated aromatic compounds, which have a more rigid molecular structure than most aliphatic compounds and are particularly salient olfactory stimuli for humans. We first investigated glomerular patterns of 2-deoxyglucose uptake in response to aromatic compounds that differ in the nature and position of their functional groups (e.g., xylenes, trimethylbenzenes, tolualdehydes, benzaldehydes, methyl toluates, and anisaldehydes). We also studied the effects of systematic increases in the number and length of alkyl substituents. We found that most aromatic compounds activated glomeruli in the dorsal part of the bulb. Within this general area, aromatic odorants with oxygen-containing substituents favored activation of more rostral regions, and aromatic hydrocarbons activated more posterior regions. The nature of substituents greatly affected the pattern of glomerular activation, whereas isomers differing in substitution position evoked very similar overall patterns. These relationships between the structure of aromatic compounds and their spatial representation in the bulb are contrasted with our previous findings with aliphatic odorants.
Collapse
Affiliation(s)
- Haleh Farahbod
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | |
Collapse
|