1
|
Tsoi SC, Barrientos AC, Vicario DS, Phan ML, Pytte CL. Daily high doses of atorvastatin alter neuronal morphology in a juvenile songbird model. PLoS One 2025; 20:e0314690. [PMID: 40294005 PMCID: PMC12036933 DOI: 10.1371/journal.pone.0314690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/11/2024] [Indexed: 04/30/2025] Open
Abstract
Statins are highly effective and widely prescribed cholesterol lowering drugs. However, statins cross the blood-brain barrier and decrease neural cholesterol in animal models, raising concern that long-term statin use may impact cholesterol-dependent structures and functions in the brain. Cholesterol is a fundamental component of cell membranes and experimentally decreasing membrane cholesterol has been shown to alter cell morphology in vitro. In addition, brain regions that undergo adult neurogenesis rely on local brain cholesterol for the manufacture of new neuronal membranes. Thus neurogenesis may be particularly vulnerable to long-term statin use. Here we asked whether oral statin treatment impacts neurogenesis in juveniles, either by decreasing numbers of new cells formed or altering the structure of new neurons. The use of statins in children and adolescents has received less attention than in older adults, with few studies on potential unintended effects in young brains. We examined neurons in the juvenile zebra finch songbird in telencephalic regions that function in song perception and memory (caudomedial nidopallium, NCM) and song production (HVC). Birds received either 40 mg/kg of atorvastatin in water or water vehicle once daily for 2-3 months until they reached adulthood. We labeled newborn cells using systemic injections of bromodeoxyuridine (BrdU) and quantified cells double-labeled with antibodies for BrdU and the neuron-specific protein Hu 30-32 days post mitosis. We also quantified a younger cohort of new neurons in the same birds using antibody to the neuronal protein doublecortin (DCX). We then compared numbers of new neurons and soma morphology of BrdU + /Hu+ neurons between statin-treated and control birds. We did not find an effect of statins on the density of newly formed neurons in either brain region, suggesting that statin treatment did not impact neurogenesis or young neuron survival in our paradigm. However, we found that neuronal soma morphology differed significantly between statin-treated and control birds. Somata of BrdU + /Hu+ (30-32 day old) neurons were flatter and had more furrowed contours in statin-treated birds relative to controls. In a larger, heterogeneous cohort of non-birthdated BrdU-/Hu+ neurons, largely born prior to statin treatment, somata were smaller in statin-treated birds than in controls. Our findings indicate that atorvastatin may affect neural cytoarchitecture in both newly formed and mature neurons, perhaps as a consequence of decreased cholesterol availability in the brain.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Alicia C. Barrientos
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Mimi L. Phan
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, Flushing, New York, United States of America
| |
Collapse
|
2
|
Hozhabri E, Corredera Asensio A, Elmaleh M, Kim JW, Phillips MB, Frazel PW, Dimidschstein J, Fishell G, Long MA. Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain. Neuron 2025; 113:460-470.e7. [PMID: 39644901 PMCID: PMC11802303 DOI: 10.1016/j.neuron.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Inhibitory interneurons are highly heterogeneous circuit elements often characterized by cell biological properties, but how these factors relate to specific roles underlying complex behavior remains poorly understood. Using chronic silicon probe recordings, we demonstrate that distinct interneuron groups perform different inhibitory roles within HVC, a song production circuit in the zebra finch forebrain. To link these functional subtypes to molecular identity, we performed two-photon targeted electrophysiological recordings of HVC interneurons followed by post hoc immunohistochemistry of subtype-specific markers. We find that parvalbumin-expressing interneurons are highly modulated by sensory input and likely mediate auditory gating, whereas a more heterogeneous set of somatostatin-expressing interneurons can strongly regulate activity based on arousal. Using this strategy, we uncover important cell-type-specific network functions in the context of an ethologically relevant motor skill.
Collapse
Affiliation(s)
- Ellie Hozhabri
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Jeong Woo Kim
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Matthew B Phillips
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul W Frazel
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gord Fishell
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Bistere L, Gomez-Guzman CM, Xiong Y, Vallentin D. Female calls promote song learning in male juvenile zebra finches. Nat Commun 2024; 15:8938. [PMID: 39414810 PMCID: PMC11484889 DOI: 10.1038/s41467-024-53251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Social interactions promote vocal learning, but the impact of social feedback on this process and its neural circuitry is not well understood. We studied song imitation in juvenile male zebra finches raised either in the presence or absence of adult females. Juveniles learned songs more accurately with a female present, suggesting her presence improves imitation. When female calls correlated with practice, tutees' songs better resembled the tutor's, hinting toward the possibility that females provide practice-specific vocalizations. Intracellular recordings of HVC projection neurons revealed that a subset of these neurons in both juveniles and adults is sensitive to female calls during listening, suggesting a consistent neural mechanism for processing important vocalizations, regardless of age. However, call-related neural responses during singing were observed only in juveniles. These findings highlight how vocalizations, beyond those of the tutor, influence the neural circuits for vocal learning and production.
Collapse
Affiliation(s)
- Linda Bistere
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | | | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
4
|
Leitão A, Gahr M. Babbling opens the sensory phase for imitative vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2312323121. [PMID: 38621117 PMCID: PMC11067029 DOI: 10.1073/pnas.2312323121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/07/2024] [Indexed: 04/17/2024] Open
Abstract
Zebra finches, a species of songbirds, learn to sing by creating an auditory template through the memorization of model songs (sensory learning phase) and subsequently translating these perceptual memories into motor skills (sensorimotor learning phase). It has been traditionally believed that babbling in juvenile birds initiates the sensorimotor phase while the sensory phase of song learning precedes the onset of babbling. However, our findings challenge this notion by demonstrating that testosterone-induced premature babbling actually triggers the onset of the sensory learning phase instead. We reveal that juvenile birds must engage in babbling and self-listening to acquire the tutor song as the template. Notably, the sensory learning of the template in songbirds requires motor vocal activity, reflecting the observation that prelinguistic babbling in humans plays a crucial role in auditory learning for language acquisition.
Collapse
Affiliation(s)
- Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| |
Collapse
|
5
|
Chiver I, Dos Santos EB, Valle S, Lallemand F, Cornil CA, Ball GF, Balthazart J. Effects of the depletion of neural progenitors by focal X-ray irradiation on song production and perception in canaries. Sci Rep 2023; 13:9010. [PMID: 37268657 PMCID: PMC10238387 DOI: 10.1038/s41598-023-36089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
The song control nucleus HVC of songbirds has emerged as a widespread model system to study adult neurogenesis and the factors that modulate the incorporation of new neurons, including seasonal state, sex differences or sex steroid hormone concentrations. However, the specific function of these new neurons born in adulthood remains poorly understood. We implemented a new procedure based on focal X-ray irradiation to deplete neural progenitors in the ventricular zone adjacent to HVC and study the functional consequences. A 23 Gy dose depleted by more than 50 percent the incorporation of BrdU in neural progenitors, a depletion that was confirmed by a significant decrease in doublecortin positive neurons. This depletion of neurogenesis significantly increased the variability of testosterone-induced songs in females and decreased their bandwidth. Expression of the immediate early gene ZENK in secondary auditory areas of the telencephalon that respond to song was also inhibited. These data provide evidence that new neurons in HVC play a role in both song production and perception and that X-ray focal irradiation represents an excellent tool to advance our understanding of adult neurogenesis.
Collapse
Affiliation(s)
- Ioana Chiver
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, 4000, Liège, Belgium
| | - Ednei B Dos Santos
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, 4000, Liège, Belgium
| | - Shelley Valle
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, 4000, Liège, Belgium
| | | | - Charlotte A Cornil
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, 4000, Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, 4000, Liège, Belgium.
| |
Collapse
|
6
|
Moll FW, Kranz D, Corredera Asensio A, Elmaleh M, Ackert-Smith LA, Long MA. Thalamus drives vocal onsets in the zebra finch courtship song. Nature 2023; 616:132-136. [PMID: 36949189 PMCID: PMC11967199 DOI: 10.1038/s41586-023-05818-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.
Collapse
Affiliation(s)
- Felix W Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Devorah Kranz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Lyn A Ackert-Smith
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Fetterman GC, Margoliash D. Rhythmically bursting songbird vocomotor neurons are organized into multiple sequences, suggesting a network/intrinsic properties model encoding song and error, not time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525213. [PMID: 36747673 PMCID: PMC9900798 DOI: 10.1101/2023.01.23.525213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In zebra finch, basal ganglia projecting "HVC X " neurons emit one or more spike bursts during each song motif (canonical sequence of syllables), which are thought to be driven in part by a process of spike rebound excitation. Zebra finch songs are highly stereotyped and recent results indicate that the intrinsic properties of HVC X neurons are similar within each bird, vary among birds depending on similarity of the songs, and vary with song errors. We tested the hypothesis that the timing of spike bursts during singing also evince individual-specific distributions. Examining previously published data, we demonstrated that the intervals between bursts of multibursting HVC X are similar for neurons within each bird, in many cases highly clustered at distinct peaks, with the patterns varying among birds. The fixed delay between bursts and different times when neurons are first recruited in the song yields precisely timed multiple sequences of bursts throughout the song, not the previously envisioned single sequence of bursts treated as events having statistically independent timing. A given moment in time engages multiple sequences and both single bursting and multibursting HVC X simultaneously. This suggests a model where a population of HVC X sharing common intrinsic properties driving spike rebound excitation influence the timing of a given HVC X burst through lateral inhibitory interactions. Perturbations in burst timing, representing error, could propagate in time. Our results extend the concept of central pattern generators to complex vertebrate vocal learning and suggest that network activity (timing of inhibition) and HVC X intrinsic properties become coordinated during developmental birdsong learning.
Collapse
|
8
|
Bloomston NA, Zaharas K, Lawley K, Fenn T, Person E, Huber H, Zhang Z, Prather JF. Exploring links from sensory perception to movement and behavioral motivation in the caudal nidopallium of female songbirds. J Comp Neurol 2022; 530:1622-1633. [PMID: 35073426 PMCID: PMC9119909 DOI: 10.1002/cne.25305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Decision making resides at the interface between sensory perception and movement production. Female songbirds in the context of mate choice are an excellent system to define neural circuits through which sensory perception influences production of courtship behaviors. Previous experiments by our group and others have implicated secondary auditory brain sites, including the caudal nidopallium (NC), in mediating behavioral indicators of mate choice. Here, we used anterograde tracer molecules to define projections that emerge from NC in female songbirds, identifying pathways through which NC influences downstream sites implicated in signal processing and decision making. Our results reveal that NC sends projections into the arcopallium, including the ventral intermediate arcopallium (AIV). Previous work revealed that AIV also receives input from another auditory area implicated in song preference and mate choice (caudal mesopallium, CM), suggesting that convergent input from multiple auditory areas may play important roles in initiating mate choice behaviors. In the present results, NC projects to an area implicated in postural and locomotory control (dorsal arcopallium, Ad), suggesting that NC may play a role in directing those forms of copulatory behavior. NC projections also systematically avoid a vocal motor region of the arcopallium that is innervated by CM (robust nucleus of the arcopallium). These results suggest a model in which both NC and CM project to arcopallial pathways implicated in behavioral motivation. These brain regions may exert different influences on pathways through which auditory information can direct different facets of behavioral responses to information detected in those auditory signals.
Collapse
Affiliation(s)
- Natalie A Bloomston
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Kristina Zaharas
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Koedi Lawley
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Thomas Fenn
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Emily Person
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Holly Huber
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Zhaojie Zhang
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Jonathan F Prather
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
9
|
Elmaleh M, Kranz D, Asensio AC, Moll FW, Long MA. Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron 2021; 109:3851-3861.e4. [PMID: 34626537 DOI: 10.1016/j.neuron.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Neural circuits often exhibit sequences of activity, but the contribution of local networks to their generation remains unclear. In the zebra finch, song-related premotor sequences within HVC may result from some combination of local connectivity and long-range thalamic inputs from nucleus uvaeformis (Uva). Because lesions to either structure abolish song, we examine "sleep replay" using high-density recording methods to reconstruct precise song-related events. Replay activity persists after the upstream nucleus interfacialis of the nidopallium is lesioned and slows when HVC is cooled, demonstrating that HVC provides temporal structure for these events. To further gauge the importance of intra-HVC connectivity for shaping network dynamics, we lesion Uva during sleep and find that residual replay sequences could span syllable boundaries, supporting a model in which HVC can propagate sequences throughout the duration of the song. Our results highlight the power of studying offline activity to investigate behaviorally relevant circuit organization.
Collapse
Affiliation(s)
- Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Devorah Kranz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Felix W Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
10
|
Aronowitz JV, Kirn JR, Pytte CL, Aaron GB. DARPP-32 distinguishes a subset of adult-born neurons in zebra finch HVC. J Comp Neurol 2021; 530:792-803. [PMID: 34545948 DOI: 10.1002/cne.25245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/05/2022]
Abstract
Adult male zebra finches (Taeniopygia guttata) continually incorporate adult-born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity-dependent immediate early genes (e.g., zenk and c-fos) following song production, suggesting that these neurons are active during song production. Half of these adult-born HVC neurons (HVC NNs) can be backfilled from the robust nucleus of the arcopallium (RA) and are a part of the vocal motor pathway underlying learned song production, but the other half do not backfill from RA, and they remain to be characterized. Here, we used cell birth-dating, retrograde tract tracing, and immunofluorescence to demonstrate that half of all HVC NNs express the phosphoprotein DARPP-32, a protein associated with dopamine receptor expression. We also demonstrate that DARPP-32+ HVC NNs are contacted by tyrosine hydroxylase immunoreactive fibers, suggesting that they receive catecholaminergic input, have transiently larger nuclei than DARPP-32-neg HVC NNs, and do not backfill from RA. Taken together, these findings help characterize a group of HVC NNs that have no apparent projections to RA and so far have eluded positive identification other than HVC NN status.
Collapse
Affiliation(s)
- Jake V Aronowitz
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - John R Kirn
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA.,Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, USA
| | - Carolyn L Pytte
- Department of Psychology, Queens College and The Graduate Center, City University of New York, Flushing, New York, USA
| | - Gloster B Aaron
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA.,Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
11
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|
12
|
Egger R, Tupikov Y, Elmaleh M, Katlowitz KA, Benezra SE, Picardo MA, Moll F, Kornfeld J, Jin DZ, Long MA. Local Axonal Conduction Shapes the Spatiotemporal Properties of Neural Sequences. Cell 2021; 183:537-548.e12. [PMID: 33064989 DOI: 10.1016/j.cell.2020.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.
Collapse
Affiliation(s)
- Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Yevhen Tupikov
- Department of Physics and Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Kalman A Katlowitz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam E Benezra
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michel A Picardo
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Felix Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jörgen Kornfeld
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Dezhe Z Jin
- Department of Physics and Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
13
|
Daou A, Margoliash D. Intrinsic plasticity and birdsong learning. Neurobiol Learn Mem 2021; 180:107407. [PMID: 33631346 DOI: 10.1016/j.nlm.2021.107407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Although information processing and storage in the brain is thought to be primarily orchestrated by synaptic plasticity, other neural mechanisms such as intrinsic plasticity are available. While a number of recent studies have described the plasticity of intrinsic excitability in several types of neurons, the significance of non-synaptic mechanisms in memory and learning remains elusive. After reviewing plasticity of intrinsic excitation in relation to learning and homeostatic mechanisms, we focus on the intrinsic properties of a class of basal-ganglia projecting song system neurons in zebra finch, how these related to each bird's unique learned song, how these properties change over development, and how they are maintained dynamically to rapidly change in response to auditory feedback perturbations. We place these results in the broader theme of learning and changes in intrinsic properties, emphasizing the computational implications of this form of plasticity, which are distinct from synaptic plasticity. The results suggest that exploring reciprocal interactions between intrinsic and network properties will be a fruitful avenue for understanding mechanisms of birdsong learning.
Collapse
Affiliation(s)
- Arij Daou
- University of Chicago, United States
| | | |
Collapse
|
14
|
Kersten Y, Friedrich-Müller B, Nieder A. A histological study of the song system of the carrion crow (Corvus corone). J Comp Neurol 2021; 529:2576-2595. [PMID: 33474740 DOI: 10.1002/cne.25112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
The song system of songbirds (oscines) is one of the best studied neuroethological model systems. So far, it has been treated as a relatively constrained sensorimotor system. Songbirds such as crows, however, are also known for their capability to cognitively control their audio-vocal system. Yet, the neuroanatomy of the corvid song system has never been explored systematically. We aim to close this scientific gap by presenting a stereotactic investigation of the extended song system of the carrion crow (Corvus corone), an oscine songbird of the corvid family that has become an interesting model system for cognitive neuroscience. In order to identify and delineate the song nuclei, the ascending auditory nuclei, and the descending vocal-motor nuclei, four stains were applied. In addition to the classical Nissl-, myelin-, and a combination of Nissl-and-myelin staining, staining for tyrosine hydroxylase was used to reveal the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the song system. We show that the crow brain contains the important song-related nuclei, including auditory input and motor output structures, and map them throughout the brain. Fiber-stained sections reveal putative connection patterns between the crow's song nuclei comparable to other songbirds.
Collapse
Affiliation(s)
- Ylva Kersten
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Experience selectively alters functional connectivity within a neural network to predict learned behavior in juvenile songbirds. Neuroimage 2020; 222:117218. [PMID: 32745678 DOI: 10.1016/j.neuroimage.2020.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
One of the central questions of neuroethology is how specialized brain areas communicate to form dynamic networks that support complex cognitive and behavioral processes. Developmental song learning in the male zebra finch songbird (Taeniopygia guttata) provides a unique window into the complex interplay among sensory, sensorimotor, and motor network nodes. The foundation of a young male's song structure is the sensory memory he forms during interactions with an adult "tutor." However, even in the absence of tutoring, juveniles produce a song-like behavior. Thus, by controlling a juvenile male's tutor exposure, we can examine how tutor experience affects distributed neural networks and how network properties predict behavior. Here, we used longitudinal, resting-state fMRI (rs-fMRI) functional connectivity (FC) and song analyses to examine known nodes of the song network, and to allow discovery of additional areas functionally related to song learning. We present three major novel findings. First, tutor deprivation significantly reduced the global FC strength of the caudomedial nidopallium (NCM) subregion of the auditory forebrain required for sensory song learning. Second, tutor deprivation resulted in reduced FC between NCM and cerebellar lobule VI, a region analogous to areas that regulate limbic, social, and language functions in humans. Third, NCM FC strength predicted song stereotypy and mediated the relationship between tutoring and stereotypy, thus completing the link between experience, neural network properties, and complex learned behavior.
Collapse
|
16
|
Kumar S, Mohapatra AN, Pundir AS, Kumari M, Din U, Sharma S, Datta A, Arora V, Iyengar S. Blocking Opioid Receptors in a Songbird Cortical Region Modulates the Acoustic Features and Levels of Female-Directed Singing. Front Neurosci 2020; 14:554094. [PMID: 33071736 PMCID: PMC7533562 DOI: 10.3389/fnins.2020.554094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
The organization of the anterior forebrain pathway (AFP) of songbirds important for context-dependent singing is similar to that of cortical basal ganglia loops (CBG) in mammals, which underlie motor behaviors including vocalization. Since different components of the AFP express high levels of μ-opioid receptors (μ-ORs) as do CBG loops, songbirds act as model systems to study the role of opioid modulation on vocalization and the motivation to sing. The AFP in songbirds includes the cortical/pallial region LMAN (lateral magnocellular nucleus of the anterior nidopallium) which projects to Area X, a nucleus of the avian basal ganglia. In the present study, microdialysis was used to infuse different doses of the opioid antagonist naloxone in LMAN of adult male zebra finches. Whereas all doses of naloxone led to significant decreases in the number of FD (female-directed) songs, only 100 and 200 ng/ml of naloxone affected their acoustic properties. The decrease in FD song was not accompanied by changes in levels of attention toward females or those of neurotransmitters (dopamine, glutamate, and GABA) in LMAN. An earlier study had shown that similar manipulations in Area X did not lead to alterations in the number of FD songs but had significantly greater effects on their acoustic properties. Taken together, our results suggest that there are reciprocal effects of OR modulation on cortical and basal ganglia components of the AFP in songbirds.
Collapse
Affiliation(s)
| | | | | | | | - Uzma Din
- National Brain Research Centre, Manesar, India
| | | | - Atanu Datta
- National Brain Research Centre, Manesar, India
| | - Vasav Arora
- National Brain Research Centre, Manesar, India
| | | |
Collapse
|
17
|
An avian cortical circuit for chunking tutor song syllables into simple vocal-motor units. Nat Commun 2020; 11:5029. [PMID: 33024101 PMCID: PMC7538968 DOI: 10.1038/s41467-020-18732-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
How are brain circuits constructed to achieve complex goals? The brains of young songbirds develop motor circuits that achieve the goal of imitating a specific tutor song to which they are exposed. Here, we set out to examine how song-generating circuits may be influenced early in song learning by a cortical region (NIf) at the interface between auditory and motor systems. Single-unit recordings reveal that, during juvenile babbling, NIf neurons burst at syllable onsets, with some neurons exhibiting selectivity for particular emerging syllable types. When juvenile birds listen to their tutor, NIf neurons are also activated at tutor syllable onsets, and are often selective for particular syllable types. We examine a simple computational model in which tutor exposure imprints the correct number of syllable patterns as ensembles in an interconnected NIf network. These ensembles are then reactivated during singing to train a set of syllable sequences in the motor network. Young songbirds learn to imitate their parents’ songs. Here, the authors find that, in baby birds, neurons in a brain region at the interface of auditory and motor circuits signal the onsets of song syllables during both tutoring and babbling, suggesting a specific neural mechanism for vocal imitation.
Collapse
|
18
|
Yip PK, Schmitzberger M, Al-Hasan M, George J, Tripoliti E, Michael-Titus AT, Clayton D, Priestley JV. Serotonin Expression in the Song Circuitry of Adult Male Zebra Finches. Neuroscience 2020; 444:170-182. [PMID: 32590039 DOI: 10.1016/j.neuroscience.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
Serotonin is an important neurotransmitter of the brain, but its role in song control remains to be fully demonstrated. Using male zebra finches (Taeniopygia guttata) that have song learning and production capabilities, we analysed the serotonin expression levels in the song nuclei and adjacent areas (peri-song nuclei) using immunohistochemistry. Key song nuclei were identified using combinations of Hoechst, choline acetyltransferase, and a neurofilament (NN18) marker in reference to the ZEBrA atlas. Mean serotonin expression was highest in interfacial nucleus (Nif) and lower in the other song nuclei in the following order (in order of highest first): interfacial nucleus (Nif) > Area X > dorsomedial part of the intercollicular nucelus (DM) > robust nucleus of the archistriatum (RA) > lateral magnocellular nucleus of the anterior neostriatum (LMAN) > ventral respiratory group (VRG) > dorsolateral nucleus of the medial thalamus (DLM) > the nucleus HVC (proper name) > tracheosyringeal motor nucleus (nXIIts). However, the mean serotonin expression (in order of highest first) in the peri-song nuclei regions was: peri-DM > peri-nXIIts > supra-peri-HVC > peri-RA > peri-DLM > peri-Area X > infra-peri-HVC > peri-VRG > peri-LMAN > peri-Nif. Interestingly, serotoninergic fibers immunostained for serotonin or the serotonin transporter can be found as a basket-like peri-neuronal structure surrounding cholinergic cell bodies, and appear to form contacts onto dopaminergic neurones. In summary, serotonin fibers are present at discrete song nuclei, and peri-song nuclei regions, which suggest serotonin may have a direct and/or modulatory role in song control.
Collapse
Affiliation(s)
- Ping K Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK.
| | - Magdalena Schmitzberger
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| | - Mohammed Al-Hasan
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| | - Julia George
- Queen Mary University of London, School of Biological and Chemical Sciences, G.E. Fogg Building, Mile End Road, London E1 4NS, UK
| | - Elina Tripoliti
- UCL, Institute of Neurology, Department of Movement and Clinical Neurosciences, 33 Queen Square, London WC1N 3BG, UK
| | - Adina T Michael-Titus
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| | - David Clayton
- Queen Mary University of London, School of Biological and Chemical Sciences, G.E. Fogg Building, Mile End Road, London E1 4NS, UK
| | - John V Priestley
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| |
Collapse
|
19
|
Ma S, Ter Maat A, Gahr M. Neurotelemetry Reveals Putative Predictive Activity in HVC during Call-Based Vocal Communications in Zebra Finches. J Neurosci 2020; 40:6219-6227. [PMID: 32661023 PMCID: PMC7406282 DOI: 10.1523/jneurosci.2664-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
Premotor predictions facilitate vocal interactions. Here, we study such mechanisms in the forebrain nucleus HVC (proper name), a cortex-like sensorimotor area of songbirds, otherwise known for being essential for singing in zebra finches. To study the role of the HVC in calling interactions between male and female mates, we used wireless telemetric systems for simultaneous measurement of neuronal activity of male zebra finches and vocalizations of males and females that freely interact with each other. In a non-social context, male HVC neurons displayed stereotypic premotor activity in relation to active calling and showed auditory-evoked activity to hearing of played-back female calls. In a social context, HVC neurons displayed auditory-evoked activity to hearing of female calls only if that neuron showed activity preceding the upcoming female calls. We hypothesize that this activity preceding the auditory-evoked activity in the male HVC represents a neural correlate of behavioral anticipation, predictive activity that helps to coordinate vocal communication between social partners.SIGNIFICANCE STATEMENT Most social-living vertebrates produce large numbers of calls per day, and the calls have prominent roles in social interactions. Here, we show neuronal mechanisms that are active during call-based vocal communication of zebra finches, a highly social songbird species. HVC, a forebrain nucleus known for its importance in control of learned vocalizations of songbirds, displays predictive activity that may enable the male to adjust his own calling pattern to produce very fast sequences of male female call exchanges.
Collapse
Affiliation(s)
- Shouwen Ma
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Andries Ter Maat
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| |
Collapse
|
20
|
Fukutomi M, Carlson BA. A History of Corollary Discharge: Contributions of Mormyrid Weakly Electric Fish. Front Integr Neurosci 2020; 14:42. [PMID: 32848649 PMCID: PMC7403230 DOI: 10.3389/fnint.2020.00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 12/05/2022] Open
Abstract
Corollary discharge is an important brain function that allows animals to distinguish external from self-generated signals, which is critical to sensorimotor coordination. Since discovery of the concept of corollary discharge in 1950, neuroscientists have sought to elucidate underlying neural circuits and mechanisms. Here, we review a history of neurophysiological studies on corollary discharge and highlight significant contributions from studies using African mormyrid weakly electric fish. Mormyrid fish generate brief electric pulses to communicate with other fish and to sense their surroundings. In addition, mormyrids can passively locate weak, external electric signals. These three behaviors are mediated by different corollary discharge functions including inhibition, enhancement, and predictive “negative image” generation. Owing to several experimental advantages of mormyrids, investigations of these mechanisms have led to important general principles that have proven applicable to a wide diversity of animal species.
Collapse
Affiliation(s)
- Matasaburo Fukutomi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
21
|
|
22
|
Daou A, Margoliash D. Intrinsic neuronal properties represent song and error in zebra finch vocal learning. Nat Commun 2020; 11:952. [PMID: 32075972 PMCID: PMC7031510 DOI: 10.1038/s41467-020-14738-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Neurons regulate their intrinsic physiological properties, which could influence network properties and contribute to behavioral plasticity. Recording from adult zebra finch brain slices we show that within each bird basal ganglia Area X-projecting (HVCX) neurons share similar spike waveform morphology and timing of spike trains, with modeling indicating similar magnitudes of five principal ion currents. These properties vary among birds in lawful relation to acoustic similarity of the birds' songs, with adult sibling pairs (same songs) sharing similar waveforms and spiking characteristics. The properties are maintained dynamically: HVCX within juveniles learning to sing show variable properties, whereas the uniformity rapidly degrades within hours in adults singing while exposed to abnormal (delayed) auditory feedback. Thus, within individual birds the population of current magnitudes covary over the arc of development, while rapidly responding to changes in feedback (in adults). This identifies network interactions with intrinsic properties that affect information storage and processing of learned vocalizations.
Collapse
Affiliation(s)
- Arij Daou
- Department of Organismal Biology & Anatomy, University of Chicago, 1027 E. 57th St., Chicago, IL, 60637, USA
- Biomedical Engineering Program, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Daniel Margoliash
- Department of Organismal Biology & Anatomy, University of Chicago, 1027 E. 57th St., Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
The Neuroethology of Vocal Communication in Songbirds: Production and Perception of a Call Repertoire. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
New Insights into the Avian Song System and Neuronal Control of Learned Vocalizations. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Ikeda MZ, Trusel M, Roberts TF. Memory circuits for vocal imitation. Curr Opin Neurobiol 2019; 60:37-46. [PMID: 31810009 DOI: 10.1016/j.conb.2019.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023]
Abstract
Many complex behaviors exhibited by social species are first learned by imitating the behavior of other more experienced individuals. Speech and language are the most widely appreciated behaviors learned in this way. Vocal imitation in songbirds is perhaps the best studied socially transmitted behavior, and research over the past few years has begun to crack the circuit mechanisms for how songbirds learn from vocal models. Studies in zebra finches are revealing an unexpected and essential role for premotor cortical circuits in forming the behavioral-goal memories used to guide song imitation, challenging the view that song memories used for imitation are stored in auditory circuits. Here, we provide a summary of this recent progress focusing on the What, Where, and How of tutor song memory, and propose a circuit hypothesis for song learning based on these recent findings.
Collapse
Affiliation(s)
- Maaya Z Ikeda
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Massimo Trusel
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Zhao W, Garcia-Oscos F, Dinh D, Roberts TF. Inception of memories that guide vocal learning in the songbird. Science 2019; 366:83-89. [PMID: 31604306 PMCID: PMC7688245 DOI: 10.1126/science.aaw4226] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023]
Abstract
Animals learn many complex behaviors by emulating the behavior of more experienced individuals. This essential, yet still poorly understood, form of learning relies on the ability to encode lasting memories of observed behaviors. We identified a vocal-motor pathway in the zebra finch where memories that guide learning of song-element durations can be implanted. Activation of synapses in this pathway seeds memories that guide learning of song-element duration and can override learning from social interactions with other individuals. Genetic lesions of this circuit after memory formation, however, do not disrupt subsequent song imitation, which suggests that these memories are stored at downstream synapses. Thus, activity at these sensorimotor synapses can bypass learning from auditory and social experience and embed memories that guide learning of song timing.
Collapse
Affiliation(s)
- Wenchan Zhao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Daniel Dinh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Daliparthi VK, Tachibana RO, Cooper BG, Hahnloser RH, Kojima S, Sober SJ, Roberts TF. Transitioning between preparatory and precisely sequenced neuronal activity in production of a skilled behavior. eLife 2019; 8:43732. [PMID: 31184589 PMCID: PMC6592689 DOI: 10.7554/elife.43732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Precise neural sequences are associated with the production of well-learned skilled behaviors. Yet, how neural sequences arise in the brain remains unclear. In songbirds, premotor projection neurons in the cortical song nucleus HVC are necessary for producing learned song and exhibit precise sequential activity during singing. Using cell-type specific calcium imaging we identify populations of HVC premotor neurons associated with the beginning and ending of singing-related neural sequences. We characterize neurons that bookend singing-related sequences and neuronal populations that transition from sparse preparatory activity prior to song to precise neural sequences during singing. Recordings from downstream premotor neurons or the respiratory system suggest that pre-song activity may be involved in motor preparation to sing. These findings reveal population mechanisms associated with moving from non-vocal to vocal behavioral states and suggest that precise neural sequences begin and end as part of orchestrated activity across functionally diverse populations of cortical premotor neurons.
Collapse
Affiliation(s)
- Vamsi K Daliparthi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ryosuke O Tachibana
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Brenton G Cooper
- Department of Psychology, Texas Christian University, Fort Worth, United States
| | - Richard Hr Hahnloser
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Satoshi Kojima
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, United States
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
28
|
Rocha MD, Düring DN, Bethge P, Voigt FF, Hildebrand S, Helmchen F, Pfeifer A, Hahnloser RHR, Gahr M. Tissue Clearing and Light Sheet Microscopy: Imaging the Unsectioned Adult Zebra Finch Brain at Cellular Resolution. Front Neuroanat 2019; 13:13. [PMID: 30837847 PMCID: PMC6382697 DOI: 10.3389/fnana.2019.00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
The inherent complexity of brain tissue, with brain cells intertwining locally and projecting to distant regions, has made three-dimensional visualization of intact brains a highly desirable but challenging task in neuroscience. The natural opaqueness of tissue has traditionally limited researchers to techniques short of single cell resolution such as computer tomography or magnetic resonance imaging. By contrast, techniques with single-cell resolution required mechanical slicing into thin sections, which entails tissue distortions that severely hinder accurate reconstruction of large volumes. Recent developments in tissue clearing and light sheet microscopy have made it possible to investigate large volumes at micrometer resolution. The value of tissue clearing has been shown in a variety of tissue types and animal models. However, its potential for examining the songbird brain remains unexplored. Songbirds are an established model system for the study of vocal learning and sensorimotor control. They share with humans the capacity to adapt vocalizations based on auditory input. Song learning and production are controlled in songbirds by the song system, which forms a network of interconnected discrete brain nuclei. Here, we use the CUBIC and iDISCO+ protocols for clearing adult songbird brain tissue. Combined with light sheet imaging, we show the potential of tissue clearing for the investigation of connectivity between song nuclei, as well as for neuroanatomy and brain vasculature studies.
Collapse
Affiliation(s)
- Mariana Diales Rocha
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Daniel Normen Düring
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Richard Hans Robert Hahnloser
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
29
|
Bottjer SW, Ronald AA, Kaye T. Response properties of single neurons in higher level auditory cortex of adult songbirds. J Neurophysiol 2019; 121:218-237. [PMID: 30461366 PMCID: PMC6383665 DOI: 10.1152/jn.00751.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/28/2023] Open
Abstract
The caudomedial nidopallium (NCM) is a higher level region of auditory cortex in songbirds that has been implicated in encoding learned vocalizations and mediating perception of complex sounds. We made cell-attached recordings in awake adult male zebra finches ( Taeniopygia guttata) to characterize responses of single NCM neurons to playback of tones and songs. Neurons fell into two broad classes: narrow fast-spiking cells and broad sparsely firing cells. Virtually all narrow-spiking cells responded to playback of pure tones, compared with approximately half of broad-spiking cells. In addition, narrow-spiking cells tended to have lower thresholds and faster, less variable spike onset latencies than did broad-spiking cells, as well as higher firing rates. Tonal responses of narrow-spiking cells also showed broader ranges for both frequency and amplitude compared with broad-spiking neurons and were more apt to have V-shaped tuning curves compared with broad-spiking neurons, which tended to have complex (discontinuous), columnar, or O-shaped frequency response areas. In response to playback of conspecific songs, narrow-spiking neurons showed high firing rates and low levels of selectivity whereas broad-spiking neurons responded sparsely and selectively. Broad-spiking neurons in which tones failed to evoke a response showed greater song selectivity compared with those with a clear tuning curve. These results are consistent with the idea that narrow-spiking neurons represent putative fast-spiking interneurons, which may provide a source of intrinsic inhibition that contributes to the more selective tuning in broad-spiking cells. NEW & NOTEWORTHY The response properties of neurons in higher level regions of auditory cortex in songbirds are of fundamental interest because processing in such regions is essential for vocal learning and plasticity and for auditory perception of complex sounds. Within a region of secondary auditory cortex, neurons with narrow spikes exhibited high firing rates to playback of both tones and multiple conspecific songs, whereas broad-spiking neurons responded sparsely and selectively to both tones and songs.
Collapse
Affiliation(s)
- Sarah W Bottjer
- Section of Neurobiology, University of Southern California , Los Angeles, California
| | - Andrew A Ronald
- Section of Neurobiology, University of Southern California , Los Angeles, California
| | - Tiara Kaye
- Section of Neurobiology, University of Southern California , Los Angeles, California
| |
Collapse
|
30
|
Shaughnessy DW, Hyson RL, Bertram R, Wu W, Johnson F. Female zebra finches do not sing yet share neural pathways necessary for singing in males. J Comp Neurol 2018; 527:843-855. [PMID: 30370534 DOI: 10.1002/cne.24569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/28/2022]
Abstract
Adult female zebra finches (Taeniopygia guttata), which do not produce learned songs, have long been thought to possess only vestiges of the forebrain network that supports learned song in males. This view ostensibly explains why females do not sing-many of the neural populations and pathways that make up the male song control network appear rudimentary or even missing in females. For example, classic studies of vocal-premotor cortex (HVC, acronym is name) in male zebra finches identified prominent efferent pathways from HVC to vocal-motor cortex (RA, robust nucleus of the arcopallium) and from HVC to the avian basal ganglia (Area X). In females, by comparison, the efferent targets of HVC were thought to be only partially innervated by HVC axons (RA) or absent (Area X). Here, using a novel visually guided surgical approach to target tracer injections with precision, we mapped the extrinsic connectivity of the adult female HVC. We find that female HVC shows a mostly male-typical pattern of afferent and efferent connectivity, including robust HVC innervation of RA and Area X. As noted by earlier investigators, we find large sex differences in the volume of many regions that control male singing (male > female). However, sex differences in volume were diminished in regions that convey ascending afferent input to HVC. Our findings do not support a vestigial interpretation of the song control network in females. Instead, our findings support the emerging view that the song control network may have an altogether different function in nonsinging females.
Collapse
Affiliation(s)
- Derrick W Shaughnessy
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| | - Richard Bertram
- Program in Neuroscience and Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Wei Wu
- Program in Neuroscience and Department of Statistics, Florida State University, Tallahassee, Florida
| | - Frank Johnson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| |
Collapse
|
31
|
Hamaide J, De Groof G, Van Ruijssevelt L, Lukacova K, Van Audekerke J, Verhoye M, Van der Linden A. Volumetric development of the zebra finch brain throughout the first 200 days of post-hatch life traced by in vivo MRI. Neuroimage 2018; 183:227-238. [PMID: 30107257 DOI: 10.1016/j.neuroimage.2018.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022] Open
Abstract
The first months of life are characterized by massive neuroplastic processes that parallel the acquisition of skills and abilities vital for proper functioning in later life. Likewise, juvenile songbirds learn the song sung by their tutor during the first months after hatching. To date, most studies targeting brain development in songbirds exclusively focus on the song control and auditory pathways. To gain a comprehensive insight into structural developmental plasticity of the entire zebra finch brain throughout the different subphases of song learning, we designed a longitudinal study in a group of male (16) and female (19) zebra finches. We collected T2-weighted 3-dimensional anatomical scans at six developmental milestones throughout the process of song learning, i.e. 20, 30, 40, 65, 90 and 120 days post hatching (dph), and one additional time point well after song crystallization, i.e. 200 dph. We observed that the total brain volume initially increases, peaks around 30-40 dph and decreases towards the end of the study. Further, we performed brain-wide voxel-based volumetric analyses to create spatio-temporal maps indicating when specific brain areas increase or decrease in volume, relative to the subphases of song learning. These maps informed (1) that most areas implicated in song control change early, i.e. between 20 and 65 dph, and are embedded in large clusters that cover major subdivisions of the zebra finch brain, (2) that volume changes between consecutive subphases of vocal learning appear highly similar in males and females, and (3) that only more rostrally situated brain regions change in volume towards later ages. Lastly, besides detecting sex differences in local tissue volume that align with previous studies, we uncovered two additional brain loci that are larger in male compared to female zebra finches. These volume differences co-localize with areas related to the song control and auditory pathways and can therefore be associated to the behavioral difference as only male zebra finches sing. In sum, our data point to clear heterochronous patterns of brain development similar to brain development in mammalian species and this work can serve as a reference for future neurodevelopmental imaging studies in zebra finches.
Collapse
Affiliation(s)
- Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Geert De Groof
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Lisbeth Van Ruijssevelt
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Kristina Lukacova
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Johan Van Audekerke
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
32
|
Abstract
Hearing is often viewed as a passive process: Sound enters the ear, triggers a cascade of activity through the auditory system, and culminates in an auditory percept. In contrast to a passive process, motor-related signals strongly modulate the auditory system from the eardrum to the cortex. The motor modulation of auditory activity is most well documented during speech and other vocalizations but also can be detected during a wide variety of other sound-generating behaviors. An influential idea is that these motor-related signals suppress neural responses to predictable movement-generated sounds, thereby enhancing sensitivity to environmental sounds during movement while helping to detect errors in learned acoustic behaviors, including speech and musicianship. Findings in humans, monkeys, songbirds, and mice provide new insights into the circuits that convey motor-related signals to the auditory system, while lending support to the idea that these signals function predictively to facilitate hearing and vocal learning.
Collapse
Affiliation(s)
- David M Schneider
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
- Current affiliation: Center for Neural Science, New York University, New York, New York 10003, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
33
|
Pre-Bout Neural Activity Changes in Premotor Nucleus HVC Correlate with Successful Initiation of Learned Song Sequence. J Neurosci 2018; 38:5925-5938. [PMID: 29853628 DOI: 10.1523/jneurosci.3003-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Preparatory activity, characterized by gradual, longer timescale changes in neural activity, is present in a number of different brain areas before the onset of simple movements and is believed to be important for movement initiation. However, relatively little is known about such activity before initiation of naturally learned movement sequences. The song of an adult male zebra finch is a well studied example of a naturally learned movement sequence and previous studies have shown robust premotor activity immediately before song. Here, I characterize longer timescale changes in neural activity in adult male zebra finch premotor nucleus HVC before onset of song bouts. I show that interneurons and a subset of basal-ganglia-projecting neurons change their activity several hundred milliseconds before song bout onset. Interneurons increased their activity, whereas basal-ganglia-projecting neurons either increased or decreased their activity. Such changes in neural activity were larger, started earlier, and were more common specifically before song bouts that began with the short, repetitive, introductory notes (INs) characteristic of zebra finch song bouts. Further, stronger and earlier changes were also correlated with successful song sequence initiation. Finally, a small fraction of basal-ganglia-projecting neurons that increased their activity before song bout onset did not have song or IN-related activity, suggesting a specialized preparatory role for such neurons. Overall, these data suggest that pre-bout activity in HVC represents preparatory activity important for initiation of a naturally learned movement sequence.SIGNIFICANCE STATEMENT Changes in neuronal activity well before the onset of simple movements are thought to be important for movement initiation. However, a number of animal movements consist of sequences of simple movements and relatively little is known about neuronal activity before such movement sequences. Using adult zebra finch song, a well studied example of a movement sequence, I show here that neurons in premotor nucleus HVC change their activity hundreds of milliseconds before song bout onset. In most neurons, the presence of such changes correlated with successful song sequence initiation. My results show the presence of preparatory neural activity in HVC and suggest a role for HVC in sequence initiation in addition to its established role in song sequence timing.
Collapse
|
34
|
Mackevicius EL, Fee MS. Building a state space for song learning. Curr Opin Neurobiol 2017; 49:59-68. [PMID: 29268193 DOI: 10.1016/j.conb.2017.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2017] [Accepted: 12/02/2017] [Indexed: 11/29/2022]
Abstract
The songbird system has shed light on how the brain produces precisely timed behavioral sequences, and how the brain implements reinforcement learning (RL). RL is a powerful strategy for learning what action to produce in each state, but requires a unique representation of the states involved in the task. Songbird RL circuitry is thought to operate using a representation of each moment within song syllables, consistent with the sparse sequential bursting of neurons in premotor cortical nucleus HVC. However, such sparse sequences are not present in very young birds, which sing highly variable syllables of random lengths. Here, we review and expand upon a model for how the songbird brain could construct latent sequences to support RL, in light of new data elucidating connections between HVC and auditory cortical areas. We hypothesize that learning occurs via four distinct plasticity processes: 1) formation of 'tutor memory' sequences in auditory areas; 2) formation of appropriately-timed latent HVC sequences, seeded by inputs from auditory areas spontaneously replaying the tutor song; 3) strengthening, during spontaneous replay, of connections from HVC to auditory neurons of corresponding timing in the 'tutor memory' sequence, aligning auditory and motor representations for subsequent song evaluation; and 4) strengthening of connections from premotor neurons to motor output neurons that produce the desired sounds, via well-described song RL circuitry.
Collapse
Affiliation(s)
- Emily Lambert Mackevicius
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 46-5133 Cambridge, MA, USA
| | - Michale Sean Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 46-5133 Cambridge, MA, USA.
| |
Collapse
|
35
|
Chen AN, Meliza CD. Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. J Neurophysiol 2017; 119:1127-1139. [PMID: 29212920 DOI: 10.1152/jn.00694.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal mesopallium (CM) is a cortical-level area in the songbird auditory pathway where selective, invariant responses to familiar songs emerge. To characterize the cell types that perform this computation, we made whole cell recordings from brain slices in juvenile zebra finches ( Taeniopygia guttata) of both sexes. We found three groups of putatively excitatory neurons with distinct firing patterns. Tonic cells produced sustained responses to depolarizing step currents, phasic cells produced only a few spikes at the onset, and an intermediate group was also phasic but responded for up to a few hundred milliseconds. Phasic cells had smaller dendritic fields, higher resting potentials, and strong low-threshold outward rectification. Pharmacological treatment with voltage-gated potassium channel antagonists 4-aminopyridine and α-dendrotoxin converted phasic to tonic firing. When stimulated with broadband currents, phasic cells fired coherently with frequencies up to 20-30 Hz, whereas tonic neurons were more responsive to frequencies around 0-10 Hz. The distribution of peak coherence frequencies was similar to the distribution of temporal modulation rates in zebra finch song. We reproduced these observations in a single-compartment biophysical model by varying cell size and the magnitude of a slowly inactivating, low-threshold potassium current ( ILT). These data suggest that intrinsic dynamics in CM are matched to the temporal statistics of conspecific song. NEW & NOTEWORTHY In songbirds, the caudal mesopallium is a key brain area involved in recognizing the songs of other individuals. This study identifies three cell types in this area with distinct firing patterns (tonic, phasic, and intermediate) that reflect differences in cell size and a low-threshold potassium current. The phasic-firing neurons, which do not have a counterpart in mammalian auditory cortex, are better able to follow rapid modulations at the frequencies found in song.
Collapse
Affiliation(s)
- Andrew N Chen
- Neuroscience Graduate Program, University of Virginia , Charlottesville, Virginia
| | - C Daniel Meliza
- Neuroscience Graduate Program, University of Virginia , Charlottesville, Virginia.,Department of Psychology, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
36
|
Roberts TF, Hisey E, Tanaka M, Kearney M, Chattree G, Yang CF, Shah NM, Mooney R. Identification of a motor-to-auditory pathway important for vocal learning. Nat Neurosci 2017; 20:978-986. [PMID: 28504672 PMCID: PMC5572074 DOI: 10.1038/nn.4563] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor's song. Ablating these neurons in adults had little effect on previously learned songs but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of songs' temporal features that is normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing.
Collapse
Affiliation(s)
- Todd F. Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin Hisey
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masashi Tanaka
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew Kearney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gaurav Chattree
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cindy F. Yang
- Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Nirao M. Shah
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
37
|
Danish HH, Aronov D, Fee MS. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations. PLoS One 2017; 12:e0169568. [PMID: 28617829 PMCID: PMC5472270 DOI: 10.1371/journal.pone.0169568] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023] Open
Abstract
Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC.
Collapse
Affiliation(s)
- Husain H. Danish
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Dmitriy Aronov
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Michale S. Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Elliott KC, Wu W, Bertram R, Hyson RL, Johnson F. Orthogonal topography in the parallel input architecture of songbird HVC. J Comp Neurol 2017; 525:2133-2151. [DOI: 10.1002/cne.24189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/26/2017] [Accepted: 02/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin C. Elliott
- Program in Neuroscience and Department of PsychologyFlorida State UniversityTallahassee Florida
| | - Wei Wu
- Program in Neuroscience and Department of StatisticsFlorida State UniversityTallahassee Florida
| | - Richard Bertram
- Program in Neuroscience and Department of MathematicsFlorida State UniversityTallahassee Florida
| | - Richard L. Hyson
- Program in Neuroscience and Department of PsychologyFlorida State UniversityTallahassee Florida
| | - Frank Johnson
- Program in Neuroscience and Department of PsychologyFlorida State UniversityTallahassee Florida
| |
Collapse
|
39
|
Zhang YS, Wittenbach JD, Jin DZ, Kozhevnikov AA. Temperature Manipulation in Songbird Brain Implicates the Premotor Nucleus HVC in Birdsong Syntax. J Neurosci 2017; 37:2600-2611. [PMID: 28159910 PMCID: PMC6596640 DOI: 10.1523/jneurosci.1827-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
Variable motor sequences of animals are often structured and can be described by probabilistic transition rules between action elements. Examples include the songs of many songbird species such as the Bengalese finch, which consist of stereotypical syllables sequenced according to probabilistic rules (song syntax). The neural mechanisms behind such rules are poorly understood. Here, we investigate where the song syntax is encoded in the brain of the Bengalese finch by rapidly and reversibly manipulating the temperature in the song production pathway. Cooling the premotor nucleus HVC (proper name) slows down the song tempo, consistent with the idea that HVC controls moment-to-moment timings of acoustic features in the syllables. More importantly, cooling HVC alters the transition probabilities between syllables. Cooling HVC reduces the number of repetitions of long-repeated syllables and increases the randomness of syllable sequences. In contrast, cooling the downstream motor area RA (robust nucleus of the acropallium), which is critical for singing, does not affect the song syntax. Unilateral cooling of HVC shows that control of syllables is mostly lateralized to the left HVC, whereas transition probabilities between the syllables can be affected by cooling HVC in either hemisphere to varying degrees. These results show that HVC is a key site for encoding song syntax in the Bengalese finch. HVC is thus involved both in encoding timings within syllables and in sequencing probabilistic transitions between syllables. Our finding suggests that probabilistic selections and fine-grained timings of action elements can be integrated within the same neural circuits.SIGNIFICANCE STATEMENT Many animal behaviors such as birdsong consist of variable sequences of discrete actions. Where and how the probabilistic rules of such sequences are encoded in the brain is poorly understood. We locally and reversibly cooled brain areas in songbirds during singing. Mild cooling of area HVC in the Bengalese finch brain-a premotor area homologous to the mammalian premotor cortex-alters the statistics of the syllable sequences, suggesting that HVC is critical for birdsong sequences. HVC is also known for controlling moment-to-moment timings within syllables. Our results show that timing and probabilistic sequencing of actions can share the same neural circuits in local brain areas.
Collapse
Affiliation(s)
| | | | - Dezhe Z Jin
- Department of Physics,
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
40
|
Soyman E, Vicario DS. Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain. J Neurophysiol 2016; 117:1266-1280. [PMID: 28031398 DOI: 10.1152/jn.00462.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 11/22/2022] Open
Abstract
Sensory and motor brain structures work in collaboration during perception. To evaluate their respective contributions, the present study recorded neural responses to auditory stimulation at multiple sites simultaneously in both the higher-order auditory area NCM and the premotor area HVC of the songbird brain in awake zebra finches (Taeniopygia guttata). Bird's own song (BOS) and various conspecific songs (CON) were presented in both blocked and shuffled sequences. Neural responses showed plasticity in the form of stimulus-specific adaptation, with markedly different dynamics between the two structures. In NCM, the response decrease with repetition of each stimulus was gradual and long-lasting and did not differ between the stimuli or the stimulus presentation sequences. In contrast, HVC responses to CON stimuli decreased much more rapidly in the blocked than in the shuffled sequence. Furthermore, this decrease was more transient in HVC than in NCM, as shown by differential dynamics in the shuffled sequence. Responses to BOS in HVC decreased more gradually than to CON stimuli. The quality of neural representations, computed as the mutual information between stimuli and neural activity, was higher in NCM than in HVC. Conversely, internal functional correlations, estimated as the coherence between recording sites, were greater in HVC than in NCM. The cross-coherence between the two structures was weak and limited to low frequencies. These findings suggest that auditory communication signals are processed according to very different but complementary principles in NCM and HVC, a contrast that may inform study of the auditory and motor pathways for human speech processing.NEW & NOTEWORTHY Neural responses to auditory stimulation in sensory area NCM and premotor area HVC of the songbird forebrain show plasticity in the form of stimulus-specific adaptation with markedly different dynamics. These two structures also differ in stimulus representations and internal functional correlations. Accordingly, NCM seems to process the individually specific complex vocalizations of others based on prior familiarity, while HVC responses appear to be modulated by transitions and/or timing in the ongoing sequence of sounds.
Collapse
Affiliation(s)
- Efe Soyman
- Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
41
|
Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH. Dopamine neurons encode performance error in singing birds. Science 2016; 354:1278-1282. [PMID: 27940871 PMCID: PMC5464363 DOI: 10.1126/science.aah6837] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Many behaviors are learned through trial and error by matching performance to internal goals. Yet neural mechanisms of performance evaluation remain poorly understood. We recorded basal ganglia-projecting dopamine neurons in singing zebra finches as we controlled perceived song quality with distorted auditory feedback. Dopamine activity was phasically suppressed after distorted syllables, consistent with a worse-than-predicted outcome, and was phasically activated at the precise moment of the song when a predicted distortion did not occur, consistent with a better-than-predicted outcome. Error response magnitude depended on distortion probability. Thus, dopaminergic error signals can evaluate behaviors that are not learned for reward and are instead learned by matching performance outcomes to internal goals.
Collapse
Affiliation(s)
- Vikram Gadagkar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Eliza Baird-Daniel
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Alexander R Farhang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Liberti WA, Markowitz JE, Perkins LN, Liberti DC, Leman DP, Guitchounts G, Velho T, Kotton DN, Lois C, Gardner TJ. Unstable neurons underlie a stable learned behavior. Nat Neurosci 2016; 19:1665-1671. [PMID: 27723744 PMCID: PMC5127780 DOI: 10.1038/nn.4405] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Motor skills can be maintained for decades, but the biological basis of this memory persistence remains largely unknown. The zebra finch, for example, sings a highly stereotyped song that is stable for years, but it is not known whether the precise neural patterns underlying song are stable or shift from day to day. Here we demonstrate that the population of projection neurons coding for song in the premotor nucleus, HVC, change from day to day. The most dramatic shifts occur over intervals of sleep. In contrast to the transient participation of excitatory neurons, ensemble measurements dominated by inhibition persist unchanged even after damage to downstream motor nerves. These observations offer a principle of motor stability: spatiotemporal patterns of inhibition can maintain a stable scaffold for motor dynamics while the population of principal neurons that directly drive behavior shift from one day to the next.
Collapse
Affiliation(s)
- William A Liberti
- Department of Biology, Boston University, Boston, Massachusetts, USA.,Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, USA
| | | | - L Nathan Perkins
- Department of Biology, Boston University, Boston, Massachusetts, USA.,Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Derek C Liberti
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Daniel P Leman
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Grigori Guitchounts
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.,Program in Neuroscience, Harvard University, Cambridge, Massachusetts, USA
| | - Tarciso Velho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Brain Institute, Federal University of Rio Grande de Norte, Natal, Brazil
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Timothy J Gardner
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Vyssotski AL, Stepien AE, Keller GB, Hahnloser RHR. A Neural Code That Is Isometric to Vocal Output and Correlates with Its Sensory Consequences. PLoS Biol 2016; 14:e2000317. [PMID: 27723764 PMCID: PMC5056755 DOI: 10.1371/journal.pbio.2000317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/01/2016] [Indexed: 01/26/2023] Open
Abstract
What cortical inputs are provided to motor control areas while they drive complex learned behaviors? We study this question in the nucleus interface of the nidopallium (NIf), which is required for normal birdsong production and provides the main source of auditory input to HVC, the driver of adult song. In juvenile and adult zebra finches, we find that spikes in NIf projection neurons precede vocalizations by several tens of milliseconds and are insensitive to distortions of auditory feedback. We identify a local isometry between NIf output and vocalizations: quasi-identical notes produced in different syllables are preceded by highly similar NIf spike patterns. NIf multiunit firing during song precedes responses in auditory cortical neurons by about 50 ms, revealing delayed congruence between NIf spiking and a neural representation of auditory feedback. Our findings suggest that NIf codes for imminent acoustic events within vocal performance. Transmission of birdsong across generations requires tight interactions between auditory and vocal systems. However, how these interactions take place is poorly understood. We studied neuronal activity in the brain area located at the intersection between auditory and song motor areas, which is known as the nucleus interface of the nidopallium. By recording during singing from neurons in the nucleus interface of the nidopallium that project to motor areas, we found that their spiking precedes peaks in vocal amplitudes by about 50 ms. Notably, quasi-identical notes produced at different times in the song motif were preceded by highly similar spike patterns in these projection neurons. Such local isometry between output from the nucleus interface of the nidopallium and vocalizations suggests that projection neurons in this brain area code for imminent acoustic events within vocal performance. In support of this conclusion, during singing, projection neurons do not respond to playback of white noise sound stimuli, and activity in the nucleus interface of the nidopallium precedes by about 50 ms neural activity in the avian analogue of auditory cortex. Therefore, we conclude that the role of neuronal activity in the nucleus interface of the nidopallium could be to link desired auditory targets to suitable motor commands required for hitting these targets.
Collapse
Affiliation(s)
- Alexei L. Vyssotski
- Institute of Neuroinformatics, Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics, Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Georg B. Keller
- Institute of Neuroinformatics, Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Vallentin D, Kosche G, Lipkind D, Long MA. Neural circuits. Inhibition protects acquired song segments during vocal learning in zebra finches. Science 2016; 351:267-71. [PMID: 26816377 DOI: 10.1126/science.aad3023] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vocal imitation involves incorporating instructive auditory information into relevant motor circuits through processes that are poorly understood. In zebra finches, we found that exposure to a tutor's song drives spiking activity within premotor neurons in the juvenile, whereas inhibition suppresses such responses upon learning in adulthood. We measured inhibitory currents evoked by the tutor song throughout development while simultaneously quantifying each bird's learning trajectory. Surprisingly, we found that the maturation of synaptic inhibition onto premotor neurons is correlated with learning but not age. We used synthetic tutoring to demonstrate that inhibition is selective for specific song elements that have already been learned and not those still in refinement. Our results suggest that structured inhibition plays a crucial role during song acquisition, enabling a piece-by-piece mastery of complex tasks.
Collapse
Affiliation(s)
- Daniela Vallentin
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA. Center for Neural Science, New York University, New York, NY 10003, USA
| | - Georg Kosche
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA. Center for Neural Science, New York University, New York, NY 10003, USA
| | - Dina Lipkind
- Laboratory of Vocal Learning, Department of Psychology, Hunter College, New York, NY 10065, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA. Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
45
|
Boari S, Perl YS, Amador A, Margoliash D, Mindlin GB. Automatic reconstruction of physiological gestures used in a model of birdsong production. J Neurophysiol 2015; 114:2912-22. [PMID: 26378204 DOI: 10.1152/jn.00385.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
Highly coordinated learned behaviors are key to understanding neural processes integrating the body and the environment. Birdsong production is a widely studied example of such behavior in which numerous thoracic muscles control respiratory inspiration and expiration: the muscles of the syrinx control syringeal membrane tension, while upper vocal tract morphology controls resonances that modulate the vocal system output. All these muscles have to be coordinated in precise sequences to generate the elaborate vocalizations that characterize an individual's song. Previously we used a low-dimensional description of the biomechanics of birdsong production to investigate the associated neural codes, an approach that complements traditional spectrographic analysis. The prior study used algorithmic yet manual procedures to model singing behavior. In the present work, we present an automatic procedure to extract low-dimensional motor gestures that could predict vocal behavior. We recorded zebra finch songs and generated synthetic copies automatically, using a biomechanical model for the vocal apparatus and vocal tract. This dynamical model described song as a sequence of physiological parameters the birds control during singing. To validate this procedure, we recorded electrophysiological activity of the telencephalic nucleus HVC. HVC neurons were highly selective to the auditory presentation of the bird's own song (BOS) and gave similar selective responses to the automatically generated synthetic model of song (AUTO). Our results demonstrate meaningful dimensionality reduction in terms of physiological parameters that individual birds could actually control. Furthermore, this methodology can be extended to other vocal systems to study fine motor control.
Collapse
Affiliation(s)
- Santiago Boari
- Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina; and
| | - Yonatan Sanz Perl
- Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina; and
| | - Ana Amador
- Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina; and
| | - Daniel Margoliash
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Gabriel B Mindlin
- Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina; and
| |
Collapse
|
46
|
Wild JM, Gaede AH. Second tectofugal pathway in a songbird (Taeniopygia guttata) revisited: Tectal and lateral pontine projections to the posterior thalamus, thence to the intermediate nidopallium. J Comp Neurol 2015; 524:963-85. [PMID: 26287809 DOI: 10.1002/cne.23886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 01/16/2023]
Abstract
Birds are almost always said to have two visual pathways from the retina to the telencephalon: thalamofugal terminating in the Wulst, and tectofugal terminating in the entopallium. Often ignored is a second tectofugal pathway that terminates in the nidopallium medial to and separate from the entopallium (e.g., Gamlin and Cohen [1986] J Comp Neurol 250:296-310). Using standard tract-tracing and electroanatomical techniques, we extend earlier evidence of a second tectofugal pathway in songbirds (Wild [1994] J Comp Neurol 349:512-535), by showing that visual projections to nucleus uvaeformis (Uva) of the posterior thalamus in zebra finches extend farther rostrally than to Uva, as generally recognized in the context of the song control system. Projections to "rUva" resulted from injections of biotinylated dextran amine into the lateral pontine nucleus (PL), and led to extensive retrograde labeling of tectal neurons, predominantly in layer 13. Injections in rUva also resulted in extensive retrograde labeling of predominantly layer 13 tectal neurons, retrograde labeling of PL neurons, and anterograde labeling of PL. It thus appears that some tectal neurons could project to rUva and PL via branched axons. Ascending projections of rUva terminated throughout a visually responsive region of the intermediate nidopallium (NI) lying between the nucleus interface medially and the entopallium laterally. Lastly, as shown by Clarke in pigeons ([1977] J Comp Neurol 174:535-552), we found that PL projects to caudal cerebellar folia.
Collapse
Affiliation(s)
- J Martin Wild
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea H Gaede
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
47
|
Bolhuis JJ, Moorman S. Birdsong memory and the brain: In search of the template. Neurosci Biobehav Rev 2015; 50:41-55. [DOI: 10.1016/j.neubiorev.2014.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/07/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
|
48
|
Pawlisch BA, Remage-Healey L. Neuroestrogen signaling in the songbird auditory cortex propagates into a sensorimotor network via an 'interface' nucleus. Neuroscience 2014; 284:522-535. [PMID: 25453773 DOI: 10.1016/j.neuroscience.2014.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023]
Abstract
Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. Past studies have demonstrated that estradiol levels increase within the songbird auditory cortex (the caudomedial nidopallium, NCM) during social interactions. Local estradiol signaling enhances the auditory-evoked firing rate of neurons in NCM to a variety of stimuli, while also enhancing the selectivity of auditory-evoked responses of neurons in a downstream sensorimotor brain region, HVC (proper name). Since these two brain regions are not directly connected, we employed dual extracellular recordings in HVC and the upstream nucleus interfacialis of the nidopallium (NIf) during manipulations of estradiol within NCM to better understand the pathway by which estradiol signaling propagates to downstream circuits. NIf has direct input into HVC, passing auditory information into the vocal motor output pathway, and is a possible source of the neural selectivity within HVC. Here, during acute estradiol administration in NCM, NIf neurons showed increases in baseline firing rates and auditory-evoked firing rates to all stimuli. Furthermore, when estradiol synthesis was blocked in NCM, we observed simultaneous decreases in the selectivity of NIf and HVC neurons. These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these findings support the hypothesis that acute neurosteroid actions can propagate within and between neural circuits to modulate their functional connectivity.
Collapse
Affiliation(s)
- B A Pawlisch
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - L Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States
| |
Collapse
|
49
|
Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS. A role for descending auditory cortical projections in songbird vocal learning. eLife 2014; 3. [PMID: 24935934 PMCID: PMC4113997 DOI: 10.7554/elife.02152] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets.
Collapse
Affiliation(s)
- Yael Mandelblat-Cerf
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Liora Las
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Natalia Denisenko
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michale S Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
50
|
Abstract
Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.
Collapse
Affiliation(s)
- Richard Mooney
- Department of Neurobiology, Duke University Medical Center, , PO Box 3209, Durham, NC 27710, USA
| |
Collapse
|