1
|
Paoli M, Haase A. In Vivo Two-Photon Imaging of the Olfactory System in Insects. Methods Mol Biol 2025; 2915:1-48. [PMID: 40249481 DOI: 10.1007/978-1-0716-4466-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, together with practical examples of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France.
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Hu X, Cheng F, Gong Z, Qin K, Shan T, Li W, Zhang L, Yan W, Zeng Z, Wang Z. Knockout of a single Pax6 gene (toy but not ey) leads to compound eye deficiency and small head in honeybees. Commun Biol 2024; 7:1319. [PMID: 39402171 PMCID: PMC11473719 DOI: 10.1038/s42003-024-07016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 10/04/2024] [Indexed: 10/17/2024] Open
Abstract
The compound eyes are crucial to honeybees, playing pivotal roles in color recognition, orientation, localization, and navigation processes. The development of compound eyes is primarily mastered by an evolutionarily conserved transcription factor Pax6. In honeybees, there are two Pax6 homologs: ey and toy. To gain a deeper understanding of their functions, we knock out both homologs using CRISPR/Cas9 technology. Intriguingly, we observe that toy knockout mutants have smaller heads without compound eyes and exhibit brain atrophy, while ey knockout mutants develop normal compound eyes, most of which die before/during their metamorphosis from pupa to adult. By comparing the head transcriptomes of four stages (larva, prepupa, pupa, and adult) in toy-knockout mutants versus normal controls, we identify significantly perturbed genes related to DNA binding transcription factors, neuron differentiation, and insect visual primordium development. Additionally, we find the interaction network of toy in honeybees differs obviously from that of D. melanogaster. Our findings suggest the two Pax6 genes serve distinct functions in honeybees and toy takes over the central function of ey in master-regulating the development of honeybee compound eyes. This adds new evidence for breaking the simplified view that some of conservative developmental toolkit genes function as all-or-nothing master regulators.
Collapse
Affiliation(s)
- Xiaofen Hu
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fuping Cheng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Zhixian Gong
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Kaixin Qin
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Tingting Shan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lizhen Zhang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Weiyu Yan
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Zhijiang Zeng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China.
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.
| | - Zilong Wang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China.
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
3
|
Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila. Learn Mem 2024; 31:a053997. [PMID: 38862177 PMCID: PMC11199950 DOI: 10.1101/lm.053997.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
Collapse
Affiliation(s)
- Büşra Çoban
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bart Geurten
- Department of Zoology, Otago University, Dunedin 9016, New Zealand
| | - David Vasmer
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Yogesh Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Idan Alyagor
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | | - Annekathrin Widmann
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Grob R, Müller VL, Grübel K, Rössler W, Fleischmann PN. Importance of magnetic information for neuronal plasticity in desert ants. Proc Natl Acad Sci U S A 2024; 121:e2320764121. [PMID: 38346192 PMCID: PMC10895258 DOI: 10.1073/pnas.2320764121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Many animal species rely on the Earth's magnetic field during navigation, but where in the brain magnetic information is processed is still unknown. To unravel this, we manipulated the natural magnetic field at the nest entrance of Cataglyphis desert ants and investigated how this affects relevant brain regions during early compass calibration. We found that manipulating the Earth's magnetic field has profound effects on neuronal plasticity in two sensory integration centers. Magnetic field manipulations interfere with a typical look-back behavior during learning walks of naive ants. Most importantly, structural analyses in the ants' neuronal compass (central complex) and memory centers (mushroom bodies) demonstrate that magnetic information affects neuronal plasticity during early visual learning. This suggests that magnetic information does not only serve as a compass cue for navigation but also as a global reference system crucial for spatial memory formation. We propose a neural circuit for integration of magnetic information into visual guidance networks in the ant brain. Taken together, our results provide an insight into the neural substrate for magnetic navigation in insects.
Collapse
Affiliation(s)
- Robin Grob
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7034Trondheim, Norway
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Valentin L. Müller
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Kornelia Grübel
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Wolfgang Rössler
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Pauline N. Fleischmann
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
- Department V - School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26129Oldenburg, Germany
| |
Collapse
|
5
|
Young FJ, Alcalde Anton A, Melo-Flórez L, Couto A, Foley J, Monllor M, McMillan WO, Montgomery SH. Enhanced long-term memory and increased mushroom body plasticity in Heliconius butterflies. iScience 2024; 27:108949. [PMID: 38357666 PMCID: PMC10864207 DOI: 10.1016/j.isci.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Heliconius butterflies exhibit expanded mushroom bodies, a key brain region for learning and memory in insects, and a novel foraging strategy unique among Lepidoptera - traplining for pollen. We tested visual long-term memory across six Heliconius and outgroup Heliconiini species. Heliconius species exhibited greater fidelity to learned colors after eight days without reinforcement, with further evidence of recall at 13 days. We also measured the plastic response of the mushroom body calyces over this time period, finding substantial post-eclosion expansion and synaptic pruning in the calyx of Heliconius erato, but not in the outgroup Heliconiini Dryas iulia. In Heliconius erato, visual associative learning experience specifically was associated with a greater retention of synapses and recall accuracy was positively correlated with synapse number. These results suggest that increases in the size of specific brain regions and changes in their plastic response to experience may coevolve to support novel behaviors.
Collapse
Affiliation(s)
- Fletcher J. Young
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Amaia Alcalde Anton
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - Antoine Couto
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jessica Foley
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | | | - Stephen H. Montgomery
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Alcalde Anton A, Young FJ, Melo-Flórez L, Couto A, Cross S, McMillan WO, Montgomery SH. Adult neurogenesis does not explain the extensive post-eclosion growth of Heliconius mushroom bodies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230755. [PMID: 37885989 PMCID: PMC10598442 DOI: 10.1098/rsos.230755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Among butterflies, Heliconius have a unique behavioural profile, being the sole genus to actively feed on pollen. Heliconius learn the location of pollen resources, and have enhanced visual memories and expanded mushroom bodies, an insect learning and memory centre, relative to related genera. These structures also show extensive post-eclosion growth and developmental sensitivity to environmental conditions. However, whether this reflects plasticity in neurite growth, or an extension of neurogenesis into the adult stage, is unknown. Adult neurogenesis has been described in some Lepidoptera, and could provide one route to the increased neuron number observed in Heliconius. Here, we compare volumetric changes in the mushroom bodies of freshly eclosed and aged Heliconius erato and Dryas iulia, and estimate the number of intrinsic mushroom body neurons using a new and validated automated method to count nuclei. Despite extensive volumetric variation associated with age, our data show that neuron number is remarkably constant in both species, suggesting a lack of adult neurogenesis in the mushroom bodies. We support this conclusion with assays of mitotic cells, which reveal very low levels of post-eclosion cell division. Our analyses provide an insight into the evolution of neural plasticity, and can serve as a basis for continued exploration of the potential mechanisms behind brain development and maturation.
Collapse
Affiliation(s)
| | - Fletcher J. Young
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Stephen Cross
- Wolfson Bioimaging Centre, University of Bristol, Bristol, UK
| | | | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
7
|
Kraft N, Muenz TS, Reinhard S, Werner C, Sauer M, Groh C, Rössler W. Expansion microscopy in honeybee brains for high-resolution neuroanatomical analyses in social insects. Cell Tissue Res 2023; 393:489-506. [PMID: 37421435 PMCID: PMC10484815 DOI: 10.1007/s00441-023-03803-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
The diffraction limit of light microscopy poses a problem that is frequently faced in structural analyses of social insect brains. With the introduction of expansion microscopy (ExM), a tool became available to overcome this limitation by isotropic physical expansion of preserved specimens. Our analyses focus on synaptic microcircuits (microglomeruli, MG) in the mushroom body (MB) of social insects, high-order brain centers for sensory integration, learning, and memory. MG undergo significant structural reorganizations with age, sensory experience, and during long-term memory formation. However, the changes in subcellular architecture involved in this plasticity have only partially been accessed yet. Using the western honeybee Apis mellifera as an experimental model, we established ExM for the first time in a social insect species and applied it to investigate plasticity in synaptic microcircuits within MG of the MB calyces. Using combinations of antibody staining and neuronal tracing, we demonstrate that this technique enables quantitative and qualitative analyses of structural neuronal plasticity at high resolution in a social insect brain.
Collapse
Affiliation(s)
- Nadine Kraft
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany.
| | - Thomas S Muenz
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| |
Collapse
|
8
|
Carcaud J, Otte M, Grünewald B, Haase A, Sandoz JC, Beye M. Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. PLoS Biol 2023; 21:e3001984. [PMID: 36719927 PMCID: PMC9917304 DOI: 10.1371/journal.pbio.3001984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 02/10/2023] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding of the neural bases for complex behaviors in Hymenoptera insect species has been limited by a lack of tools that allow measuring neuronal activity simultaneously in different brain regions. Here, we developed the first pan-neuronal genetic driver in a Hymenopteran model organism, the honey bee, and expressed the calcium indicator GCaMP6f under the control of the honey bee synapsin promoter. We show that GCaMP6f is widely expressed in the honey bee brain, allowing to record neural activity from multiple brain regions. To assess the power of this tool, we focused on the olfactory system, recording simultaneous responses from the antennal lobe, and from the more poorly investigated lateral horn (LH) and mushroom body (MB) calyces. Neural responses to 16 distinct odorants demonstrate that odorant quality (chemical structure) and quantity are faithfully encoded in the honey bee antennal lobe. In contrast, odor coding in the LH departs from this simple physico-chemical coding, supporting the role of this structure in coding the biological value of odorants. We further demonstrate robust neural responses to several bee pheromone odorants, key drivers of social behavior, in the LH. Combined, these brain recordings represent the first use of a neurogenetic tool for recording large-scale neural activity in a eusocial insect and will be of utility in assessing the neural underpinnings of olfactory and other sensory modalities and of social behaviors and cognitive abilities.
Collapse
Affiliation(s)
- Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
- * E-mail:
| | - Marianne Otte
- Evolutionnary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, FB Biowissenschaften, Goethe-University, Frankfurt am Main, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Martin Beye
- Evolutionnary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Rössler W, Grob R, Fleischmann PN. The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01600-y. [DOI: 10.1007/s00359-022-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
AbstractEfficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.
Collapse
|
10
|
Muratore IB, Fandozzi EM, Traniello JFA. Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:325-344. [PMID: 35112161 DOI: 10.1007/s00359-021-01539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
Brain evolution is hypothesized to be driven by behavioral selection on neuroarchitecture. We developed a novel metric of relative neuroanatomical investments involved in performing tasks varying in sensorimotor and processing demands across polymorphic task-specialized workers of the leafcutter ant Atta cephalotes and quantified brain size and structure to examine their correlation with our computational approximations. Investment in multisensory and motor integration for task performance was estimated to be greatest for media workers, whose highly diverse repertoire includes leaf-quality discrimination and leaf-harvesting tasks that likely involve demanding sensory and motor processes. Confocal imaging revealed that absolute brain volume increased with worker size and functionally specialized compartmental scaling differed among workers. The mushroom bodies, centers of sensory integration and learning and memory, and the antennal lobes, olfactory input sites, were larger in medias than in minims (gardeners) and significantly larger than in majors ("soldiers"), both of which had lower scores for involvement of olfactory processing in the performance of their characteristic tasks. Minims had a proportionally larger central complex compared to other workers. These results support the hypothesis that variation in task performance influences selection for mosaic brain structure, the independent evolution of proportions of the brain composed of different neuropils.
Collapse
Affiliation(s)
- I B Muratore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| | - E M Fandozzi
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - J F A Traniello
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Graduate Program in Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
11
|
Grob R, Holland Cunz O, Grübel K, Pfeiffer K, Rössler W, Fleischmann PN. Rotation of skylight polarization during learning walks is necessary to trigger neuronal plasticity in Cataglyphis ants. Proc Biol Sci 2022; 289:20212499. [PMID: 35078368 PMCID: PMC8790360 DOI: 10.1098/rspb.2021.2499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 01/11/2023] Open
Abstract
Many animals use celestial cues for impressive navigational performances in challenging habitats. Since the position of the sun and associated skylight cues change throughout the day and season, it is crucial to correct for these changes. Cataglyphis desert ants possess a time-compensated skylight compass allowing them to navigate back to their nest using the shortest way possible. The ants have to learn the sun's daily course (solar ephemeris) during initial learning walks (LW) before foraging. This learning phase is associated with substantial structural changes in visual neuronal circuits of the ant's brain. Here, we test whether the rotation of skylight polarization during LWs is the necessary cue to induce learning-dependent rewiring in synaptic circuits in high-order integration centres of the ant brain. Our results show that structural neuronal changes in the central complex and mushroom bodies are triggered only when LWs were performed under a rotating skylight polarization pattern. By contrast, when naive ants did not perform LWs, but were exposed to skylight cues, plasticity was restricted to light spectrum-dependent changes in synaptic complexes of the lateral complex. The results identify sky-compass cues triggering learning-dependent versus -independent neuronal plasticity during the behavioural transition from interior workers to outdoor foragers.
Collapse
Affiliation(s)
- Robin Grob
- Behavioural Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Oliver Holland Cunz
- Behavioural Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Kornelia Grübel
- Behavioural Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Keram Pfeiffer
- Behavioural Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Wolfgang Rössler
- Behavioural Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Pauline N. Fleischmann
- Behavioural Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
13
|
Baudier KM, Bennett MM, Barrett M, Cossio FJ, Wu RD, O'Donnell S, Pavlic TP, Fewell JH. Soldier neural architecture is temporarily modality-specialized but poorly predicted by repertoire size in the stingless bee Tetragonisca angustula. J Comp Neurol 2021; 530:672-682. [PMID: 34773646 DOI: 10.1002/cne.25273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Individual heterogeneity within societies provides opportunities to test hypotheses about adaptive neural investment in the context of group cooperation. Here we explore neural investment in defense specialist soldiers of the eusocial stingless bee (Tetragonisca angustula) which are age sub-specialized on distinct defense tasks and have an overall higher lifetime task repertoire than other sterile workers within the colony. Consistent with predicted behavioral demands, soldiers had higher relative visual (optic lobe) investment than non-soldiers but only during the period when they were performing the most visually demanding defense task (hovering guarding). As soldiers aged into the less visually demanding task of standing guarding this difference disappeared. Neural investment was otherwise similar across all colony members. Despite having larger task repertoires, soldiers had similar absolute brain size and smaller relative brain size compared to other workers, meaning that lifetime task repertoire size was a poor predictor of brain size. Both high behavioral specialization in stable environmental conditions and reassignment across task groups during a crisis occur in T. angustula. The differences in neurobiology we report here are consistent with these specialized but flexible defense strategies. This work broadens our understanding of how neurobiology mediates age and morphological task specialization in highly cooperative societies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaitlin M Baudier
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA.,School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Meghan M Bennett
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
| | - Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Frank J Cossio
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Robert D Wu
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Theodore P Pavlic
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA.,School of Complex Adaptive Systems, Arizona State University, Tempe, AZ, USA
| | - Jennifer H Fewell
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
14
|
Finke V, Baracchi D, Giurfa M, Scheiner R, Avarguès-Weber A. Evidence of cognitive specialization in an insect: proficiency is maintained across elemental and higher-order visual learning but not between sensory modalities in honey bees. J Exp Biol 2021; 224:273769. [PMID: 34664669 DOI: 10.1242/jeb.242470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022]
Abstract
Individuals differing in their cognitive abilities and foraging strategies may confer a valuable benefit to their social groups as variability may help responding flexibly in scenarios with different resource availability. Individual learning proficiency may either be absolute or vary with the complexity or the nature of the problem considered. Determining if learning abilities correlate between tasks of different complexity or between sensory modalities has a high interest for research on brain modularity and task-dependent specialisation of neural circuits. The honeybee Apis mellifera constitutes an attractive model to address this question due to its capacity to successfully learn a large range of tasks in various sensory domains. Here we studied whether the performance of individual bees in a simple visual discrimination task (a discrimination between two visual shapes) is stable over time and correlates with their capacity to solve either a higher-order visual task (a conceptual discrimination based on spatial relations between objects) or an elemental olfactory task (a discrimination between two odorants). We found that individual learning proficiency within a given task was maintained over time and that some individuals performed consistently better than others within the visual modality, thus showing consistent aptitude across visual tasks of different complexity. By contrast, performance in the elemental visual-learning task did not predict performance in the equivalent elemental olfactory task. Overall, our results suggest the existence of cognitive specialisation within the hive, which may contribute to ecological social success.
Collapse
Affiliation(s)
- Valerie Finke
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.,Biozentrum, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - David Baracchi
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.,Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.,Institut Universitaire de France, Paris, France
| | - Ricarda Scheiner
- Biozentrum, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
15
|
Grob R, Heinig N, Grübel K, Rössler W, Fleischmann PN. Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants. J Comp Neurol 2021; 529:3882-3892. [PMID: 34313343 DOI: 10.1002/cne.25221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.
Collapse
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Niklas Heinig
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Pauline N Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, Reinberg D, Liebig J. Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant ( Harpegnathos saltator). Proc Biol Sci 2021; 288:20210141. [PMID: 33849311 DOI: 10.1098/rspb.2021.0141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kevin L Haight
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Jernigan CM, Zaba NC, Sheehan MJ. Age and social experience induced plasticity across brain regions of the paper wasp Polistes fuscatus. Biol Lett 2021; 17:20210073. [PMID: 33849349 PMCID: PMC8086938 DOI: 10.1098/rsbl.2021.0073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.
Collapse
Affiliation(s)
| | - Natalie C. Zaba
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Hurd PJ, Grübel K, Wojciechowski M, Maleszka R, Rössler W. Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining. Sci Rep 2021; 11:6852. [PMID: 33767244 PMCID: PMC7994413 DOI: 10.1038/s41598-021-86078-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.
Collapse
Affiliation(s)
- Paul J Hurd
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marek Wojciechowski
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
19
|
Koch SC, Nelson A, Hartenstein V. Structural aspects of the aging invertebrate brain. Cell Tissue Res 2021; 383:931-947. [PMID: 33409654 PMCID: PMC7965346 DOI: 10.1007/s00441-020-03314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
Aging is characterized by a decline in neuronal function in all animal species investigated so far. Functional changes are accompanied by and may be in part caused by, structurally visible degenerative changes in neurons. In the mammalian brain, normal aging shows abnormalities in dendrites and axons, as well as ultrastructural changes in synapses, rather than global neuron loss. The analysis of the structural features of aging neurons, as well as their causal link to molecular mechanisms on the one hand, and the functional decline on the other hand is crucial in order to understand the aging process in the brain. Invertebrate model organisms like Drosophila and C. elegans offer the opportunity to apply a forward genetic approach to the analysis of aging. In the present review, we aim to summarize findings concerning abnormalities in morphology and ultrastructure in invertebrate brains during normal aging and compare them to what is known for the mammalian brain. It becomes clear that despite of their considerably shorter life span, invertebrates display several age-related changes very similar to the mammalian condition, including the retraction of dendritic and axonal branches at specific locations, changes in synaptic density and increased accumulation of presynaptic protein complexes. We anticipate that continued research efforts in invertebrate systems will significantly contribute to reveal (and possibly manipulate) the molecular/cellular pathways leading to neuronal aging in the mammalian brain.
Collapse
Affiliation(s)
- Sandra C Koch
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Annie Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
| |
Collapse
|
20
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
21
|
Polilov AA, Makarova AA. Constant neuropilar ratio in the insect brain. Sci Rep 2020; 10:21426. [PMID: 33293636 PMCID: PMC7722839 DOI: 10.1038/s41598-020-78599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller's rule, and patterns specific for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no significant differences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant.
Collapse
Affiliation(s)
- Alexey A Polilov
- Department of Entomology, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Anastasia A Makarova
- Department of Entomology, Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
22
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
23
|
Yilmaz A, Grübel K, Spaethe J, Rössler W. Distributed plasticity in ant visual pathways following colour learning. Proc Biol Sci 2020; 286:20182813. [PMID: 30963920 DOI: 10.1098/rspb.2018.2813] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colour processing at early stages of visual pathways is a topic of intensive study both in vertebrate and invertebrate species. However, it is still unclear how colour learning and memory formation affects an insect brain in the peripheral processing stages and high-order integration centres, and whether associative colour experiences are reflected in plasticity of underlying neuronal circuits. To address this issue, we used Camponotus blandus ants as their proven colour learning and memory capabilities, precisely controllable age and experience, and already known central visual pathways offer unique access to analyse plasticity in neuronal circuits for colour vision in a miniature brain. The potential involvement of distinct neuropils-optic lobes (OLs), mushroom body (MB) input (collar) and output (vertical lobe), anterior optic tubercle (AOTU) and central complex (CX)-in associative colour experiences was assessed by quantification of volumetric and synaptic changes (MB collar) directly after colour conditioning and, 3 days later, after the establishment of long-term memory (LTM). To account for potential effects of non-associative light exposure, we compared neuronal changes in the brain of colour-naive foragers with those of foragers that had been exposed to light in a non-associative way. The results clearly show that the OLs, AOTU, and CX respond with plastic changes after colour learning and LTM formation. This suggests a complex neuronal network for colour learning and memory formation involving multiple brain levels. Such a colour-processing network probably represents an efficient design promoting fast and accurate behavioural decisions during orientation and navigation.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Kornelia Grübel
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Johannes Spaethe
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Wolfgang Rössler
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| |
Collapse
|
24
|
Trebels B, Dippel S, Schaaf M, Balakrishnan K, Wimmer EA, Schachtner J. Adult neurogenesis in the mushroom bodies of red flour beetles (Tribolium castaneum, HERBST) is influenced by the olfactory environment. Sci Rep 2020; 10:1090. [PMID: 31974446 PMCID: PMC6978414 DOI: 10.1038/s41598-020-57639-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Several studies showed adult persisting neurogenesis in insects, including the red flour beetle Tribolium castaneum, while it is absent in honeybees, carpenter ants, and vinegar flies. In our study, we focus on cell proliferation in the adult mushroom bodies of T. castaneum. We reliably labelled the progenies of the adult persisting mushroom body neuroblasts and determined the proliferation rate under several olfactory conditions within the first week after adult eclosion. We found at least two phases of Kenyon cell proliferation in the early adult beetle. Our results suggest that the generation of Kenyon cells during the first three days after adult eclosion is mainly genetically predetermined and a continuation of the developmental processes (nature), whereas from day four on proliferation seems to be mainly dependent on the odour environment (nurture). Considering that the mushroom bodies are linked to learning and memory, neurogenesis in the mushroom bodies is part of the remodelling of neuronal circuits leading to the adaption to the environment and optimization of behaviour.
Collapse
Affiliation(s)
- Björn Trebels
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Stefan Dippel
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Magdalina Schaaf
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Karthi Balakrishnan
- Department of Forest Zoology and Forest Conservation, Georg-August-University Göttingen, Büsgen-Institute, Büsgenweg 3, Göttingen, 37077, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Joachim Schachtner
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
- Clausthal University of Technology, Adolph-Roemer-Str. 2a, 38678, Clausthal-Zellerfeld, Germany.
| |
Collapse
|
25
|
Groh C, Rössler W. Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee. INSECTS 2020; 11:insects11010043. [PMID: 31936165 PMCID: PMC7023465 DOI: 10.3390/insects11010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/18/2023]
Abstract
Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.
Collapse
|
26
|
Jernigan CM, Halby R, Gerkin RC, Sinakevitch I, Locatelli F, Smith BH. Experience-dependent tuning of early olfactory processing in the adult honey bee, Apis mellifera. ACTA ACUST UNITED AC 2020; 223:jeb.206748. [PMID: 31767739 DOI: 10.1242/jeb.206748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Experience-dependent plasticity in the central nervous system allows an animal to adapt its responses to stimuli over different time scales. In this study, we explored the impacts of adult foraging experience on early olfactory processing by comparing naturally foraging honey bees, Apis mellifera, with those that experienced a chronic reduction in adult foraging experience. We placed age-matched sets of sister honey bees into two different olfactory conditions, in which animals were allowed to forage ad libitum In one condition, we restricted foraging experience by placing honey bees in a tent in which both sucrose and pollen resources were associated with a single odor. In the second condition, honey bees were allowed to forage freely and therefore encounter a diversity of naturally occurring resource-associated olfactory experiences. We found that honey bees with restricted foraging experiences had altered antennal lobe development. We measured the glomerular responses to odors using calcium imaging in the antennal lobe, and found that natural olfactory experience also enhanced the inter-individual variation in glomerular response profiles to odors. Additionally, we found that honey bees with adult restricted foraging experience did not distinguish relevant components of an odor mixture in a behavioral assay as did their freely foraging siblings. This study highlights the impacts of individual experience on early olfactory processing at multiple levels.
Collapse
Affiliation(s)
| | - Rachael Halby
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Irina Sinakevitch
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Fernando Locatelli
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
27
|
Cabirol A, Haase A. Automated quantification of synaptic boutons reveals their 3D distribution in the honey bee mushroom body. Sci Rep 2019; 9:19322. [PMID: 31852957 PMCID: PMC6920473 DOI: 10.1038/s41598-019-55974-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/05/2019] [Indexed: 01/10/2023] Open
Abstract
Synaptic boutons are highly plastic structures undergoing experience-dependent changes in their number, volume, and shape. Their plasticity has been intensively studied in the insect mushroom bodies by manually counting the number of boutons in small regions of interest and extrapolating this number to the volume of the mushroom body neuropil. Here we extend this analysis to the synaptic bouton distribution within a larger subregion of the mushroom body olfactory neuropil of honey bees (Apis mellifera). This required the development of an automated method combining two-photon imaging with advanced image post-processing and multiple threshold segmentation. The method was first validated in subregions of the mushroom body olfactory and visual neuropils. Further analyses in the olfactory neuropil suggested that previous studies overestimated the number of synaptic boutons. As a reason for that, we identified boundaries effects in the small volume samples. The application of the automated analysis to larger volumes of the mushroom body olfactory neuropil revealed a corrected average density of synaptic boutons and, for the first time, their 3D spatial distribution. This distribution exhibited a considerable heterogeneity. This additional information on the synaptic bouton distribution provides the basis for future studies on brain development, symmetry, and plasticity.
Collapse
Affiliation(s)
- Amélie Cabirol
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy. .,Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
28
|
Adaptations during Maturation in an Identified Honeybee Interneuron Responsive to Waggle Dance Vibration Signals. eNeuro 2019; 6:ENEURO.0454-18.2019. [PMID: 31451603 PMCID: PMC6731536 DOI: 10.1523/eneuro.0454-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.
Collapse
|
29
|
Guan C, Egertová M, Perry CJ, Chittka L, Chittka A. Temporal correlation of elevated PRMT1 gene expression with mushroom body neurogenesis during bumblebee brain development. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:57-69. [PMID: 31039373 DOI: 10.1016/j.jinsphys.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Neural development depends on the controlled proliferation and differentiation of neural precursors. In holometabolous insects, these processes must be coordinated during larval and pupal development. Recently, protein arginine methylation has come into focus as an important mechanism of controlling neural stem cell proliferation and differentiation in mammals. Whether a similar mechanism is at work in insects is unknown. We investigated this possibility by determining the expression pattern of three protein arginine methyltransferase mRNAs (PRMT1, 4 and 5) in the developing brain of bumblebees by in situ hybridisation. We detected expression in neural precursors and neurons in functionally important brain areas throughout development. We found markedly higher expression of PRMT1, but not PRMT4 and PRMT5, in regions of mushroom bodies containing dividing cells during pupal stages at the time of active neurogenesis within this brain area. At later stages of development, PRMT1 expression levels were found to be uniform and did not correlate with actively dividing cells. Our study suggests a role for PRMT1 in regulating neural precursor divisions in the mushroom bodies of bumblebees during the period of neurogenesis.
Collapse
Affiliation(s)
- Cui Guan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Alexandra Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
30
|
Baudier KM, Ostwald MM, Grüter C, Segers FHID, Roubik DW, Pavlic TP, Pratt SC, Fewell JH. Changing of the guard: mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behav Ecol 2019. [DOI: 10.1093/beheco/arz047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Task allocation is a central challenge of collective behavior in a variety of group-living species, and this is particularly the case for the allocation of social insect workers for group defense. In social insects, both benefits and considerable costs are associated with the production of specialized soldiers. We asked whether colonies mitigate costs of production of specialized soldiers by simultaneously employing behavioral flexibility in nonspecialist workers that can augment defense capabilities at short time scales. We studied colonies of the stingless bee Tetragonisca angustula, a species that has 2 discrete nest-guarding tasks typically performed by majors: hovering guarding and standing guarding. Majors showed age polyethism across nest-guarding tasks, first hovering and then changing to the task of standing guarding after 1 week. Colonies were also able to reassign minors to guarding tasks when majors were experimentally removed. Replacement guards persisted in nest defense tasks until colonies produced enough majors to return to their initial state. Tetragonisca angustula colonies thus employed a coordinated set of specialization strategies in nest defense: morphologically specialized soldiers, age polyethism among soldiers within specific guarding tasks, and rapid flexible reallocation of nonspecialists to guarding during soldier loss. This mixed strategy achieves the benefits of a highly specialized defensive force while maintaining the potential for rapid reinforcement when soldiers are lost or colonies face unexpectedly intense attack.
Collapse
Affiliation(s)
| | | | - Christoph Grüter
- Institute of Organismic and Molecular Evolution, Biozentrum I, University of Mainz, Mainz, Germany
| | - Francisca H I D Segers
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama, Republic of Panama
| | - Theodore P Pavlic
- Decision Systems Engineering, Arizona State University, Tempe, AZ
- School of Sustainability, Arizona State University, Wrigley Hall, Tempe, AZ, USA
| | - Stephen C Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
31
|
Kraft N, Spaethe J, Rössler W, Groh C. Neuronal Plasticity in the Mushroom-Body Calyx of Bumble Bee Workers During Early Adult Development. Dev Neurobiol 2019; 79:287-302. [PMID: 30963700 DOI: 10.1002/dneu.22678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Division of labor among workers is a key feature of social insects and frequently characterized by an age-related transition between tasks, which is accompanied by considerable structural changes in higher brain centers. Bumble bees (Bombus terrestris), in contrast, exhibit a size-related rather than an age-related task allocation, and thus workers may already start foraging at two days of age. We ask how this early behavioral maturation and distinct size variation are represented at the neuronal level and focused our analysis on the mushroom bodies (MBs), brain centers associated with sensory integration, learning and memory. To test for structural neuronal changes related to age, light exposure, and body size, whole-mount brains of age-marked workers were dissected for synapsin immunolabeling. MB calyx volumes, densities, and absolute numbers of olfactory and visual projection neuron (PN) boutons were determined by confocal laser scanning microscopy and three-dimensional image analyses. Dark-reared bumble bee workers showed an early age-related volume increase in olfactory and visual calyx subcompartments together with a decrease in PN-bouton density during the first three days of adult life. A 12:12 h light-dark cycle did not affect structural organization of the MB calyces compared to dark-reared individuals. MB calyx volumes and bouton numbers positively correlated with body size, whereas bouton density was lower in larger workers. We conclude that, in comparison to the closely related honey bees, neuronal maturation in bumble bees is completed at a much earlier stage, suggesting a strong correlation between neuronal maturation time and lifestyle in both species.
Collapse
Affiliation(s)
- Nadine Kraft
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| | - Claudia Groh
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| |
Collapse
|
32
|
Gordon DG, Zelaya A, Arganda-Carreras I, Arganda S, Traniello JFA. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLoS One 2019; 14:e0213618. [PMID: 30917163 PMCID: PMC6436684 DOI: 10.1371/journal.pone.0213618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Strongly polyphenic social insects provide excellent models to examine the neurobiological basis of division of labor. Turtle ants, Cephalotes varians, have distinct minor worker, soldier, and reproductive (gyne/queen) morphologies associated with their behavioral profiles: small-bodied task-generalist minors lack the phragmotic shield-shaped heads of soldiers, which are specialized to block and guard the nest entrance. Gynes found new colonies and during early stages of colony growth overlap behaviorally with soldiers. Here we describe patterns of brain structure and synaptic organization associated with division of labor in C. varians minor workers, soldiers, and gynes. We quantified brain volumes, determined scaling relationships among brain regions, and quantified the density and size of microglomeruli, synaptic complexes in the mushroom body calyxes important to higher-order processing abilities that may underpin behavioral performance. We found that brain volume was significantly larger in gynes; minor workers and soldiers had similar brain sizes. Consistent with their larger behavioral repertoire, minors had disproportionately larger mushroom bodies than soldiers and gynes. Soldiers and gynes had larger optic lobes, which may be important for flight and navigation in gynes, but serve different functions in soldiers. Microglomeruli were larger and less dense in minor workers; soldiers and gynes did not differ. Correspondence in brain structure despite differences in soldiers and gyne behavior may reflect developmental integration, suggesting that neurobiological metrics not only advance our understanding of brain evolution in social insects, but may also help resolve questions of the origin of novel castes.
Collapse
Affiliation(s)
- Darcy Greer Gordon
- Department of Biology, Boston University, Boston, MA, United States of America
- * E-mail:
| | - Alejandra Zelaya
- Department of Biology, Boston University, Boston, MA, United States of America
| | - Ignacio Arganda-Carreras
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Computer Science and Artificial Intelligence, Basque Country University, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Sara Arganda
- Department of Biology, Boston University, Boston, MA, United States of America
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States of America
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States of America
| |
Collapse
|
33
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
34
|
Sheehan ZBV, Kamhi JF, Seid MA, Narendra A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J Comp Neurol 2019; 527:1261-1277. [PMID: 30592041 DOI: 10.1002/cne.24617] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Animals are active at different times of the day. Each temporal niche offers a unique light environment, which affects the quality of the available visual information. To access reliable visual signals in dim-light environments, insects have evolved several visual adaptations to enhance their optical sensitivity. The extent to which these adaptations reflect on the sensory processing and integration capabilities within the brain of a nocturnal insect is unknown. To address this, we analyzed brain organization in congeneric species of the Australian bull ant, Myrmecia, that rely predominantly on visual information and range from being strictly diurnal to strictly nocturnal. Weighing brains and optic lobes of seven Myrmecia species, showed that after controlling for body mass, the brain mass was not significantly different between diurnal and nocturnal ants. However, the optic lobe mass, after controlling for central brain mass, differed between day- and night-active ants. Detailed volumetric analyses showed that the nocturnal ants invested relatively less in the primary visual processing regions but relatively more in both the primary olfactory processing regions and in the integration centers of visual and olfactory sensory information. We discuss how the temporal niche occupied by each species may affect cognitive demands, thus shaping brain organization among insects active in dim-light conditions.
Collapse
Affiliation(s)
- Zachary B V Sheehan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc A Seid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Biology Department, Neuroscience Program, The University of Scranton, Scranton, Pennsylvania
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:13-32. [DOI: 10.1007/s00359-019-01315-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
36
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
37
|
Sugie A, Marchetti G, Tavosanis G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev 2018; 13:14. [PMID: 29960596 PMCID: PMC6026517 DOI: 10.1186/s13064-018-0111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neurons extend and retract dynamically their neurites during development to form complex morphologies and to reach out to their appropriate synaptic partners. Their capacity to undergo structural rearrangements is in part maintained during adult life when it supports the animal's ability to adapt to a changing environment or to form lasting memories. Nonetheless, the signals triggering structural plasticity and the mechanisms that support it are not yet fully understood at the molecular level. Here, we focus on the nervous system of the fruit fly to ask to which extent activity modulates neuronal morphology and connectivity during development. Further, we summarize the evidence indicating that the adult nervous system of flies retains some capacity for structural plasticity at the synaptic or circuit level. For simplicity, we selected examples mostly derived from studies on the visual system and on the mushroom body, two regions of the fly brain with extensively studied neuroanatomy.
Collapse
Affiliation(s)
- Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, 951-8585 Japan
- Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | | | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
38
|
Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx. eNeuro 2018; 5:eN-NWR-0128-18. [PMID: 29938214 PMCID: PMC6011417 DOI: 10.1523/eneuro.0128-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.
Collapse
|
39
|
Li L, MaBouDi H, Egertová M, Elphick MR, Chittka L, Perry CJ. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee. Proc Biol Sci 2018; 284:rspb.2017.1323. [PMID: 28978727 PMCID: PMC5647297 DOI: 10.1098/rspb.2017.1323] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/21/2017] [Indexed: 12/02/2022] Open
Abstract
Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory.
Collapse
Affiliation(s)
- Li Li
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - HaDi MaBouDi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
40
|
Cabirol A, Cope AJ, Barron AB, Devaud JM. Relationship between brain plasticity, learning and foraging performance in honey bees. PLoS One 2018; 13:e0196749. [PMID: 29709023 PMCID: PMC5927457 DOI: 10.1371/journal.pone.0196749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.
Collapse
Affiliation(s)
- Amélie Cabirol
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
- * E-mail: (AC); (ABB)
| | - Alex J. Cope
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail: (AC); (ABB)
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| |
Collapse
|
41
|
Synaptic organization and division of labor in the exceptionally polymorphic ant Pheidole rhea. Neurosci Lett 2018; 676:46-50. [PMID: 29625207 DOI: 10.1016/j.neulet.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/18/2018] [Accepted: 04/01/2018] [Indexed: 11/22/2022]
Abstract
Social insect polyphenisms provide models to examine the neural basis of division of labor and anatomy of the invertebrate social brain. Worker size-related behavior is hypothesized to enhance task performance, raising questions concerning the integration of morphology, behavior, and cellular neuroarchitecture, and how variation in sensory inputs and cognitive demands of behaviorally differentiated workers is reflected in higher-order processing ability. We used the highly polymorphic ant Pheidole rhea, which has three distinct worker size classes - minors, soldiers, and supersoldiers - to examine variation in synaptic circuitry across worker size and social role. We hypothesized that the density and size of synaptic complexes (microglomeruli, MG) would be positively associated with behavioral repertoire and the relative size of the mushroom bodies (MB). Supersoldiers had significantly larger and less dense MG in the lip (olfactory region) of the MB calyx (MBC), and larger MG in the collar (visual region) compared to minors. Soldiers were intermediate in synaptic phenotype: they did not differ significantly in MG density from minors and supersoldiers, had MG of similar size to minors in the lip, and did not differ from these two worker groups in MG size in the collar. Results suggest a complex relationship between MG density, size, behavior, and worker body size involving a conserved and plastic neurobiological development plan, although workers show strong variation in size and social role.
Collapse
|
42
|
Lichtenstein L, Grübel K, Spaethe J. Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera. BMC DEVELOPMENTAL BIOLOGY 2018; 18:1. [PMID: 29382313 PMCID: PMC5791347 DOI: 10.1186/s12861-018-0162-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022]
Abstract
Background The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity. In honey bees, males and females possess different ommatidial types forming distinct retinal mosaics. However, data are lacking on retinal ontogeny and the mechanisms by which the eyes are patterned. In this study, we investigated the intrinsic temporal and circadian expression patterns of the opsins that give rise to the ultraviolet, blue and green sensitive photoreceptors, as well as the morphological maturation of the retina during pupal development of honey bees. Results qPCR and histological labeling revealed that temporal opsin mRNA expression differs between sexes and correlates with rhabdom elongation during photoreceptor development. In the first half of the pupal stage, when the rhabdoms of the photoreceptors are still short, worker and (dorsal) drone retinae exhibit similar expression patterns with relatively high levels of UV (UVop) and only marginal levels of blue (BLop) and green (Lop1) opsin mRNA. In the second half of pupation, when photoreceptors and rhabdoms elongate, opsin expression in workers becomes dominated by Lop1 mRNA. In contrast, the dorsal drone eye shows high expression levels of UVop and BLop mRNA, whereas Lop1 mRNA level decreases. Interestingly, opsin expression levels increase up to 22-fold during early adult life. We also found evidence that opsin expression in adult bees is under the control of the endogenous clock. Conclusions Our data indicate that the formation of the sex-specific retinal composition of photoreceptors takes place during the second half of the pupal development, and that opsin mRNA expression levels continue to increase in young bees, which stands in contrast to Drosophila, where the highest expression levels are found during the late pupal stage and remain constant in adults. From an evolutionary perspective, we hypothesize that the delayed retinal maturation during the early adult phase is linked to the delayed transition from indoor to outdoor activities in bees, when vision becomes important.
Collapse
Affiliation(s)
- Leonie Lichtenstein
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany.
| | - Kornelia Grübel
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Peng YC, Yang EC. Reply to ‘Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016)’. Sci Rep 2017; 7:11286. [PMID: 28883629 PMCID: PMC5589736 DOI: 10.1038/s41598-017-11858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 11/09/2022] Open
Abstract
In a comment on our Article “Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies”, Rössler et al. assert that our reported counts are overall lower than previously reported due to the use of automated quantification. We address these issues in this reply.
Collapse
|
44
|
Heinze S. Unraveling the neural basis of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2017; 24:58-67. [PMID: 29208224 PMCID: PMC6186168 DOI: 10.1016/j.cois.2017.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
45
|
Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W. The Role of Celestial Compass Information in Cataglyphis Ants during Learning Walks and for Neuroplasticity in the Central Complex and Mushroom Bodies. Front Behav Neurosci 2017; 11:226. [PMID: 29184487 PMCID: PMC5694495 DOI: 10.3389/fnbeh.2017.00226] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022] Open
Abstract
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.
Collapse
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Pauline N Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Rüdiger Wehner
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Steijven K, Spaethe J, Steffan-Dewenter I, Härtel S. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food. PeerJ 2017; 5:e3858. [PMID: 29085743 PMCID: PMC5657415 DOI: 10.7717/peerj.3858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.
Collapse
Affiliation(s)
- Karin Steijven
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany.,Lectorat Bee Health-Domain Animals and Business, Van Hall Larenstein, University of Applied Sciences, Leeuwarden, Netherlands
| | - Johannes Spaethe
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - Stephan Härtel
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Gordon DG, Zelaya A, Ronk K, Traniello JFA. Interspecific comparison of mushroom body synaptic complexes of dimorphic workers in the ant genus Pheidole. Neurosci Lett 2017; 662:110-114. [PMID: 29024727 DOI: 10.1016/j.neulet.2017.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/03/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
Social insects may have morphologically and behaviorally specialized workers that vary in requirements for sensory information processing, making them excellent systems to examine the relationship between brain structure and behavior. The density and size of synaptic complexes (microglomeruli, MG) in the mushroom bodies (MB) have served as proxies for processing ability and synaptic plasticity, and have been shown to vary among insect species that differ in behavioral complexity. To understand the relationship between behavioral specialization and synaptic structure, we examined age-related changes in MG density and size between minor worker and soldier subcastes in two species of Pheidole ants, P. dentata and P. morrisi, that differ in behavior. We hypothesized that task-diverse minor workers would have more densely packed MG than soldiers, and that species-specific differences in soldier repertories would be reflected in MG structure. We also examined MG variation in young and mature minor workers and soldiers, predicting that as workers age and develop behaviorally, MG would decrease in density in both subcastes due to synaptic pruning. Results support the hypothesis that MG density in the lip (olfactory) and collar (visual) regions of the MBs decrease with age in association with increases in bouton size in the lip. However, minors had significantly lower densities of MG in the lip than soldiers, suggesting MG may not show structural variation according to subcaste-related differences in cognitive demands in either species.
Collapse
Affiliation(s)
- Darcy G Gordon
- Department of Biology, Boston University, 5 Cummington Mall, Boston MA, 02215, USA.
| | - Alejandra Zelaya
- Department of Biology, Boston University, 5 Cummington Mall, Boston MA, 02215, USA
| | - Katherine Ronk
- Department of Biology, Boston University, 5 Cummington Mall, Boston MA, 02215, USA
| | - James F A Traniello
- Department of Biology, Boston University, 5 Cummington Mall, Boston MA, 02215, USA; Graduate Program for Neuroscience, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| |
Collapse
|
48
|
Cabirol A, Brooks R, Groh C, Barron AB, Devaud JM. Experience during early adulthood shapes the learning capacities and the number of synaptic boutons in the mushroom bodies of honey bees ( Apis mellifera). ACTA ACUST UNITED AC 2017; 24:557-562. [PMID: 28916631 PMCID: PMC5602345 DOI: 10.1101/lm.045492.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an impoverished environment lacking some of the sensory and social interactions present in the hive. In parallel, the overall number of synaptic boutons increased within the MB olfactory neuropil, whose volume remained unaffected. This suggests that experience of the rich in-hive environment promotes MB maturation and the development of MB-dependent learning capacities.
Collapse
Affiliation(s)
- Amélie Cabirol
- Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062 France.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Rufus Brooks
- Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062 France
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Jean-Marc Devaud
- Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062 France
| |
Collapse
|
49
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|
50
|
Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016). Sci Rep 2017; 7:9786. [PMID: 28852015 PMCID: PMC5575136 DOI: 10.1038/s41598-017-09967-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
A recent study by Peng and Yang in Scientific Reports using confocal-microscopy based automated quantification of anti-synapsin labeled microglomeruli in the mushroom bodies of honeybee brains reports potentially incorrect numbers of microglomerular densities. Whereas several previous studies using visually supervised or automated counts from confocal images and analyses of serial 3D electron-microscopy data reported consistent numbers of synaptic complexes per volume, Peng and Yang revealed extremely low numbers differing by a factor of 18 or more from those obtained in visually supervised counts, and by a factor 22–180 from numbers in two other studies using automated counts. This extreme discrepancy is especially disturbing as close comparison of raw confocal images of anti-synapsin labeled whole-mount brain preparations are highly similar across these studies. We conclude that these discrepancies may reside in potential misapplication of confocal imaging followed by erroneous use of automated image analysis software. Consequently, the reported microglomerular densities during maturation and after manipulation by insecticides require validation by application of appropriate confocal imaging methods and analyses tools that rely on skilled observers. We suggest several improvements towards more reliable or standardized automated or semi-automated synapse counts in whole mount preparations of insect brains.
Collapse
|