1
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Muñoz-Cueto JA. Does the activation of sea bass GnIH receptor modulate GnRH receptor signaling? Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111693. [PMID: 38969290 DOI: 10.1016/j.cbpa.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Previous studies have revealed the stimulatory and inhibitory actions of gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH) on the control of reproduction in European sea bass (Dicentrarchus labrax) and other vertebrates, respectively. However, information on the possible interactions between GnRH and GnIH on cell signaling is sparse in vertebrates. In the current study, we investigated if activation of sea bass GnIH receptor (GnIHR) can interfere with GnRH receptor II-1a (GnRHR-II-1a) involving the PKA pathway. Our results showed that GnIH and GnRH functioned via their cognate receptors, respectively. However, it appears that neither GnIH1 nor GnIH2 can block GnRH/GnRHR-II-1a-induced PKA signaling in sea bass. This is the first study to examine the potential interactions of GnIH with GnRH receptor signaling in teleosts. Further research seems necessary to shed light on unknown interactions in other signaling pathways and other GnIH/GnRH receptors involved in the physiological functions of these two relevant neuropeptides, not only in sea bass but also in other species.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
2
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
3
|
Chen J, Li Y, Zhang W, Wu Y, Zhao L, Huang X, Fang Y, Wang B. Molecular characterization and ontogenetic expression profiles of LPXRFa and its receptor in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2024; 345:114392. [PMID: 37858870 DOI: 10.1016/j.ygcen.2023.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Investigations concerning the LPXRFa system are rarely conducted in flatfish species. Here, we first identified and characterized lpxrfa and its cognate receptor lpxrfa-r genes in the Japanese flounder (Paralichthys olivaceus). The coding DNA sequence of lpxrfa was 579 bp in length, wich encoded a 192-aa preprohormone that can produce three mature LPXRFa peptides. The open reading frame (ORF) of lpxrfa-r was 1446 bp in size, and encoded a 481-aa LPXRFa-R protein that encompassed seven hydrophobic transmembrane domains. Subsequently, tissue distribution expression profiles of lpxrfa and lpxrfa-r transcripts were assayed by quantitative real-time PCR. The results indicated that expressions of lpxrfa transcripts were detected at the highest levels in the brain of both females and males, however, lpxrfa-r transcripts were remarkablely expressed in the brain tissue of female fish and in the testis tissue of male fish. Furthermore, transcript levels of lpxrfa and lpxrfa-r genes were investigated during early ontogenetic development, with the maximum expression levels at 30 days post-hatching. Overall, these data contribute to providing preliminary proof for the existence and structure of the LPXRFa system in Japanese flounder, and the study is just the foundation for researching physiological function of LPXRFa system in this species.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yuru Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanqing Wu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Limiao Zhao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Narwal R, Laxmi RK, Rawat VS, Sehgal N. Molecular cloning and bioinformatic characterization of Gonadotropin Inhibitory Hormone (GnIH) and its receptors in the freshwater murrel, Channa punctatus (Bloch, 1793). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:711-736. [PMID: 37462854 DOI: 10.1007/s10695-023-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Gonadotropin inhibitory hormone belonging to the RFamide peptide family, a hypothalamic neuropeptide, regulates Hypothalamus-pituitary-gonadal (HPG) axis and inhibits gonadal development. GnIH polypeptide precursor has an Arg-Phe-NH2 (RFamide) motif at the C-terminal, which has LPXRF (X = Q or L) domain. The actions of GnIH are mediated through G-protein coupled receptors and upto three receptors have been characterized in many teleosts. GnIH exerts its inhibitory effect on the HPG axis through direct interaction with GnRH and Kisspeptin neurons in the brain and acts directly on the pituitary gonadotrophs. To decipher the role of GnIH in Indian freshwater murrel, Channa punctatus, we sequenced the cDNA encoding GnIH and its two receptors. The identified GnIH mRNA encodes three RFamide peptides having -MPMRF, -MPQRF, and -LPQRFamide motifs. In silico analysis of the amino acid sequence of GnIH exhibits its molecular and functional properties and the protein-protein interaction with significant factors regulating the HPG axis. The 3-D structure of GnIH and its receptors, provides more relevant information about the active residues of these proteins which might be involved in their functioning and interaction with other proteins. Molecular dynamic simulation of GnIH protein has provided more insight into its dynamic behavior. The expression of GnIH and its receptors, shows an inverse correlation with gonadal development during the annual reproductive cycle.
Collapse
Affiliation(s)
- Ritu Narwal
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | | | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India, 110007.
| |
Collapse
|
5
|
Paullada-Salmerón JA, Wang B, Muñoz-Cueto JA. Spexin in the European sea bass, Dicentrarchus labrax: Characterization, brain distribution, and interaction with Gnrh and Gnih neurons. J Comp Neurol 2023; 531:314-335. [PMID: 36273249 PMCID: PMC10092896 DOI: 10.1002/cne.25428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Spexin (Spx) is a recently characterized neuropeptide implicated in multiple physiological processes in vertebrates, including reproduction, food intake, and regulation of anxiety and stress. Two orthologs (Spx1 and Spx2) are present in some nonmammalian vertebrates, including teleosts. However, information on the distribution of Spx in the brain and its interactions with other neuroendocrine systems in fish is still scarce. In this work, we cloned and sequenced the sea bass (Dicentrarchus labrax) Spx1, which included a 27 aa signal peptide and a mature peptide of 14 aa that is C-terminal amidated. spx1 transcripts were higher in the diencephalon/caudal preoptic area/hypothalamus and medulla but were also detected in the olfactory bulbs, telencephalon/rostral preoptic area, optic tectum/tegmentum, cerebellum/pons, and pituitary. The immunohistochemical study revealed Spx1-immunoreactive (ir) cells in different nuclei of the preoptic area, habenula, prethalamus, mesencephalic tegmentum and in the proximal pars distalis (PPD) and pars intermedia of the pituitary. Spx1-ir fibers were widely distributed throughout the brain being particularly abundant in the midbrain and hindbrain, in close contact with tegmental gonadotropin-releasing hormone 2 (Gnrh2) cells and isthmic gonadotropin-inhibitory hormone (Gnih) cells of the secondary gustatory nucleus. Moreover, Gnih fibers were observed innervating Spx1-ir cells lying in several subdivisions of the magnocellular preoptic nucleus and in the lateral nucleus of the valvula, whereas ventrolateral prethalamic Spx1-ir cells received immunopositive Gnrh2 fibers. In the pituitary, Gnrh1-ir fibers were observed closely associated with Spx1-ir cells of the PPD. These results suggest that Spx1 could be involved in both reproductive and nonreproductive (i.e., food intake, behavior) functions in sea bass.
Collapse
Affiliation(s)
- José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.,Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain.,European University of the Seas (SEA-EU), Cádiz, Spain
| | - Bin Wang
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.,Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.,Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain.,European University of the Seas (SEA-EU), Cádiz, Spain
| |
Collapse
|
6
|
Comparative insights of the neuroanatomical distribution of the gonadotropin-inhibitory hormone (GnIH) in fish and amphibians. Front Neuroendocrinol 2022; 65:100991. [PMID: 35227766 DOI: 10.1016/j.yfrne.2022.100991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
Abstract
This paper intends to apprise the reader regarding the existing knowledge on the neuroanatomical distribution of GnIH-like peptides in in fish and amphibians in both the adult stage and during ontogenesis. The neuroanatomical distribution of GnIH-like neuropeptides appears quite different in the studied species, irrespective of the evolutionary closeness. The topology of the olfactory bulbs can affect the distribution of neurons producing the GnIH-like peptides, with a tendency to show a more extended distribution into the brains with pedunculate olfactory bulbs. Therefore, the variability of the GnIH-like system could also reflect specific adaptations rather than evolutionary patterns. The onset of GnIH expression was detected very early during development suggesting its precocious roles, and the neuroanatomical distribution of GnIH-like elements showed a generally increasing trend. This review highlights some critical technical aspects and the need to increase the number of species to be studied to obtain a complete neuroanatomical picture of the GnIH-like system.
Collapse
|
7
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Gómez A, Muñoz-Cueto JA. Signaling pathways activated by sea bass gonadotropin-inhibitory hormone peptides in COS-7 cells transfected with their cognate receptor. Front Endocrinol (Lausanne) 2022; 13:982246. [PMID: 36051397 PMCID: PMC9424679 DOI: 10.3389/fendo.2022.982246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
- *Correspondence: José A. Muñoz-Cueto,
| |
Collapse
|
9
|
Wang B, Zhang Y, Cui A, Xu Y, Jiang Y, Wang L, Liu X. LPXRFa and its receptor in yellowtail kingfish (Seriola lalandi): Molecular cloning, ontogenetic expression profiles, and stimulatory effects on growth hormone and gonadotropin gene expression. Gen Comp Endocrinol 2021; 312:113872. [PMID: 34324840 DOI: 10.1016/j.ygcen.2021.113872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Despite its functional significance in mammals and birds, the biological role of gonadotropin-inhibitory hormone (GnIH) in reproduction is still far from being fully understood in teleosts. In the current study, we have identified LPXRFa, the piscine ortholog of GnIH, and its cognate receptor (LPXRFa-R) in yellowtail kingfish (YTK), which is considered as a promising species for aquaculture industry worldwide. The YTK cDNA sequence of lpxrfa was 534 base pair (bp) in length and encoded a 178-amino acids (aa) preprohormone. The LPXRFa precursor comprised three putative peptide sequences that included -MPMRF, -MPQRF, or -LPERL motifs at the C-termini, respectively. The YTK lpxrfa-r cDNA sequence was composed of 1265 bp that gave rise to a LPXRFa-R of 420 aa, encompassing the characteristic seven hydrophobic transmembrane domains. In males, both lpxrfa and lpxrfa-r transcripts could be detected at high levels in the brain and testis. In females, a noteworthy expression of lpxrfa was observed in the brain and ovary, while the expression of lpxrfa-r was especially evident only in the brain. To study the ontogeny of LPXRFa system, transcript levels were also investigated during early life stages. Variable expression of the LPXRFa system was observed during all stages of YTK embryogenesis. The highest expression of lpxrfa and lpxrfa-r were noticed at 7 dph and 15 dph, respectively. Furthermore, LPXRFa peptides stimulated growth hormone (gh), luteinizing hormone (lhβ) and follicle-stimulating hormone (fshβ) gene expression from the pituitary. Taken together, our results provide initial evidence for the existence of the LPXRFa system in yellowtail kingfish and suggest its possible involvement at early development and reproductive functions.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Liang Wang
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
10
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
12
|
Ohga H, Matsuyama M. Effects of LPXRFamide peptides on chub mackerel gonadotropin secretion. Biol Reprod 2021; 105:1179-1188. [PMID: 34198332 DOI: 10.1093/biolre/ioab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH), a neuropeptide, suppresses gonadotropin (GTH) secretion in birds and mammals. In fish, the GnIH homolog LPXRFamide (LPXRFa) produces mature peptides with species-dependent effects on sexual reproduction. Here, we investigated the effects of LPXRFa on GTH secretion in the chub mackerel (cm; Scomber japonicus). We cloned cmlpxrfa (603 bp) and cmlpxrfa-r (1,416 bp). Additionally, we isolated lpxrfa from the bluefin tuna (Thunnus orientalis) to confirm the conservation of the LPXRFa mature sequence. Phylogenetic analysis showed that the LPXRFa precursor protein produces three mature peptides, LPXRFa-1, -2, and - 3, in both species. Reverse transcription-quantitative PCR revealed that cmlpxrfa is expressed in the hypothalamus and thalamus and midbrain (T.MB), and sexual differences were observed. Receptor expression was observed in the pre-optic area, hypothalamus, T.MB, and pituitary. Female hypothalamic lpxrfa expression did not change during puberty. Reporter gene assay showed that LPXRFa induced receptor activation via the CRE and SRE signaling pathways. However, in the presence of forskolin, an intracellular cyclic AMP enhancer, none of the LPXRFa could suppress receptor activity. The in vitro bioassay results showed that gonadotropin-releasing hormone-1 (GnRH1) had no effect on follicle-stimulating hormone (FSH) secretion, whereas the three LPXRFa significantly increased FSH secretion in pituitary cells from male chub mackerel. Contrarily, GnRH1 and three LPXRFa significantly increased luteinizing hormone (LH) secretion. The in vivo administration of LPXRFa had no effect on fshb and lhb expression in pre-pubertal and mature male chub mackerel. Overall, cmLPXRFa lacks the ability to suppress GTH secretion but can promote GTH secretion.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Aqua-Bioresource Innovation Center (ABRIC) Karatsu satellite, Kyushu University, Saga 847-0132, Japan
| | | |
Collapse
|
13
|
Beriotto AC, Di Yorio MP, Pérez Sirkin DI, Toledo-Solis FJ, Peña-Marín ES, Álvarez-González CA, Tsutsui K, Vissio PG. Gonadotropin-inhibitory hormone (GnIH) distribution in the brain of the ancient fish Atractosteus tropicus (Holostei, Lepisosteiformes). Gen Comp Endocrinol 2020; 299:113623. [PMID: 32976836 DOI: 10.1016/j.ygcen.2020.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
The Holostei group occupies a critical phylogenetic position as the sister group of the Teleostei. However, little is known about holostean pituitary anatomy or brain distribution of important reproductive neuropeptides, such as the gonadotropin-inhibitory hormone (GnIH). Thus, the present study set out to characterize the structure of the pituitary and to localize GnIH-immunoreactive cells in the brain of Atractosteus tropicus from the viewpoint of comparative neuroanatomy. Juveniles of both sexes were processed for general histology and immunohistochemistry. Based on the differences in cell organization, morphology, and staining properties, the neurohypophysis and three regions in the adenohypophysis were identified: the rostral and proximal pars distalis (PPD) and the pars intermedia. This last region was found to be innervated by the neurohypophysis. This organization, together with the presence of a saccus vasculosus, resembles the general teleost pituitary organization. A vast number of blood vessels were also recognized between the infundibulum floor of the hypothalamus and the PPD, evidencing the characteristic presence of a median eminence and a portal system. However, this well-developed pituitary portal system resembles that of tetrapods. As regards the immunohistochemical localization of GnIH, we found four GnIH-immunoreactive (GnIH-ir) populations in three hypothalamic nuclei (suprachiasmatic, retrotuberal, and tuberal nuclei) and one in the diencephalon (prethalamic nucleus), as well as a few scattered neurons throughout the olfactory bulbs, the telencephalon, and the intersection between them. GnIH-ir fibers showed a widespread distribution over almost all brain regions, suggesting that GnIH function is not restricted to reproduction only. In conclusion, the present study describes, for the first time, the pituitary of A. tropicus and the neuroanatomical localization of GnIH in a holostean fish that exhibits a similar distribution pattern to that of teleosts and other vertebrates, suggesting a high degree of phylogenetic conservation of this system.
Collapse
Affiliation(s)
- Agustina C Beriotto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - Francisco J Toledo-Solis
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Emyr S Peña-Marín
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University. Tokyo, Japan
| | - Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina.
| |
Collapse
|
14
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
15
|
Blanco AM. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol 2020; 287:113322. [PMID: 31738909 DOI: 10.1016/j.ygcen.2019.113322] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Most endocrine systems in the body are influenced by the hypothalamic-pituitary axis. Within this axis, the hypothalamus delivers precise signals to the pituitary gland, which in turn releases hormones that directly affect target tissues including the liver, thyroid gland, adrenal glands and gonads. This action modulates the release of additional hormones from the sites of action, regulating key physiological processes, including growth, metabolism, stress and reproduction. Pituitary hormones are released by five distinct hormone-producing cell types: somatotropes (which produce growth hormone), thyrotropes (thyrotropin), corticotropes (adrenocorticotropin), lactotropes (prolactin) and gonadotropes (follicle stimulating hormone and luteinizing hormone), each modulated by specific hypothalamic signals. This careful and distinct organization of the hypothalamo-pituitary axis has been classically associated with the existence of many lineal axes (e.g., the hypothalamic-pituitary-gonadal axis) in charge of the control of the different physiological processes. While this traditional concept is valid, it is becoming apparent that hormones produced by the hypothalamo-pituitary axis have diverse effects. For instance, gonadotropin-releasing hormone II has been associated with a suppressive effect on food intake in fish. Likewise, growth hormone has been shown to influence appetite, swimming activity and aggressive behavior in fish. This review will focus on the hypothalamic and pituitary hormones classically involved in regulating growth and reproduction, and will attempt to provide a general overview of the current knowledge on their actions on energy balance and appetite in fish. It will also give a brief perspective of the role of some of these peptides in integrating feeding, metabolism, growth and reproduction.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
16
|
Maugars G, Pasquier J, Atkinson C, Lafont AG, Campo A, Kamech N, Lefranc B, Leprince J, Dufour S, Rousseau K. Gonadotropin-inhibitory hormone in teleosts: New insights from a basal representative, the eel. Gen Comp Endocrinol 2020; 287:113350. [PMID: 31794732 DOI: 10.1016/j.ygcen.2019.113350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Since its discovery in birds, gonadotropin-inhibitory hormone (GnIH) has triggered investigation in the other groups of vertebrates. In the present study, we have identified a single gnih gene in the European eel (Anguilla anguilla), a representative species of a basal group of teleosts (Elopomorphs). We have also retrieved a single gnih gene in Osteoglossomorphs, as well as in more recently emerged teleosts, Clupeocephala. Phylogeny and synteny analyses allowed us to infer that one of the two gnih paralogs emerged from the teleost-specific whole genome duplication (TWGD or 3R), would have been lost shortly after the 3R, before the emergence of the basal groups of teleosts. This led to the presence of a single gnih in extant teleosts as in other vertebrates. Two gnih paralogs were still found in some teleost species, such as in salmonids, but resulting from the additional whole genome duplication that specifically occurred in this lineage (4R). Eel gnih was mostly expressed in the diencephalon part of the brain, as analyzed by quantitative real-time PCR. Cloning of eel gnih cDNA confirmed that the sequence of the GnIH precursor encoded three putative mature GnIH peptides (aaGnIH-1, aaGnIH-2 and aaGnIH-3), which were synthesized and tested for their direct effects on eel pituitary cells in vitro. Eel GnIH peptides inhibited the expression of gonadotropin subunits (lhβ, fshβ, and common a-subunit) as well as of GnRH receptor (gnrh-r2), with no effect on tshβ and gh expression. The inhibitory effect of GnIH peptides on gonadotropic function in a basal teleost is in agreement with an ancestral inhibitory role of GnIH in the neuroendocrine control of reproduction in vertebrates.
Collapse
Affiliation(s)
- G Maugars
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - J Pasquier
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - C Atkinson
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - A-G Lafont
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - A Campo
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - N Kamech
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - B Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - J Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - S Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
17
|
Ma Y, Ladisa C, Chang JP, Habibi HR. Multifactorial control of reproductive and growth axis in male goldfish: Influences of GnRH, GnIH and thyroid hormone. Mol Cell Endocrinol 2020; 500:110629. [PMID: 31678419 DOI: 10.1016/j.mce.2019.110629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Reproduction and growth are under multifactorial control of neurohormones and peripheral hormones. This study investigated seasonally related effects of GnIH, GnRH, and T3 on the reproductive and growth axis in male goldfish at three stages of gonadal recrudescence. The effects of injection treatments with GnRH, GnIH and/or T3 were examined by measuring serum LH and GH levels, as well as peripheral transcript levels, using a factorial design. As expected, GnRH elevated serum LH and GH levels in a seasonally dependant manner, with maximal elevations of LH in late stages of gonadal recrudescence (Spring) and maximal increases in GH in the regressed gonadal stage (Summer). GnIH injection increased serum LH and GH levels only in fish at the regressed stage but exerted both stimulatory and inhibitory effects on GnRH-induced LH responses depending on season. T3 treatment mainly had stimulatory effects on circulating LH levels and inhibitory effects on serum GH concentrations. In the liver and testes, we observed seasonal differences in thyroid receptors, estrogen receptors, vitellogenin, follicle-stimulating hormone receptor, aromatase and IGF-I transcript levels that were tissue- and sex-specific. Generally, there were no clear correlation between circulating LH and GH levels and peripheral transcript levels, presumably due to time-related response and possible direct interaction of GnRH and GnIH at the level of liver and testis. The results support the hypothesis that GnRH and GnIH are important components of multifactorial mechanisms that work in concert with T3 to regulate reciprocal control of reproduction and growth in goldfish.
Collapse
Affiliation(s)
- Y Ma
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - C Ladisa
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - J P Chang
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Department of Biological Sciences University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - H R Habibi
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
| |
Collapse
|
18
|
Wilsterman K, Bentley GE, Comizzoli P. RFRP3 influences basal lamina degradation, cellular death, and progesterone secretion in cultured preantral ovarian follicles from the domestic cat. PeerJ 2019; 7:e7540. [PMID: 31497402 PMCID: PMC6709664 DOI: 10.7717/peerj.7540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
The hypothalamic neuropeptide RFRP3 can suppress hypothalamic GnRH neuron activation and inhibit gonadotropin release from the anterior pituitary. RFRP3 is also produced locally in the ovary and can inhibit steroidogenesis and follicle development in many vertebrates. However, almost nothing is known about the presence and regulatory action of RFRP3 in gonads of any carnivore species. Such knowledge is important for developing captive breeding programs for endangered carnivores and for inhibiting reproduction in feral species. Using the domestic cat as a model, our objectives were to (1) demonstrate the expression of feline RFRP3 (fRFRP3) and its receptor in the cat ovary and (2) assess the influence of fRFRP3 on ovarian follicle integrity, survival, and steroidogenesis in vitro. We first confirmed that fRFRP3 and its receptors (NPFFR1 and NPFFR2) were expressed in cat ovaries by sequencing PCR products from ovarian RNA. We then isolated and cultured preantral ovarian follicles in the presence of 10 or 1 µM fRFRP3 + FSH (1 µg/mL). We recorded the percentage of morphologically viable follicles (basal lamina integrity) over 8 days and calculated percentage survival of follicles on Day 8 (using fluorescent markers for cell survival and death). Last, we quantified progesterone accumulation in media. 10 µM fRFRP3 had no observable effect on viability, survival, or steroid production compared to follicles exposed to only FSH. However, 1 µM fRFRP3 decreased the percentage of morphologically viable follicles and the percentage of surviving follicles on Day 8. At the same time, 1 µM fRFRP3 increased the accumulation of progesterone in media. Our study shows, for the first time, direct action of RFRP3 on the follicle as a functional unit, and it is the first in a carnivore species. More broadly, our results support a conserved, inhibitory action of RFRP3 on ovarian follicle development and underscore the importance of comparative functional studies.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - George E Bentley
- Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States of America
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, Washington, DC, United States of America
| |
Collapse
|
19
|
Paullada-Salmerón JA, Cowan ME, Loentgen GH, Aliaga-Guerrero M, Zanuy S, Mañanós EL, Muñoz-Cueto JA. The gonadotropin-inhibitory hormone system of fish: The case of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2019; 279:184-195. [PMID: 30923006 DOI: 10.1016/j.ygcen.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 11/21/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.
Collapse
Affiliation(s)
- José Antonio Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| | - Mairi E Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Guillaume H Loentgen
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | | | - José Antonio Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| |
Collapse
|
20
|
Zhang H, Chen L, Zhang B, Lin Q. Molecular identification of GnIH and its potential role in reproductive physiology and male pregnancy of the lined seahorse (Hippocampus erectus). Gen Comp Endocrinol 2019; 279:196-202. [PMID: 31002825 DOI: 10.1016/j.ygcen.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/29/2023]
Abstract
The gonadotropin-inhibitory hormone (GnIH) plays a negative role in the hypothalamic-pituitary-gonadal (HPG) axis by inhibiting gonadotropin secretion in vertebrates. Male pregnancy and ovoviviparous behavior are unique phenomena among vertebrates. To better understand the neuroendocrine regulatory mechanisms in ovoviviparous fish with male pregnancy, we identified the orthologous GnIH gene in the lined seahorse (Hippocampus erectus). The full-length cDNA of the GnIH precursor was 658 base pairs with an open reading frame of 528 base pairs that encoded a 175-amino acid prepro-GnIH peptide. The seahorse GnIH precursor contained two putative LPXRFamide peptides. Both seahorse LPXRFa-1 and LPXRFa-2 were found to be unique among vertebrates. The synteny blocks of GnIH gene loci were conserved in mammals and teleosts. Tissue distribution analysis revealed that seahorse GnIH mRNA was mainly expressed in the hypothalamus, with relatively high levels observed in the brood pouch. The expression patterns of seahorse GnIH during different reproductive stages and pregnancy stages were also detected, and GnIH mRNA expression was significantly reduced during the early puberty stage. In addition, GnIH mRNA expression was significantly increased during the pregnancy stage compared to non-pregnancy stages. In summary, our results reveal the existence of GnIH in ovoviviparous fish and suggest its involvement in regulation of reproductive behavior and male pregnancy in the male seahorse.
Collapse
Affiliation(s)
- Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Lingzhen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Wang B, Yang G, Xu Y, Li W, Liu X. Recent studies of LPXRFa receptor signaling in fish and other vertebrates. Gen Comp Endocrinol 2019; 277:3-8. [PMID: 30465768 DOI: 10.1016/j.ygcen.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/17/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
The hypothalamo-pituitary-gonadal (HPG) axis plays a major role in coordinating the reproduction of fish and other vertebrates. Gonadotropin-releasing hormone (GnRH) is the primary stimulatory factor responsible for the hypothalamic control of gonadotropin secretion. In 2000, a previously unidentified hypothalamic neuropeptide was isolated from the brain of Japanese quail and termed gonadotropin-inhibitory hormone (GnIH) based on its ability to directly inhibit gonadotropin release from the cultured quail anterior pituitary gland. One year later, the cDNA sequence that encodes the quail GnIH precursor polypeptide was cloned and was found to encompass two further peptides (GnIH-related peptide (RP)-1 and GnIH-RP-2) besides GnIH. To date, GnIH orthologous have been detected in a variety of vertebrates from fish to humans. These peptides possess a characteristic-LPXRFa (X = L or Q) motif at the C-terminus and are designated as LPXRFa peptides. It is generally accepted that LPXRFa peptides act on GnRH neurons in the hypothalamus to inhibit gonadotropin synthesis and release in addition to affecting the pituitary function in birds and mammals. However, the exact physiological role of LPXRFa is still uncertain in fish and dual actions of LPXRFa on the HPG axis have been observed. Research aiming to elucidate the detailed signaling pathways mediating the actions of LPXRFa on target cells may contribute to understanding the functional divergence of the LPXRFa system in teleosts. Accordingly, this review will discuss the recent advances in LPXRFa receptor signaling, as well as the potential interactions on cell signaling induced by other factors, such as GnRH and kisspeptin.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
22
|
Di Yorio MP, Pérez Sirkin DI, Muñoz-Cueto JA, Delgadin TH, Tsutsui K, Somoza GM, Vissio PG. Morphological relationship between GnIH and GnRH neurons in the brain of the neotropical cichlid fish Cichlasoma dimerus. Gen Comp Endocrinol 2019; 273:144-151. [PMID: 29913169 DOI: 10.1016/j.ygcen.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3 interactions in the modulation of the reproductive network in teleost fish.
Collapse
Affiliation(s)
- María P Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Tomás H Delgadin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Gustavo M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-UNSAM, Chascomús, Argentina
| | - Paula G Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Di Yorio MP, Muñoz-Cueto JA, Paullada-Salmerón JA, Somoza GM, Tsutsui K, Vissio PG. The Gonadotropin-Inhibitory Hormone: What We Know and What We Still Have to Learn From Fish. Front Endocrinol (Lausanne) 2019; 10:78. [PMID: 30837949 PMCID: PMC6389629 DOI: 10.3389/fendo.2019.00078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life.
Collapse
Affiliation(s)
- María P. Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Paula G. Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Paula G. Vissio
| |
Collapse
|
24
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
25
|
Spicer OS, Zmora N, Wong TT, Golan M, Levavi-Sivan B, Gothilf Y, Zohar Y. The gonadotropin-inhibitory hormone (Lpxrfa) system's regulation of reproduction in the brain-pituitary axis of the zebrafish (Danio rerio). Biol Reprod 2018; 96:1031-1042. [PMID: 28430864 DOI: 10.1093/biolre/iox032] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/17/2017] [Indexed: 11/14/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GNIH) was discovered in quail with the ability to reduce gonadotropin expression/secretion in the pituitary. There have been few studies on GNIH orthologs in teleosts (LPXRFamide (Lpxrfa) peptides), which have provided inconsistent results. Therefore, the goal of this study was to determine the roles and modes of action by which Lpxrfa exerts its functions in the brain-pituitary axis of zebrafish (Danio rerio). We localized Lpxrfa soma to the ventral hypothalamus, with fibers extending throughout the brain and to the pituitary. In the preoptic area, Lpxrfa fibers interact with gonadotropin-releasing hormone 3 (Gnrh3) soma. In pituitary explants, zebrafish peptide Lpxrfa-3 downregulated luteinizing hormone beta subunit and common alpha subunit expression. In addition, Lpxrfa-3 reduced gnrh3 expression in brain slices, offering another pathway for Lpxrfa to exert its effects on reproduction. Receptor activation studies, in a heterologous cell-based system, revealed that all three zebrafish Lpxrfa peptides activate Lpxrf-R2 and Lpxrf-R3 via the PKA/cAMP pathway. Receptor activation studies demonstrated that, in addition to activating Lpxrf receptors, zebrafish Lpxrfa-2 and Lpxrfa-3 antagonize Kisspeptin-2 (Kiss2) activation of Kisspeptin receptor-1a (Kiss1ra). The fact that kiss1ra-expressing neurons in the preoptic area are innervated by Lpxrfa-ir fibers suggests an additional pathway for Lpxrfa action. Therefore, our results suggest that Lpxrfa may act as a reproductive inhibitory neuropeptide in the zebrafish that interacts with Gnrh3 neurons in the brain and with gonadotropes in the pituitary, while also potentially utilizing the Kiss2/Kiss1ra pathway.
Collapse
Affiliation(s)
- Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Di Yorio MP, Sallemi JE, Toledo Solís FJ, Pérez Sirkin DI, Delgadin TH, Tsutsui K, Vissio PG. Ontogeny of Gonadotropin-Inhibitory Hormone (GnIH) in the cichlid fish Cichlasoma dimerus. J Neuroendocrinol 2018; 30:e12608. [PMID: 29754434 DOI: 10.1111/jne.12608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Abstract
RFamide peptides are expressed in the early stages of development in most vertebrates. Gonadotropin-inhibitory hormone (GnIH) belongs to the RFamide family, and its role in reproduction has been widely studied in adult vertebrates, ranging from fish to mammals. As only three reports evaluated GnIH during development, the aim of this study was to characterise the ontogeny of GnIH in a fish model, Cichlasoma dimerus. We detected the presence of two GnIH-immunoreactive (GnIH-ir) cell clusters with spatial and temporal differences. One cluster was observed by 3 days post-hatching (dph) in the nucleus olfacto-retinalis (NOR) and the other in the nucleus posterioris periventricularis by 14 dph. The number of GnIH-ir neurons increased in both nuclei, whereas their size increased only in the NOR from hatchling to juvenile stages. These changes occurred from the moment larvae started feeding exogenously and during development and differentiation of gonadal primordia. We showed by double-label immunofluorescence that only GnIH-ir neurons in the NOR co-expressed GnRH3 associated peptide. In addition, GnIH-ir fibre density increased in all brain regions from 5 dph. GnIH-ir fibres were also detected in the retina, optic tract and optic tectum, suggesting that GnIH acts as a neuromodulator of photoreception and the integration of different sensory modalities. Also, there were GnIH-ir fibres in the pituitary from 14 dph, which were in close association with somatotropes. Moreover, GnIH-ir fibres were observed in the saccus vasculosus from 30 dph, suggesting a potential role of GnIH in the modulation of its function. Finally, we found that gnih was expressed from 1 dph, and that the pattern of variation of its transcript levels was in accordance with that of cell number. Present results are the starting point for the study of new GnIH roles during development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María P Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina
- Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta E Sallemi
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina
- Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Toledo Solís
- Laboratorio de Acuicultura Tropical División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Daniela I Pérez Sirkin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina
- Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás H Delgadin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina
- Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan
| | - Paula G Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina
- Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Wang B, Liu Q, Liu X, Xu Y, Shi B. Molecular characterization and expression profiles of LPXRFa at the brain-pituitary-gonad axis of half-smooth tongue sole (Cynoglossus semilaevis) during ovarian maturation. Comp Biochem Physiol B Biochem Mol Biol 2017; 216:59-68. [PMID: 29223873 DOI: 10.1016/j.cbpb.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) has been characterized by its ability to inhibit either basal or gonadotropin-releasing hormone (GnRH)-induced gonadotropin synthesis and release in birds and mammals. However, the physiological role of GnIH on the reproductive axis in fish remains inconclusive, with most studies focusing on the orders Cypriniformes and Perciformes. To gain insight into the role of GnIH in the regulation of reproduction in the order Pleuronectiformes, we first cloned the LPXRFa gene, the piscine ortholog of GnIH, in the half-smooth tongue sole. The full-length cDNA of LPXRFa was 918bp in size with an open reading frame (ORF) of 585bp that encoded a 194 amino acids preprohormone with a calculated molecular mass and isoelectric point of 21.73kDa and 6.52, respectively. The LPXRFa precursor encoded two putative peptide sequences that included -MPMRF or -MPQRF motifs at the C-terminal. Tissue distribution analysis showed that LPXRFa transcripts could be detected at high levels in the brains of both sexes and to a lesser extent in the ovary, heart and stomach of females, while a noteworthy expression was observed in the kidney and muscle of males. Furthermore, the expression patterns of LPXRFa mRNA during ovarian maturation were also investigated. In the brain, the mRNA expression of LPXRFa increased significantly at stage III, declined at stage V and reached a maximum at stage VI. In the pituitary, the levels of LPXRFa mRNA remained stable during ovarian maturation and increased significantly to the top level at stage V and then declined back to basal levels. In contrast, the ovarian LPXRFa mRNA levels declined sharply at stage III and remained depressed over the course of ovarian maturation. Taken together, our results provide further evidence for the existence of LPXRFa in the order Pleuronectiformes and suggest its possible involvement in the regulation of reproduction in the female tongue sole.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Quan Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
28
|
Aliaga-Guerrero M, Paullada-Salmerón JA, Piquer V, Mañanós EL, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone in the flatfish,Solea senegalensis: Molecular cloning, brain localization and physiological effects. J Comp Neurol 2017; 526:349-370. [DOI: 10.1002/cne.24339] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Affiliation(s)
- María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences; University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; Puerto Real Spain
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences; University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; Puerto Real Spain
| | - Vanesa Piquer
- Institute of Aquaculture of Torre la Sal, CSIC; Castellón Spain
| | | | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences; University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; Puerto Real Spain
| |
Collapse
|
29
|
Corchuelo S, Martinez ERM, Butzge AJ, Doretto LB, Ricci JMB, Valentin FN, Nakaghi LSO, Somoza GM, Nóbrega RH. Characterization of Gnrh/Gnih elements in the olfacto-retinal system and ovary during zebrafish ovarian maturation. Mol Cell Endocrinol 2017; 450:1-13. [PMID: 28400274 DOI: 10.1016/j.mce.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is one of the key players of brain-pituitary-gonad axis, exerting overall control over vertebrate reproduction. In zebrafish, two variants were characterized and named as Gnrh2 and Gnrh3. In this species, Gnrh3, the hypohysiotropic form, is expressed by neurons of the olfactory-retinal system, where it is related with food detection, intra/interspecific recognition, visual acuity and retinal processing modulation. Previous studies have reported the presence of Gnrh receptors in the zebrafish retina, but not yet in the zebrafish olfactory epithelium. The current study analyzed the presence of gnrh2 and gnrh3, their receptors (gnrhr 1,2,3 and 4) and gnih (gonadotropin inhibitory hormone) transcripts, as well as the Gnrh3 protein in the olfactory epithelium (OE), olfactory bulb (OB), retina and ovary during zebrafish ovarian maturation. We found an increase of gnrh receptors transcripts in the OE at the final stages of ovarian maturation. In the OE, Gnrh3 protein was detected in the olfactory receptor neurons cilia and in the olfactory nerve fibers. Interestingly, in the OB, we found an inverse expression pattern between gnih and gnrh3. In the retina, gnrhr4 mRNA was found in the nuclei of amacrine, bipolar, and ganglion cells next to Gnrh3 positive fibers. In the ovary, gnrh3, gnrhr2 and gnrhr4 transcripts were found in perinucleolar oocytes, while gnih in oocytes at the cortical alveolus stage. Our results suggested that Gnrh/Gnih elements are involved in the neuromodulation of the sensorial system particularly at the final stages of maturation, playing also a paracrine role in the ovary.
Collapse
Affiliation(s)
- Sheryll Corchuelo
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Emanuel R M Martinez
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Fernanda N Valentin
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Laura S O Nakaghi
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
30
|
Paullada-Salmerón JA, Loentgen GH, Cowan M, Aliaga-Guerrero M, Rendón-Unceta MDC, Muñoz-Cueto JA. Developmental changes and day-night expression of the gonadotropin-inhibitory hormone system in the European sea bass: Effects of rearing temperature. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:54-62. [DOI: 10.1016/j.cbpa.2017.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/24/2023]
|
31
|
Cowan M, Paullada-Salmerón JA, López-Olmeda JF, Sánchez-Vázquez FJ, Muñoz-Cueto JA. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:1-12. [PMID: 28188883 DOI: 10.1016/j.cbpa.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.
Collapse
Affiliation(s)
- Mairi Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| |
Collapse
|
32
|
Ubuka T, Parhar I. Dual Actions of Mammalian and Piscine Gonadotropin-Inhibitory Hormones, RFamide-Related Peptides and LPXRFamide Peptides, in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2017; 8:377. [PMID: 29375482 PMCID: PMC5768612 DOI: 10.3389/fendo.2017.00377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic-pituitary-gonadal (HPG) axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH) release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Sunway, Malaysia
- *Correspondence: Takayoshi Ubuka,
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Sunway, Malaysia
| |
Collapse
|
33
|
Muñoz-Cueto JA, Paullada-Salmerón JA, Aliaga-Guerrero M, Cowan ME, Parhar IS, Ubuka T. A Journey through the Gonadotropin-Inhibitory Hormone System of Fish. Front Endocrinol (Lausanne) 2017; 8:285. [PMID: 29163357 PMCID: PMC5670112 DOI: 10.3389/fendo.2017.00285] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins. In addition, GnIH also appears to be involved in the regulation of feeding, growth, stress response, heart function and social behavior. These actions are mediated via G protein-coupled GnIH receptors (GnIH-Rs), of which two different subtypes, GPR147 and GPR74, have been described to date. With around 30,000 species, fish represent more than one-half of the total number of recognized living vertebrate species. In addition to this impressive biological diversity, fish are relevant because they include model species with scientific and clinical interest as well as many exploited species with economic importance. In spite of this, the study of GnIH and its physiological effects on reproduction and other physiological processes has only been approached in a few fish species, and results obtained are in some cases conflicting. In this review, we summarize the information available in the literature on GnIH sequences identified in fish, the distribution of GnIH and GnIH-Rs in central and peripheral tissues, the physiological actions of GnIH on the reproductive brain-pituitary-gonadal axis, as well as other reported effects of this neuropeptide, and existing knowledge on the regulatory mechanisms of GnIH in fish.
Collapse
Affiliation(s)
- José A. Muñoz-Cueto
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
- *Correspondence: José A. Muñoz-Cueto,
| | - José A. Paullada-Salmerón
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
| | - María Aliaga-Guerrero
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
| | - Mairi E. Cowan
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
| | - Ishwar S. Parhar
- Jeffrey Cheah School of Medicine and Health Science, Brain Research Institute, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Takayoshi Ubuka
- Jeffrey Cheah School of Medicine and Health Science, Brain Research Institute, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
34
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
35
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, López-Olmeda JF, Mañanós EL, Zanuy S, Muñoz-Cueto JA. Testicular Steroidogenesis and Locomotor Activity Are Regulated by Gonadotropin-Inhibitory Hormone in Male European Sea Bass. PLoS One 2016; 11:e0165494. [PMID: 27788270 PMCID: PMC5082886 DOI: 10.1371/journal.pone.0165494] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20β-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior.
Collapse
Affiliation(s)
- José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3). Puerto Real, Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Mairi Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3). Puerto Real, Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3). Puerto Real, Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - José F. López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Evaristo L. Mañanós
- Institute of Aquaculture of Torre de la Sal, CSIC, Ribera de Cabanes, Castellón, Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Ribera de Cabanes, Castellón, Spain
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3). Puerto Real, Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
- * E-mail:
| |
Collapse
|
36
|
Di Yorio MP, Pérez Sirkin DI, Delgadin TH, Shimizu A, Tsutsui K, Somoza GM, Vissio PG. Gonadotrophin-Inhibitory Hormone in the Cichlid Fish Cichlasoma dimerus: Structure, Brain Distribution and Differential Effects on the Secretion of Gonadotrophins and Growth Hormone. J Neuroendocrinol 2016; 28. [PMID: 26919074 DOI: 10.1111/jne.12377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
The role of gonadotrophin-inhibitory hormone (GnIH) in the inhibition of the reproductive axis has been well-established in birds and mammals. However, its role in other vertebrates, such as the teleost fish, remains controversial. In this context, the present study aimed to evaluate whether GnIH modulates the release of gonadotrophins and growth hormone (GH) in the cichlid fish Cichlasoma dimerus. First, we partially sequenced the precursor polypeptide for GnIH and identified three putative GnIH peptides. Next, we analysed the expression of this precursor polypeptide via a polymerase chain reaction in the reproductive axis of both sexes. We found a high expression of the polypeptide in the hypothalamus and gonads of males. Immunocytochemistry allowed the observation of GnIH-immunoreactive somata in the nucleus posterioris periventricularis and the nucleus olfacto-retinalis, with no differences between the sexes. GnIH-immunoreactive fibres were present in all brain regions, with a high density in the nucleus lateralis tuberis and at both sides of the third ventricle. Finally, we performed in vitro studies on intact pituitary cultures to evaluate the effect of two doses (10(-6) m and 10(-8) m) of synthetic C. dimerus (cd-) LPQRFa-1 and LPQRFa-2 on the release of gonadotrophins and GH. We observed that cd-LPQRFa-1 decreased β-luteinising hormone (LH) and β-follicle-stimulating hormone (FSH) and also increased GH release to the culture medium. The release of β-FSH was increased only when it was stimulated with the higher cd-LPQRFa-2 dose. The results of the present study indicate that cd-LPQRFa-1, the cichlid fish GnIH, inhibits β-LH and β-FSH release and stimulates GH release in intact pituitary cultures of C. dimerus. The results also show that cd-LPQRF-2 could act as an β-FSH-releasing factor in this fish species.
Collapse
Affiliation(s)
- M P Di Yorio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - T H Delgadin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - A Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - K Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - G M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - P G Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| |
Collapse
|
37
|
Yan H. Inhibitory Control of the Brain-Pituitary Reproductive Axis of Male European Sea Bass: Role of Gonadotropin Inhibitory Hormone. Biol Reprod 2016; 94:126. [PMID: 27009042 PMCID: PMC6702785 DOI: 10.1095/biolreprod.116.140517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Hongwei Yan
- College of Fisheries and Life Science; Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian, China
| |
Collapse
|
38
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Morano F, Zanuy S, Muñoz-Cueto JA. Gonadotropin Inhibitory Hormone Down-Regulates the Brain-Pituitary Reproductive Axis of Male European Sea Bass (Dicentrarchus labrax). Biol Reprod 2016; 94:121. [PMID: 26984999 PMCID: PMC6322450 DOI: 10.1095/biolreprod.116.139022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/08/2016] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.
Collapse
Affiliation(s)
- José A Paullada-Salmerón
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Mairi Cowan
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Francesca Morano
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Ribera de Cabanes, Castellón, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| |
Collapse
|
39
|
Ogawa S, Sivalingam M, Biran J, Golan M, Anthonysamy RS, Levavi-Sivan B, Parhar IS. Distribution of LPXRFa, a gonadotropin-inhibitory hormone ortholog peptide, and LPXRFa receptor in the brain and pituitary of the tilapia. J Comp Neurol 2016; 524:2753-75. [PMID: 26917324 DOI: 10.1002/cne.23990] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/09/2022]
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa-R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa-R has not been studied in teleost species, partially because of the lack of fish-specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa-immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa-R-immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa-immunoreactive fibers nor LPXRFa-R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α-melanotropin (α-MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa-R are expressed only in LH, ACTH, and α-MSH cells. These results suggest that LPXRFa and LPXRFa-R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753-2775, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Jakob Biran
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Matan Golan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Rachel Shalini Anthonysamy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
40
|
Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol 2016; 227:27-50. [PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; Brain Research Institute Monash Sunway (BRIMS) of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia.
| | - You Lee Son
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|