Ito T, Ono M, Matsui R, Watanabe D, Ohmori H. Avian adeno-associated virus as an anterograde transsynaptic vector.
J Neurosci Methods 2021;
359:109221. [PMID:
34004203 DOI:
10.1016/j.jneumeth.2021.109221]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND
Retrograde and anterograde transsynaptic viral vectors are useful tools for studying the input and output organization of neuronal circuitry, respectively. While retrograde transsynaptic viral vectors are widely used, viral vectors that show anterograde transsynaptic transduction are not common.
NEW METHOD
We chose recombinant avian adeno-associated virus (A3V) carrying the mCherry gene and injected it into the eyeball, cochlear duct, and midbrain auditory center of chickens. We observed different survival times to examine the virus transcellular transport and the resulting mCherry expression. To confirm the transcellular transduction mode, we co-injected A3V and cholera toxin B subunit.
RESULTS
Injecting A3V into the eyeball and cochlea labeled neurons in the visual and auditory pathways, respectively. Second-, and third-order labeling occurred approximately two and seven days, respectively, after injection into the midbrain. The distribution of labeled neurons strongly suggests that A3V transport is preferentially anterograde and transduces postsynaptic neurons.
COMPARISON WITH EXISTING METHOD(S)
A3V displays no extrasynaptic leakage and moderate speed of synapse passage, which is better than other viruses previously reported. Compared with AAV1&9, which have been shown to pass one synapse anterogradely, A3V passes several synapses in the anterograde direction.
CONCLUSIONS
A3V would be a good tool to study the topographic organization of projection axons and their target neurons.
Collapse