1
|
Celiker E, Woodrow C, Guadayol Ò, Davranoglou LR, Schlepütz CM, Mortimer B, Taylor GK, Humphries S, Montealegre-Z F. Mechanical network equivalence between the katydid and mammalian inner ears. PLoS Comput Biol 2024; 20:e1012641. [PMID: 39671449 DOI: 10.1371/journal.pcbi.1012641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/27/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024] Open
Abstract
Mammalian hearing operates on three basic steps: 1) sound capturing, 2) impedance conversion, and 3) frequency analysis. While these canonical steps are vital for acoustic communication and survival in mammals, they are not unique to them. An equivalent mechanism has been described for katydids (Insecta), and it is unique to this group among invertebrates. The katydid inner ear resembles an uncoiled cochlea, and has a length less than 1 mm. Their inner ears contain the crista acustica, which holds tonotopically arranged sensory cells for frequency mapping via travelling waves. The crista acustica is located on a curved triangular surface formed by the dorsal wall of the ear canal. While empirical recordings show tonotopic vibrations in the katydid inner ear for frequency analysis, the biophysical mechanism leading to tonotopy remains elusive due to the small size and complexity of the hearing organ. In this study, robust numerical simulations are developed for an in silico investigation of this process. Simulations are based on the precise katydid inner ear geometry obtained by synchrotron-based micro-computed tomography, and empirically determined inner ear fluid properties for an accurate representation of the underlying mechanism. We demonstrate that the triangular structure below the hearing organ drives the tonotopy and travelling waves in the inner ear, and thus has an equivalent role to the mammalian basilar membrane. This reveals a stronger analogy between the inner ear basic mechanical networks of two organisms with ancient evolutionary differences and independent phylogenetic histories.
Collapse
Affiliation(s)
- Emine Celiker
- School of Engineering, University of Leicester, Leicester, United Kingdom
| | - Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Òscar Guadayol
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Mallorca, Spain
| | | | | | - Beth Mortimer
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Graham K Taylor
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart Humphries
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Fernando Montealegre-Z
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
2
|
Scherberich J, Stange-Marten A, Schöneich S, Merdan-Desik M, Nowotny M. Multielectrode array use in insect auditory neuroscience to unravel the spatio-temporal response pattern in the prothoracic ganglion of Mecopoda elongata. J Exp Biol 2024; 227:jeb245497. [PMID: 38197244 DOI: 10.1242/jeb.245497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Mechanoreceptors in hearing organs transduce sound-induced mechanical responses into neuronal signals, which are further processed and forwarded to the brain along a chain of neurons in the auditory pathway. Bushcrickets (katydids) have their ears in the front leg tibia, and the first synaptic integration of sound-induced neuronal signals takes place in the primary auditory neuropil of the prothoracic ganglion. By combining intracellular recordings of the receptor activity in the ear, extracellular multichannel array recordings on top of the prothoracic ganglion and hook electrode recordings at the neck connective, we mapped the timing of neuronal responses to tonal sound stimuli along the auditory pathway from the ears towards the brain. The use of the multielectrode array allows the observation of spatio-temporal patterns of neuronal responses within the prothoracic ganglion. By eliminating the sensory input from one ear, we investigated the impact of contralateral projecting interneurons in the prothoracic ganglion and added to previous research on the functional importance of contralateral inhibition for binaural processing. Furthermore, our data analysis demonstrates changes in the signal integration processes at the synaptic level indicated by a long-lasting increase in the local field potential amplitude. We hypothesize that this persistent increase of the local field potential amplitude is important for the processing of complex signals, such as the conspecific song.
Collapse
Affiliation(s)
- Jan Scherberich
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Annette Stange-Marten
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Stefan Schöneich
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Melisa Merdan-Desik
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
- Neurobiology and Biosensors Group, Institute of Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Manuela Nowotny
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
3
|
Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu TC, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WCA, Li H, Mhatre N, Tuthill JC. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 2023; 111:3230-3243.e14. [PMID: 37562405 PMCID: PMC10644877 DOI: 10.1016/j.neuron.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasha Mhatre
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Díaz-García L, Latham B, Reid A, Windmill J. Review of the applications of principles of insect hearing to microscale acoustic engineering challenges. BIOINSPIRATION & BIOMIMETICS 2023; 18:051002. [PMID: 37499689 DOI: 10.1088/1748-3190/aceb29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
When looking for novel, simple, and energy-efficient solutions to engineering problems, nature has proved to be an incredibly valuable source of inspiration. The development of acoustic sensors has been a prolific field for bioinspired solutions. With a diverse array of evolutionary approaches to the problem of hearing at small scales (some widely different to the traditional concept of 'ear'), insects in particular have served as a starting point for several designs. From locusts to moths, through crickets and mosquitoes among many others, the mechanisms found in nature to deal with small-scale acoustic detection and the engineering solutions they have inspired are reviewed. The present article is comprised of three main sections corresponding to the principal problems faced by insects, namely frequency discrimination, which is addressed by tonotopy, whether performed by a specific organ or directly on the tympana; directionality, with solutions including diverse adaptations to tympanal structure; and detection of weak signals, through what is known as active hearing. The three aforementioned problems concern tiny animals as much as human-manufactured microphones and have therefore been widely investigated. Even though bioinspired systems may not always provide perfect performance, they are sure to give us solutions with clever use of resources and minimal post-processing, being serious contenders for the best alternative depending on the requisites of the problem.
Collapse
Affiliation(s)
- Lara Díaz-García
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Brendan Latham
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Andrew Reid
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - James Windmill
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
Quantification of bush-cricket acoustic trachea mechanics using Atomic Force Microscopy nanoindentation. Acta Biomater 2022; 153:399-410. [DOI: 10.1016/j.actbio.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
6
|
Auditory tuning in the bushcricket miniature hearing organ. Proc Natl Acad Sci U S A 2021; 118:2115779118. [PMID: 34667126 PMCID: PMC8639366 DOI: 10.1073/pnas.2115779118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
|
7
|
Tuned vibration modes in a miniature hearing organ: Insights from the bushcricket. Proc Natl Acad Sci U S A 2021; 118:2105234118. [PMID: 34551976 PMCID: PMC8488673 DOI: 10.1073/pnas.2105234118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Most hearing organs contain an array of sensory cells that act as miniature microphones, each tuned to its own frequency like piano strings. Acoustically communicating insects like bushcrickets have evolved miniscule hearing organs, typically smaller than 1 mm, in their forelegs. It is still unknown how the sensory structures inside the leg vibrate in response to sound. Using advanced imaging techniques, we meticulously mapped the nanovibrations in the bushcricket ear. We discovered a complex motion pattern in which structures separated by only 1/50 mm showed systematic tuning differences. Despite the insect ear’s tiny dimensions, its mode of operation strikingly resembled that of vertebrate ears. Apparently, evolution has provided similar solutions to the spectral processing of sounds. Bushcrickets (katydids) rely on only 20 to 120 sensory units located in their forelegs to sense sound. Situated in tiny hearing organs less than 1 mm long (40× shorter than the human cochlea), they cover a wide frequency range from 1 kHz up to ultrasounds, in tonotopic order. The underlying mechanisms of this miniaturized frequency-place map are unknown. Sensory dendrites in the hearing organ (crista acustica [CA]) are hypothesized to stretch, thereby driving mechanostransduction and frequency tuning. However, this has not been experimentally confirmed. Using optical coherence tomography (OCT) vibrometry, we measured the relative motion of structures within and adjacent to the CA of the bushcricket Mecopoda elongata. We found different modes of nanovibration in the CA that have not been previously described. The two tympana and the adjacent septum of the foreleg that enclose the CA were recorded simultaneously, revealing an antiphasic lever motion strikingly reminiscent of vertebrate middle ears. Over the entire length of the CA, we were able to separate and compare vibrations of the top (cap cells) and base (dorsal wall) of the sensory tissue. The tuning of these two structures, only 15 to 60 μm (micrometer) apart, differed systematically in sharpness and best frequency, revealing a tuned periodic deformation of the CA. The relative motion of the two structures, a potential drive of transduction, demonstrated sharper tuning than either of them. The micromechanical complexity indicates that the bushcricket ear invokes multiple degrees of freedom to achieve frequency separation with a limited number of sensory cells.
Collapse
|
8
|
Warren B, Nowotny M. Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insects must wonder why mammals have ears only in their head and why they evolved only one common principle of ear design—the cochlea. Ears independently evolved at least 19 times in different insect groups and therefore can be found in completely different body parts. The morphologies and functional characteristics of insect ears are as wildly diverse as the ecological niches they exploit. In both, insects and mammals, hearing organs are constrained by the same biophysical principles and their respective molecular processes for mechanotransduction are thought to share a common evolutionary origin. Due to this, comparative knowledge of hearing across animal phyla provides crucial insight into fundamental processes of auditory transduction, especially at the biomechanical and molecular level. This review will start by comparing hearing between insects and mammals in an evolutionary context. It will then discuss current findings about sound reception will help to bridge the gap between both research fields.
Collapse
|
9
|
Strauß J, Moritz L, Rühr PT. The Subgenual Organ Complex in Stick Insects: Functional Morphology and Mechanical Coupling of a Complex Mechanosensory Organ. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.632493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leg chordotonal organs in insects show different adaptations to detect body movements, substrate vibrations, or airborne sound. In the proximal tibia of stick insects occur two chordotonal organs: the subgenual organ, a highly sensitive vibration receptor organ, and the distal organ, of which the function is yet unknown. The distal organ consists of a linear set of scolopidial sensilla extending in the tibia in distal direction toward the tarsus. Similar organs occur in the elaborate hearing organs in crickets and bushcrickets, where the auditory sensilla are closely associated with thin tympanal membranes and auditory trachea in the leg. Here, we document the position and attachment points for the distal organ in three species of stick insects without auditory adaptations (Ramulus artemis,Sipyloidea sipylus, andCarausius morosus). The distal organ is located in the dorsal hemolymph channel and attaches at the proximal end to the dorsal and posterior leg cuticle by tissue strands. The central part of the distal organ is placed closer to the dorsal cuticle and is suspended by fine tissue strands. The anterior part is clearly separated from the tracheae, while the distal part of the organ is placed over the anterior trachea. The distal organ is not connected to a tendon or muscle, which would indicate a proprioceptive function. The sensilla in the distal organ have dendrites oriented in distal direction in the leg. This morphology does not reveal obvious auditory adaptations as in tympanal organs, while the position in the hemolymph channel and the direction of dendrites indicate responses to forces in longitudinal direction of the leg, likely vibrational stimuli transmitted in the leg’s hemolymph. The evolutionary convergence of complex chordotonal organs with linear sensilla sets between tympanal hearing organs and atympanate organs in stick insects is emphasized by the different functional morphologies and sensory specializations.
Collapse
|
10
|
Scherberich J, Taszus R, Stoessel A, Nowotny M. Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica. Proc Biol Sci 2020; 287:20200909. [PMID: 32576108 PMCID: PMC7329045 DOI: 10.1098/rspb.2020.0909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In some insects and vertebrate species, the specific enlargement of sensory cell epithelium facilitates the perception of particular behaviourally relevant signals. The insect auditory fovea in the ear of the bushcricket Ancylecha fenestrata (Tettigoniidae: Phaneropterinae) is an example of such an expansion of sensory epithelium. Bushcricket ears developed in convergent evolution anatomical and functional similarities to mammal ears, such as travelling waves and auditory foveae, to process information by sound. As in vertebrate ears, sound induces a motion of this insect hearing organ (crista acustica), which can be characterized by its amplitude and phase response. However, detailed micromechanics in this bushcricket ear with an auditory fovea are yet unknown. Here, we fill this gap in knowledge for bushcricket, by analysing and comparing the ear micromechanics in Ancylecha fenestrata and a bushcricket species without auditory fovea (Mecopoda elongata, Tettigoniidae: Mecopodinae) using laser-Doppler vibrometry. We found that the increased size of the crista acustica, expanded by a foveal region in A. fenestrata, leads to higher mechanical amplitudes and longer phase delays in A. fenestrata male ears. Furthermore, area under curve analyses of the organ oscillations reveal that more sensory units are activated by the same stimuli in the males of the auditory fovea-possessing species A. fenestrata. The measured increase of phase delay in the region of the auditory fovea supports the conclusion that tilting of the transduction site is important for the effective opening of the involved transduction channels. Our detailed analysis of sound-induced micromechanics in this bushcricket ear demonstrates that an increase of sensory epithelium with foveal characteristics can enhance signal detection and may also improve the neuronal encoding.
Collapse
Affiliation(s)
- Jan Scherberich
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.,Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Roxana Taszus
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Alexander Stoessel
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.,Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Nishino H, Domae M, Takanashi T, Okajima T. Cricket tympanal organ revisited: morphology, development and possible functions of the adult-specific chitin core beneath the anterior tympanal membrane. Cell Tissue Res 2019; 377:193-214. [PMID: 30828748 DOI: 10.1007/s00441-019-03000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/26/2019] [Indexed: 01/04/2023]
Abstract
Vertebrates and insects are phylogenetically separated by millions of years but have commonly developed tympanal membranes for efficiently converting airborne sound to mechanical oscillation in hearing. The tympanal organ of the field cricket Gryllus bimaculatus, spanning 200 μm, is one of the smallest auditory organs among animals. It indirectly links to two tympana in the prothoracic tibia via tracheal vesicles. The anterior tympanal membrane is smaller and thicker than the posterior tympanal membrane and it is thought to have minor function as a sound receiver. Using differential labeling of sensory neurons/surrounding structures and three-dimensional reconstructions, we revealed that a shell-shaped chitin mass and associated tissues are hidden behind the anterior tympanal membrane. The mass, termed the epithelial core, is progressively enlarged by discharge of cylindrical chitin from epithelial cells that start to aggregate immediately after the final molt and it reaches a plateau in size after 6 days. The core, bridging between the anterior tracheal vesicle and the fluid-filled chamber containing sensory neurons, is supported by a taut membrane, suggesting the possibility that anterior displacements of the anterior tracheal vesicle are converted into fluid motion via a lever action of the core. The epithelial core did not exist in tympanal organ homologs of meso- and metathoracic legs or of nymphal legs. Taken together, the findings suggest that the epithelial core, a potential functional homolog to mammalian ossicles, underlies fine sound frequency discrimination required for adult-specific sound communications.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
| | - Mana Domae
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takuma Takanashi
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Matsuno-sato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| |
Collapse
|
12
|
Olson ES, Nowotny M. Experimental and Theoretical Explorations of Traveling Waves and Tuning in the Bushcricket Ear. Biophys J 2019; 116:165-177. [PMID: 30573177 DOI: 10.1016/j.bpj.2018.11.3124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022] Open
Abstract
The ability to detect airborne sound is essential for many animals. Examples from the inner ear of mammals and bushcrickets demonstrate that similar detection strategies evolved in taxonomically distant species. Both mammalian and bushcricket ears possess a narrow strip of sensory tissue that exhibits an anatomical gradient and traveling wave motion responses used for frequency discrimination. We measured pressure and motion in the bushcricket ear to investigate physical properties, stiffness, and mass, which govern the mechanical responses to sound. As in the mammalian cochlea, sound-induced fluid pressure and motion responses were tonotopically organized along the longitudinal axis of the crista acustica, the bushcricket's hearing organ. The fluid pressure at the crista and crista motion were used to calculate the acoustic impedance of the organ-bounded fluid mass (Zmass). We used a theoretical wave analysis of wavelength data from a previous study to predict the crista acustica stiffness. The wave analysis also predicts Zmass, and that result agreed reasonably well with the directly measured Zmass, lending support to the theoretical wave analysis. The magnitude of the crista stiffness was similar to basilar membrane stiffness in mammals, and as in mammals, the stiffness decreased from the high-frequency to the low-frequency region. At a given location, the stiffness increased with increasing frequency, corresponding to increasing curvature of the traveling wave (decreasing wavelength), indicating that longitudinal coupling plays a substantial role in determining crista stiffness. This is in contrast to the mammalian ear, in which stiffness is independent of frequency and longitudinal coupling is relatively small.
Collapse
|
13
|
Scherberich J, Hummel J, Schöneich S, Nowotny M. Functional basis of the sexual dimorphism in the auditory fovea of the duetting bushcricket Ancylecha fenestrata. Proc Biol Sci 2018; 284:rspb.2017.1426. [PMID: 29046376 DOI: 10.1098/rspb.2017.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
From mammals to insects, acoustic communication is in many species crucial for successful reproduction. In the duetting bushcricket Ancylecha fenestrata, the mutual acoustic communication between males and females is asymmetrical. We investigated how those signalling disparities are reflected by sexual dimorphism of their ears. Both sexes have tympanic ears in their forelegs, but male ears possess a significantly longer crista acustica containing 35% more scolopidia. With more sensory cells to cover a similar hearing range, the male hearing organ shows a significantly expanded auditory fovea that is tuned to the dominant frequency of the female reply to facilitate phonotactic mate finding. This sex-specific auditory fovea is demonstrated in the mechanical and neuronal responses along the tonotopically organized crista acustica by laservibrometric and electrophysiological frequency mapping, respectively. Morphometric analysis of the crista acustica revealed an interrupted gradient in organ height solely within this auditory fovea region, whereas all other anatomical parameters decrease continuously from proximal to distal. Combining behavioural, anatomical, biomechanical and neurophysiological information, we demonstrate evidence of a pronounced auditory fovea as a sex-specific adaptation of an insect hearing organ for intraspecific acoustic communication.
Collapse
Affiliation(s)
- Jan Scherberich
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Jennifer Hummel
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Stefan Schöneich
- Institute for Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|