1
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Bienkowska N, London L, Fleysher L, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. Nat Commun 2024; 15:4669. [PMID: 38821963 PMCID: PMC11143237 DOI: 10.1038/s41467-024-49140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and the underlying patterns of neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the amygdala of two male macaques. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5 Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-modal approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Satoka H Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University at Langone, 550 1st Avenue, New York, NY, 10016, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Fleysher L, Bienkowska N, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545778. [PMID: 37745436 PMCID: PMC10515745 DOI: 10.1101/2023.06.21.545778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the macaque amygdala and activated them with a highly selective and potent DREADD agonist, deschloroclozapine. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Interestingly, activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-disciplinary approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Frederic M. Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
3
|
McDonald AJ, Duque A. Specific neuronal subpopulations in the amygdala of macaque monkeys express high levels of nonphosphorylated neurofilaments. Brain Res 2022; 1777:147767. [PMID: 34958755 PMCID: PMC8792357 DOI: 10.1016/j.brainres.2021.147767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
Pyramidal neurons in the neocortex that express nonphosphorylated neurofilaments (NPNFs) are especially vulnerable to degeneration in Alzheimer's disease. Since the basolateral nuclear complex of the amygdala (BNC) and cortical nuclear complex of the amygdala (CNC) are cortex-like structures, containing both pyramidal (PNs) and nonpyramidal neurons (NPNs), it is of interest to determine which cell types in the primate BNC and CNC are NPNF+. We also studied NPNF expression in the non-cortex-like nuclei of the amygdala (central and medial nuclei). Digitized images of sections through fetal, newborn, infant, and adult macaque brains stained for NPNFs, obtained from the Macaque Brain Resource (MacBrainResource, MBR), were analyzed. The pattern of NPNF immunoreactivity (NPNF-ir) in the BNC, CNC, and medial nucleus was essentially identical in all four age groups, but there were some age-dependent differences in the central nucleus. All BNC and CNC nuclei contained a moderate density of NPNF+ NPNs. Both the somata and the entire dendritic arborizations of these NPNs were stained. PNs with robust NPNF-ir in their somata and proximal dendrites were only seen in the basal magnocellular nucleus, where it appeared that virtually every PN was NPNF+. This pattern of NPNF expression is distinct from that seen in the mammalian neocortex, where NPNF+ neurons are almost entirely PNs, but is very similar to that seen in a recent study of the rat BNC. These findings, in conjunction with the cortical data, suggest the possibility that NPNF+ neuronal subpopulations in the BNC and CNC might be especially vulnerable in Alzheimer's disease.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, SHM C317B, New Haven, CT, 06520, USA
| |
Collapse
|
4
|
McDonald AJ, Mott DD. Neuronal localization of m1 muscarinic receptor immunoreactivity in the monkey basolateral amygdala. J Comp Neurol 2021; 529:2450-2463. [PMID: 33410202 PMCID: PMC8113068 DOI: 10.1002/cne.25104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Accepted: 01/01/2021] [Indexed: 11/11/2022]
Abstract
The basolateral nuclear complex (BNC) of the amygdala plays an important role in the generation of emotional/motivational behavior and the consolidation of emotional memories. Activation of M1 cholinergic receptors (M1Rs) in the BNC is critical for memory consolidation. Previous receptor binding studies in the monkey amygdala demonstrated that the BNC has a high density of M1Rs, but did not have sufficient resolution to identify which neurons in the BNC expressed them. This was accomplished in the present immunohistochemical investigation using an antibody for the m1 receptor (m1R). Analysis of m1Rs in the monkey BNC using immunoperoxidase techniques revealed that their expression was very dense in the BNC, and suggested that virtually all of the pyramidal projection neurons (PNs) in all of the BNC nuclei were m1R-immunoreactive (m1R+). This was confirmed with dual-labeling immunofluorescence using staining for calcium/calmodulin-dependent protein kinase II (CaMK) as a marker for BNC PNs. However, additional dual-labeling studies indicated that one-third of inhibitory interneurons (INs) expressing glutamic acid decarboxylase (GAD) were also m1R+. Moreover, the finding that 60% of parvalbumin (PV) immunoreactive neurons were m1R+ indicated that this IN subpopulation was the main GAD+ subpopulation exhibiting m1R expression. The cholinergic innervation of the amygdala is greatly reduced in Alzheimer's disease and there is currently considerable interest in developing selective M1R positive allosteric modulators (PAMs) to treat the symptoms. The results of the present study indicate that M1Rs in both PNs and INs in the primate BNC would be targeted by M1R PAMs.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
5
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
6
|
McDonald AJ. Immunohistochemical Identification of Interneuronal Subpopulations in the Basolateral Amygdala of the Rhesus Monkey (Macaca mulatta). Neuroscience 2021; 455:113-127. [PMID: 33359654 PMCID: PMC7855802 DOI: 10.1016/j.neuroscience.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Inhibitory circuits in the basolateral nuclear complex of the amygdala (BNC) critical for controlling the acquisition, expression, and extinction of emotional responses are mediated by GABAergic interneurons (INs). Studies in rodents have demonstrated that separate IN subpopulations, identified by their expression of calcium-binding proteins and neuropeptides, play discrete roles in the intrinsic circuitry of the BNC. Far less is known about IN subpopulations in primates. In order to fill in this gap in our understanding of primate INs, the present investigation used dual-labeling immunohistochemistry for IN markers to identify subpopulations expressing cholecystokinin (CCK), calbindin (CB), calretinin (CR), and somatostatin (SOM) in somata and axon terminals in the monkey BNC. In general, colocalization patterns seen in somata and axon terminals were similar. It was found that there was virtually no colocalization of CB and CR, the two calcium-binding proteins investigated. Three subtypes of CCK-immunoreactive (CCK+) INs were identified on the basis of their expression of CR or CB: (1) CCK+/CR+; (2) CCK+/CB+); and (3) CCK+/CR-/CB-. Almost no colocalization of CCK with SOM was observed, but there was extensive colocalization of SOM and CB. CCK+, CR+, and CCK+/CR+ double-labeled axon terminals were seen surrounding pyramidal cell somata in basket-like plexuses, as well as in the neuropil. CB+, SOM+, and CB+/SOM+ terminals did not form baskets, suggesting that these IN subpopulations are mainly dendrite-targeting neurons. In general, the IN subpopulations in the monkey are not dissimilar to those seen in rodents but, unlike rodents, CB+ INs in the monkey are not basket cells.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
7
|
Distribution and morphology of calbindin neurons in the Amygdaloid Complex of the marmoset monkey (callithrix jacchus). J Chem Neuroanat 2020; 112:101914. [PMID: 33388377 DOI: 10.1016/j.jchemneu.2020.101914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The location and distribution of the calcium-binding protein calbindin-D28k (CB) has been considered to be of great value as a neuronal marker for identifying distinct brain regions and discrete neuronal populations. In the amygdaloid complex (AC), the balance of excitatory and inhibitory inputs is controlled by CB immunoreactive interneurons. Alterations of inhibitory mechanisms in the AC may play a role in the emotional symptomatology of neurological diseases like Alzheimer's and psychiatric disorders like posttraumatic stress disorder. The present investigation examined the distribution and morphology of CB-containing neurons, neuropils and fibers in marmoset monkey ACs by using immunohistochemical and morphometrical methods. We recognized four types of CB cells in the AC: type 1 (multipolar), type 2 (spherical or bipolar), type 3 (pyramidal) and type 4 (halo cells), a cell type specific to the marmoset located in the basal and central nuclei. We detected CB cells in all nuclei and areas of the AC, where most of the cells were present in the deep nuclei (lateral, basal, accessory basal and paralaminar). In the superficial nuclei (the nucleus of the lateral olfactory tract, medial nucleus, periamygdaloid cortex and cortical nuclei), the CB cells were abundant in layers 2 and 3. The intercalated nuclei contained small densely packed cells. The CB neuropils were particularly dense in layer 1 of the superficial nuclei, in the deep nuclei and in the amygdalohippocampal area. Large CB immunoreactive neurons in the white matter and fibers with varicosities were found in the myelin tracts that surrounded the AC. These findings are the first step in determining whether some of these cells are specifically disrupted in pathological states.
Collapse
|
8
|
Ünal ÇT, Ünal B, Bolton MM. Low-threshold spiking interneurons perform feedback inhibition in the lateral amygdala. Brain Struct Funct 2020; 225:909-923. [PMID: 32144495 PMCID: PMC7166205 DOI: 10.1007/s00429-020-02051-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
Amygdala plays crucial roles in emotional learning. The lateral amygdala (LA) is the input station of the amygdala, where learning related plasticity occurs. The LA is cortical like in nature in terms of its cellular make up, composed of a majority of principal cells and a minority of interneurons with distinct subtypes defined by morphology, intrinsic electrophysiological properties and neurochemical expression profile. The specific functions served by LA interneuron subtypes remain elusive. This study aimed to elucidate the interneuron subtype mediating feedback inhibition. Electrophysiological evidence involving antidromic activation of recurrent LA circuitry via basolateral amygdala stimulation and paired recordings implicate low-threshold spiking interneurons in feedback inhibition. Recordings in somatostatin-cre animals crossed with tdtomato mice have revealed remarkable similarities between a subset of SOM+ interneurons and LTS interneurons. This study concludes that LTS interneurons, most of which are putatively SOM+, mediate feedback inhibition in the LA. Parallels with cortical areas and potential implications for information processing and plasticity are discussed.
Collapse
Affiliation(s)
- Çağrı Temuçin Ünal
- Department of Psychology, Comparative Cognition Laboratory, TED University, Ziya Gokalp Caddesi No. 48 06420, Kolej Cankaya, Ankara, Turkey
| | - Bengi Ünal
- Department of Psychology, Comparative Cognition Laboratory, TED University, Ziya Gokalp Caddesi No. 48 06420, Kolej Cankaya, Ankara, Turkey
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA.
| |
Collapse
|