1
|
Du Y, Lin SD, Wu XQ, Xue BY, Ding YL, Zhang JH, Tan B, Lou GD, Hu WW, Chen Z, Zhang SH. Ventral posteromedial nucleus of the thalamus gates the spread of trigeminal neuropathic pain. J Headache Pain 2024; 25:140. [PMID: 39192198 DOI: 10.1186/s10194-024-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking. METHODS Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds. In vivo/vitro electrophysiology were used to evaluate neuronal activity. Virus tracing strategies, combined with optogenetics and chemogenetics, were used to clarify the role of remodeling circuit in widespread neuropathic pain. RESULTS We found that in mice receiving p-IONX, along with pain sensitization spreading from the orofacial area to distal body parts, glutamatergic neurons in the ventral posteromedial nucleus of the thalamus (VPMGlu) were hyperactive and more responsive to stimulations applied to the hind paw or tail. Tracing experiments revealed that a remodeling was induced by p-IONX in the afferent circuitry of VPMGlu, notably evidenced by more projections from glutamatergic neurons in the dorsal column nuclei (DCNGlu). Moreover, VPMGlu receiving afferents from the DCN extended projections further to glutamatergic neurons in the posterior insular cortex (pIC). Selective inhibition of the terminals of DCNGlu in the VPM, the soma of VPMGlu or the terminals of VPMGlu in the pIC all alleviated trigeminal and widespread neuropathic pain. CONCLUSION These results demonstrate that hyperactive VPMGlu recruit new afferents from the DCN and relay the extra-cephalic input to the pIC after p-IONX, thus hold a key position in trigeminal neuropathic pain and its spreading. This study provides novel insights into the circuit mechanism and preclinical evidence for potential therapeutic targets of widespread neuropathic pain.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shi-Da Lin
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bao-Yu Xue
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Hang Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guo-Dong Lou
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Wei Hu
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
McCulloch PF, Lahrman KA, DelPrete B, DiNovo KM. Innervation of the Nose and Nasal Region of the Rat: Implications for Initiating the Mammalian Diving Response. Front Neuroanat 2018; 12:85. [PMID: 30483070 PMCID: PMC6243009 DOI: 10.3389/fnana.2018.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Most terrestrial animals demonstrate an autonomic reflex that facilitates survival during prolonged submersion under water. This diving response is characterized by bradycardia, apnea and selective increases in peripheral vascular resistance. Stimulation of the nose and nasal passages is thought to be primarily responsible for providing the sensory afferent signals initiating this protective reflex. Consequently, the primary objective of this research was to determine the central terminal projections of nerves innervating the external nose, nasal vestibule and nasal passages of rats. We injected wheat germ agglutinin (WGA) into specific external nasal locations, into the internal nasal passages of rats both with and without intact anterior ethmoidal nerves (AENs), and directly into trigeminal nerves innervating the nose and nasal region. The central terminations of these projections within the medulla were then precisely mapped. Results indicate that the internal nasal branch of the AEN and the nasopalatine nerve, but not the infraorbital nerve (ION), provide primary innervation of the internal nasal passages. The results also suggest afferent fibers from the internal nasal passages, but not external nasal region, project to the medullary dorsal horn (MDH) in an appropriate anatomical way to cause the activation of secondary neurons within the ventral MDH that express Fos protein during diving. We conclude that innervation of the anterior nasal passages by the AEN and nasopalatine nerve is likely to provide the afferent information responsible for the activation of secondary neurons within MDH during voluntary diving in rats.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Kenneth A Lahrman
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Benjamin DelPrete
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Karyn M DiNovo
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
3
|
Kitazawa T, Rijli FM. Barrelette map formation in the prenatal mouse brainstem. Curr Opin Neurobiol 2018; 53:210-219. [PMID: 30342228 DOI: 10.1016/j.conb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The rodent whiskers are topographically mapped in brainstem sensory nuclei as neuronal modules known as barrelettes. Little is known about how the facial whisker pattern is copied into a brainstem barrelette topographic pattern, which serves as a template for the establishment of thalamic barreloid and, in turn, cortical barrel maps, and how precisely is the whisker pattern mapped in the brainstem during prenatal development. Here, we review recent insights advancing our understanding of the intrinsic and extrinsic patterning mechanisms contributing to establish topographical equivalence between the facial whisker pattern and the mouse brainstem during prenatal development and their relative importance.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
4
|
Fernández-Montoya J, Martin YB, Negredo P, Avendaño C. Changes in the axon terminals of primary afferents from a single vibrissa in the rat trigeminal nuclei after active touch deprivation or exposure to an enriched environment. Brain Struct Funct 2017; 223:47-61. [PMID: 28702736 DOI: 10.1007/s00429-017-1472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023]
Abstract
Lasting modifications of sensory input induce structural and functional changes in the brain, but the involvement of primary sensory neurons in this plasticity has been practically ignored. Here, we examine qualitatively and quantitatively the central axonal terminations of a population of trigeminal ganglion neurons, whose peripheral axons innervate a single mystacial vibrissa. Vibrissa follicles are heavily innervated by myelinated and unmyelinated fibers that exit the follicle mainly through a single deep vibrissal nerve. We made intraneural injections of a mixture of cholera-toxin B (CTB) and isolectin B4, tracers for myelinated and unmyelinated fibers, respectively, in three groups of young adult rats: controls, animals subjected to chronic haptic touch deprivation by unilateral whisker trimming, and rats exposed for 2 months to environmental enrichment. The regional and laminar pattern of terminal arborizations in the trigeminal nuclei of the brain stem did not show gross changes after sensory input modification. However, there were significant and widespread increases in the number and size of CTB-labeled varicosities in the enriched condition, and a prominent expansion in both parameters in laminae III-IV of the caudal division of the spinal nucleus in the whisker trimming condition. No obvious changes were detected in IB4-labeled terminals in laminae I-II. These results show that a prolonged exposure to changes in sensory input without any neural damage is capable of inducing structural changes in terminals of primary afferents in mature animals, and highlight the importance of peripheral structures as the presumed earliest players in sensory experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, UFV, Edificio E, Ctra. M-115, Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Yu XC, Yang JJ, Jin BH, Xu HL, Zhang HY, Xiao J, Lu CT, Zhao YZ, Yang W. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve. J Control Release 2017; 258:22-33. [DOI: 10.1016/j.jconrel.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
|
6
|
Widespread pain sensitization after partial infraorbital nerve transection in MRL/MPJ mice. Pain 2016; 157:740-749. [PMID: 26588696 DOI: 10.1097/j.pain.0000000000000432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clinical studies show that chronic pain can spread to adjacent or even distant body regions in some patients. However, little is known about how this happens. In this study, we found that partial infraorbital nerve transection (p-IONX) in MRL/MPJ mice induced not only marked and long-lasting orofacial thermal hyperalgesia but also thermal hyperalgesia from day 3 postoperatively (PO) and tactile allodynia from day 7 PO in bilateral hind paws. Pain sensitization in the hind paw was negatively correlated with facial thermal hyperalgesia at early but not late stage after p-IONX. After a rapid activation of c-Fos, excitability and excitatory synaptic neurotransmission in lumbar dorsal horn neurons were elevated from day 3 and day 7 PO, respectively. In addition, microglial activation after p-IONX transmitted caudally from the Vc in the medulla to lumber dorsal horn in a time-dependent manner. Inhibition of microglial activation by minocycline at early but not late stage after p-IONX postponed and attenuated pain sensitization in the hind paw. These results indicate that neuropathic pain after p-IONX in MRL/MPJ mice spreads from the orofacial region to distant somatic regions and that a rostral-caudal transmission of central sensitization in the spinal cord is involved in the spreading process of pain hypersensitivity.
Collapse
|
7
|
Laumonnerie C, Bechara A, Vilain N, Kurihara Y, Kurihara H, Rijli FM. Facial whisker pattern is not sufficient to instruct a whisker-related topographic map in the mouse somatosensory brainstem. Development 2015; 142:3704-12. [PMID: 26417040 DOI: 10.1242/dev.128736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Facial somatosensory input is relayed by trigeminal ganglion (TG) neurons and serially wired to brainstem, thalamus and cortex. Spatially ordered sets of target neurons generate central topographic maps reproducing the spatial arrangement of peripheral facial receptors. Facial pattern provides a necessary template for map formation, but may be insufficient to impose a brain somatotopic pattern. In mice, lower jaw sensory information is relayed by the trigeminal nerve mandibular branch, whose axons target the brainstem dorsal principal sensory trigeminal nucleus (dPrV). Input from mystacial whiskers is relayed by the maxillary branch and forms a topographic representation of rows and whiskers in the ventral PrV (vPrV). To investigate peripheral organisation in imposing a brain topographic pattern, we analysed Edn1(-/-) mice, which present ectopic whisker rows on the lower jaw. We found that these whiskers were innervated by mandibular TG neurons which initially targeted dPrV. Unlike maxillary TG neurons, the ectopic whisker-innervating mandibular neuron cell bodies and pre-target central axons did not segregate into a row-specific pattern nor target the dPrV with a topographic pattern. Following periphery-driven molecular repatterning to a maxillary-like identity, mandibular neurons partially redirected their central projections from dPrV to vPrV. Thus, while able to induce maxillary-like molecular features resulting in vPrV final targeting, a spatially ordered lower jaw ectopic whisker pattern is insufficient to impose row-specific pre-target organisation of the central mandibular tract or a whisker-related matching pattern of afferents in dPrV. These results provide novel insights into periphery-dependent versus periphery-independent mechanisms of trigeminal ganglion and brainstem patterning in matching whisker topography.
Collapse
Affiliation(s)
- Christophe Laumonnerie
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Ahmad Bechara
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Yukiko Kurihara
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Hiroki Kurihara
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland University of Basel, Basel 4056, Switzerland
| |
Collapse
|
8
|
Malmierca E, Chaves-Coira I, Rodrigo-Angulo M, Nuñez A. Corticofugal projections induce long-lasting effects on somatosensory responses in the trigeminal complex of the rat. Front Syst Neurosci 2014; 8:100. [PMID: 24904321 PMCID: PMC4033105 DOI: 10.3389/fnsys.2014.00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/08/2014] [Indexed: 11/17/2022] Open
Abstract
The sensory information flow at subcortical relay stations is controlled by the action of topographic connections from the neocortex. To determinate the functional properties of the somatosensory corticofugal projections to the principal (Pr5) and caudal spinal (Sp5C) trigeminal nuclei, we performed unitary recordings in anesthetized rats. To examine the effect of these cortical projections we used tactile stimulation of the whisker and electrical stimulation of somatosensory cortices. Corticofugal anatomical projections to Pr5 and Sp5C nuclei were detected by using retrograde fluorescent tracers. Neurons projecting exclusively to Pr5 were located in the cingulate cortex while neurons projecting to both Sp5C and Pr5 nuclei were located in the somatosensory and insular cortices (>75% of neurons). Physiological results indicated that primary somatosensory cortex produced a short-lasting facilitating or inhibiting effects (<5 min) of tactile responses in Pr5 nucleus through activation of NMDA glutamatergic or GABAA receptors since effects were blocked by iontophoretically application of APV and bicuculline, respectively. In contrast, stimulation of secondary somatosensory cortex did not affect most of the Pr5 neurons; however both cortices inhibited the nociceptive responses in the Sp5C nucleus through activation of glycinergic or GABAA receptors because effects were blocked by iontophoretically application of strychnine and bicuculline, respectively. These and anatomical results demonstrated that the somatosensory cortices projects to Pr5 nucleus to modulate tactile responses by excitatory and inhibitory actions, while projections to the Sp5C nucleus control nociceptive sensory transmission by only inhibitory effects. Thus, somatosensory cortices may modulate innocuous and noxious inputs simultaneously, contributing to the perception of specifically tactile or painful sensations.
Collapse
Affiliation(s)
- Eduardo Malmierca
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Irene Chaves-Coira
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Margarita Rodrigo-Angulo
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
9
|
Abe T, Shimoda T, Urade M, Hasegawa M, Sugiyo S, Takemura M. c-Fos induction in the brainstem following electrical stimulation of the trigeminal ganglion of chronically mandibular nerve-transected rats. Somatosens Mot Res 2013; 30:175-84. [DOI: 10.3109/08990220.2013.790805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Quist BW, Hartmann MJZ. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. J Neurophysiol 2012; 107:2298-312. [PMID: 22298834 DOI: 10.1152/jn.00372.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments at the vibrissa base with a quasi-static model of vibrissa deflection. The model was validated with experiments on real vibrissae. Initial simulations demonstrated that almost all vibrissa-object collisions during natural behavior will occur with the concave side of the vibrissa facing the object, and we therefore paid particular attention to the role of the vibrissa's intrinsic curvature in shaping the forces at the base. Both simulations and experiments showed that vibrissae with larger intrinsic curvatures will generate larger axial forces. Simulations also demonstrated that the range of forces and moments at the vibrissal base vary over approximately three orders of magnitude, depending on the location along the vibrissa at which object contact is made. Both simulations and experiments demonstrated that collisions in which the concave side of the vibrissa faces the object generate longer-duration contacts and larger net forces than collisions with the convex side. These results suggest that the orientation of the vibrissa's intrinsic curvature on the mystacial pad may increase forces during object contact and provide increased sensitivity to detailed surface features.
Collapse
Affiliation(s)
- Brian W Quist
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | | |
Collapse
|
11
|
Hill DN, Curtis JC, Moore JD, Kleinfeld D. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 2011; 72:344-56. [PMID: 22017992 PMCID: PMC3717360 DOI: 10.1016/j.neuron.2011.09.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
Exploratory whisking in rat is an example of self-generated movement on multiple timescales, from slow variations in the envelope of whisking to the rapid sequence of muscle contractions during a single whisk cycle. We find that, as a population, spike trains of single units in primary vibrissa motor cortex report the absolute angle of vibrissa position. This representation persists after sensory nerve transection, indicating an efferent source. About two-thirds of the units are modulated by slow variations in the envelope of whisking, while relatively few units report rapid changes in position within the whisk cycle. The combined results from this study and past measurements, which show that primary sensory cortex codes the whisking envelope as a motor copy signal, imply that signals present in both sensory and motor cortices are necessary to compute angular coordinates based on vibrissa touch.
Collapse
Affiliation(s)
- Daniel N. Hill
- Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA
- Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA
- Institute of Neuroscience, Technical University Munich, Germany
| | - John C. Curtis
- The Salk Institute for Biological Studies, San Diego, CA, USA
| | - Jeffrey D. Moore
- Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA
- Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA
| | - David Kleinfeld
- Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA
- Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
12
|
Curtis JC, Kleinfeld D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat Neurosci 2009; 12:492-501. [PMID: 19270688 DOI: 10.1038/nn.2283] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/23/2009] [Indexed: 11/09/2022]
Abstract
Sensory perception involves the dual challenge of encoding external stimuli and managing the influence of changes in body position that alter the sensory field. To examine mechanisms used to integrate sensory signals elicited by both external stimuli and motor activity, we recorded from rats trained to rhythmically sweep their vibrissa in search of a target. We found a select population of neurons in primary somatosensory cortex that are transiently excited by the confluence of touch by a single vibrissa and the phase of vibrissa motion in the whisk cycle; different units have different preferred phases. This conditional response enables the rodent to estimate object position in a coordinate frame that is normalized to the trajectory of the motor output, as defined by phase in the whisk cycle, rather than angle of the vibrissa relative to the face. The underlying computation is consistent with gating by an inhibitory shunt.
Collapse
Affiliation(s)
- John C Curtis
- Division of Biological Sciences, University of California, San Diego, California, USA
| | | |
Collapse
|
13
|
Mehta SB, Whitmer D, Figueroa R, Williams BA, Kleinfeld D. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol 2007; 5:e15. [PMID: 17227143 PMCID: PMC1769422 DOI: 10.1371/journal.pbio.0050015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/13/2006] [Indexed: 11/18/2022] Open
Abstract
Haptic perception is an active process that provides an awareness of objects that are encountered as an organism scans its environment. In contrast to the sensation of touch produced by contact with an object, the perception of object location arises from the interpretation of tactile signals in the context of the changing configuration of the body. A discrete sensory representation and a low number of degrees of freedom in the motor plant make the ethologically prominent rat vibrissa system an ideal model for the study of the neuronal computations that underlie this perception. We found that rats with only a single vibrissa can combine touch and movement to distinguish the location of objects that vary in angle along the sweep of vibrissa motion. The patterns of this motion and of the corresponding behavioral responses show that rats can scan potential locations and decide which location contains a stimulus within 150 ms. This interval is consistent with just one to two whisk cycles and provides constraints on the underlying perceptual computation. Our data argue against strategies that do not require the integration of sensory and motor modalities. The ability to judge angular position with a single vibrissa thus connects previously described, motion-sensitive neurophysiological signals to perception in the behaving animal. Rats explore the world with their whiskers (vibrissae). Although the sensations of touch that an animal experiences while exploring an object either in front of its head or to its side can be similar, the two sensations tell the animal different things about its nearby environment. The translation from passive touch to knowledge of an object's location requires that the nervous system keep track of the location of the animal's body as it moves. We studied this process by restricting a rat's whisking information to that provided by a single actively moving vibrissa. We found that even with such limited information, rats can search for, locate, and differentiate objects near their heads with astonishing speed. Their behavior during this search reflects the computations performed by their nervous systems to locate objects based on touch, and this behavior demonstrates that rats keeps track of their vibrissa motion with a resolution of less than 0.1 s. Understanding how these computations are performed will bring us closer to understanding how the brain integrates the sense of touch with its sense of self. Rats can localize objects with their specialized vibrissa system by the integration of feed-forward sensory events and motor feedback. This discovery provides a behavioral model for understanding how sensorimotor loops derive the perception of space from the sensation of touch.
Collapse
Affiliation(s)
- Samar B Mehta
- Neurosciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | | | | | | | | |
Collapse
|
14
|
Ling LJ, Honda T, Shimada Y, Ozaki N, Shiraishi Y, Sugiura Y. Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol 2003; 461:140-50. [PMID: 12724833 DOI: 10.1002/cne.10619] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have demonstrated the central projections of muscle C or group IV afferent fibers in the guinea pig by tracing arborizations in the spinal cord. C afferent fibers from the gastrocnemius muscle (GCM) were electrophysiologically identified by conduction velocity (less than 1 m/second). A single neuron in the lumbar 5 dorsal root ganglion (L5 DRG) was intracellularly labeled with Phaseolus vulgaris leucoagglutinin (PHA-L). After iontophoretic injection of PHA-L, we processed the lumbar cord and L5 DRG for PHA-L immunohistochemistry. Six muscle C afferent fibers from 40 animals were labeled, and whole trajectories were recovered. Labeled fibers were reconstructed by tracing of the arbor in serial parasagittal sections. The GCM C afferents projected rostrocaudally for two or three segments and ran at the surface of the dorsal funiculus, giving off collaterals into laminae I and II and sometimes into parts of lamina III. We determined, based on the branching pattern and form of the terminal plexus, that the branching of muscle C afferent fibers showed an intermediate pattern that fell morphologically between the terminal patterns of somatic and visceral afferents. The numbers and sizes of fiber swellings and terminal swellings were measured on all collateral branches. We found that the area of distribution of the terminal swellings of muscle C afferent fibers is larger than that of somatic terminals but that the density of terminal swellings in the terminal area was lower than that of the somatic terminals.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Berg RW, Kleinfeld D. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 2003; 89:104-17. [PMID: 12522163 DOI: 10.1152/jn.00600.2002] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rhythmic motor activity of the vibrissae that rodents use for the tactile localization of objects provides a model system for understanding patterned motor activity in mammals. The muscles that drive this whisking are only partially fixed relative to bony attachments and thus shift their position along with the movement. As a means to characterize the pattern of muscular dynamics during different patterns of whisking, we recorded electromyogram (EMG) activity from the muscles that propel individual follicles, as well as EMG activity from a muscle group that moves the mystacial pad. The dominant pattern of whisking in our behavioral paradigm, referred to as exploratory whisking, consisted of large amplitude sweeps in the frequency range of 5-15 Hz. The frequency remained remarkably constant within a bout of whisking but changed values between bouts. The extrinsic musculature, which shifts the surface of the pad backwards, was found to be activated in approximate antiphase to that of the intrinsic muscles, which rotate individual vibrissae forward. Thus retraction of the vibrissae was driven by a backward shift in the attachment point of the follicles to the mystacial pad. In a less frequent pattern of whisking, referred to as foveal whisking, the vibrissae are thrust forward and palpate objects with low-amplitude movements that are in the higher frequency range of 15-25 Hz. Protraction of the vibrissae remains driven by the intrinsic muscles, while retraction in this pattern is largely passive. Interestingly, a mechanical argument suggests that activation of the extrinsic muscles during foveal whisking is not expected to affect the angle of the vibrissae. As a means to establish if the phasic control of the intrinsic versus extrinsic muscles depended on sensory feedback, we characterized whisking before and after bilateral transections of the infraorbital branch of the trigeminal sensory nerve. The loss of sensory feedback had no net effect on the antiphase relation between activation of the intrinsic versus extrinsic muscles over the full frequency range for exploratory whisking. These data point to the existence of a dual-phase central pattern generator that drives the vibrissae.
Collapse
Affiliation(s)
- Rune W Berg
- Department of Physics, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
16
|
Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 2002; 449:103-19. [PMID: 12115682 DOI: 10.1002/cne.10277] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our confocal three-dimensional analyses revealed substantial differences in the innervation to vibrissal follicle-sinus complexes (FSCs) in the rat and cat. This is the first study using anti-protein gene product 9.5 (PGP9.5) immunolabeling and confocal microscopy on thick sections to examine systematically the terminal arborizations of the various FSC endings and to compare them between two species, the rat and the cat, that have similar-appearing FSCs but different exploratory behaviors, such as existence or absence of whisking. At least eight distinct endings were clearly discriminated three dimensionally in this study: 1) Merkel endings at the rete ridge collar, 2) circumferentially oriented lanceolate endings, 3) Merkel endings at the level of the ring sinus, 4) longitudinally oriented lanceolate endings, 5) club-like ringwulst endings, 6) reticular endings, 7) spiny endings, and 8) encapsulated endings. Of particular contrast, each nerve fiber that innervates Merkel cells at the level of the ring sinus in the rat usually terminates as a single, relatively small cluster of endings, whereas in the cat they terminate en passant as several large clusters of endings. Also, individual arbors of reticular endings in the rat ramify parallel to the vibrissae and distribute over wide, overlapping territories, whereas those in the cat ramify perpendicular and terminate in tightly circumscribed territories. Otherwise, the inner conical body of rat FSCs contains en passant, circumferentially oriented lanceolate endings that are lacking in the cat, whereas the cavernous sinus of the cat has en passant corpuscular endings that are lacking in the rat. Surprisingly, the one type of innervation that is the most similar in both species is a major set of simple, club-like endings, located at the attachment of the ringwulst, that had not previously been recognized as a morphologically unique type of innervation. Although the basic structure of the FSCs is similar in the rat and cat, the numerous differences in innervation suggest that these species would have different tactile capabilities and perceptions possibly related to their different vibrissa-related exploratory behaviors.
Collapse
Affiliation(s)
- Satomi Ebara
- Department of Anatomy, Meiji University of Oriental Medicine, Hiyoshi-cho, Funai-gun, Kyoto 629-0392, Japan.
| | | | | | | | | |
Collapse
|
17
|
Malick A, Strassman RM, Burstein R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 2000; 84:2078-112. [PMID: 11024099 DOI: 10.1152/jn.2000.84.4.2078] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory information that arises in orofacial organs facilitates exploratory, ingestive, and defensive behaviors that are essential to overall fitness and survival. Because the hypothalamus plays an important role in the execution of these behaviors, sensory signals conveyed by the trigeminal nerve must be available to this brain structure. Recent anatomical studies have shown that a large number of neurons in the upper cervical spinal cord and caudal medulla project directly to the hypothalamus. The goal of the present study was to identify the types of information that these neurons carry to the hypothalamus and to map the route of their ascending axonal projections. Single-unit recording and antidromic microstimulation techniques were used to identify 81 hypothalamic-projecting neurons in the caudal medulla and upper cervical (C(1)) spinal cord that exhibited trigeminal receptive fields. Of the 72 neurons whose locations were identified, 54 were in laminae I-V of the dorsal horn at the level of C(1) (n = 22) or nucleus caudalis (Vc, n = 32) and were considered trigeminohypothalamic tract (THT) neurons because these regions are within the main projection territory of trigeminal primary afferent fibers. The remaining 18 neurons were in the adjacent lateral reticular formation (LRF) and were considered reticulohypothalamic tract (RHT) neurons. The receptive fields of THT neurons were restricted to the innervation territory of the trigeminal nerve and included the tongue and lips, cornea, intracranial dura, and vibrissae. Based on their responses to mechanical stimulation of cutaneous or intraoral receptive fields, the majority of THT neurons were classified as nociceptive (38% high-threshold, HT, 42% wide-dynamic-range, WDR), but in comparison to the spinohypothalamic tract (SHT), a relatively high percentage of low-threshold (LT) neurons were also found (20%). Responses to thermal stimuli were found more commonly in WDR than in HT neurons: 75% of HT and 93% of WDR neurons responded to heat, while 16% of HT and 54% of WDR neurons responded to cold. These neurons responded primarily to noxious intensities of thermal stimulation. In contrast, all LT neurons responded to innocuous and noxious intensities of both heat and cold stimuli, a phenomenon that has not been described for other populations of mechanoreceptive LT neurons at spinal or trigeminal levels. In contrast to THT neurons, RHT neurons exhibited large and complex receptive fields, which extended over both orofacial ("trigeminal") and extracephalic ("non-trigeminal") skin areas. Their responses to stimulation of trigeminal receptive fields were greater than their responses to stimulation of non-trigeminal receptive fields, and their responses to innocuous stimuli were induced only when applied to trigeminal receptive fields. As described for SHT axons, the axons of THT and RHT neurons ascended through the contralateral brain stem to the supraoptic decussation (SOD) in the lateral hypothalamus; 57% of them then crossed the midline to reach the ipsilateral hypothalamus. Collateral projections were found in the superior colliculus, substantia nigra, red nucleus, anterior pretectal nucleus, and in the lateral, perifornical, dorsomedial, suprachiasmatic, and supraoptic hypothalamic nuclei. Additional projections (which have not been described previously for SHT neurons) were found rostral to the hypothalamus in the caudate-putamen, globus pallidus, and substantia innominata. The findings that nonnociceptive signals reach the hypothalamus primarily through the direct THT route, whereas nociceptive signals reach the hypothalamus through both the direct THT and the indirect RHT routes suggest that highly prioritized painful signals are transferred in parallel channels to ensure that this critical information reaches the hypothalamus, a brain area that regulates homeostasis and other humoral responses required for the survival of the organism.
Collapse
Affiliation(s)
- A Malick
- Department of Neurobiology and the Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Abstract
Recent studies have demonstrated that a large number of spinal cord neurons convey somatosensory and visceral nociceptive information directly from cervical, lumbar, and sacral spinal cord segments to the hypothalamus. Because sensory information from head and orofacial structures is processed by all subnuclei of the trigeminal brainstem nuclear complex (TBNC) we hypothesized that all of them contain neurons that project directly to the hypothalamus. In the present study, we used the retrograde tracer Fluoro-Gold to examine this hypothesis. Fluoro-Gold injections that filled most of the hypothalamus on one side labeled approximately 1,000 neurons (best case = 1,048, mean = 718 +/- 240) bilaterally (70% contralateral) within all trigeminal subnuclei and C1-2. Of these neurons, 86% were distributed caudal to the obex (22% in C2, 22% in C1, 23% in subnucleus caudalis, and 18% in the transition zone between subnuclei caudalis and interpolaris), and 14% rostral to the obex (6% in subnucleus interpolaris, 4% in subnucleus oralis, and 4% in subnucleus principalis). Caudal to the obex, most labeled neurons were found in laminae I-II and V and the paratrigeminal nucleus, and fewer neurons in laminae III-IV and X. The distribution of retrogradely labeled neurons in TBNC gray matter areas that receive monosynaptic input from trigeminal primary afferent fibers innervating extracranial orofacial structures (such as the cornea, nose, tongue, teeth, lips, vibrissae, and skin) and intracranial structures (such as the meninges and cerebral blood vessels) suggests that sensory and nociceptive information originating in these tissues could be transferred to the hypothalamus directly by this pathway.
Collapse
Affiliation(s)
- A Malick
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
19
|
Melzer P, Smith CB. Plasticity of cerebral metabolic whisker maps in adult mice after whisker follicle removal--I. Modifications in barrel cortex coincide with reorganization of follicular innervation. Neuroscience 1998; 83:27-41. [PMID: 9466397 DOI: 10.1016/s0306-4522(97)00332-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated alterations of the metabolic whisker map of barrel cortex after the removal of the follicles of left whiskers C1, C2 and C3 in adult albino mice. The quantitative autoradiographic [14C]deoxyglucose method was used to measure local cerebral metabolic rates for glucose in barrel cortex of mice two, four, eight, 64, 160 and 250 days after the lesion. Metabolic rates were measured in three groups of animals: (i) mice with lesions that had all whiskers clipped; (ii) mice with lesions that had left whiskers B1-3 and D1-3 stimulated; and (iii) unoperated mice that had left whiskers B1-3 and D1-3 stimulated. Compared with the metabolic rates in barrels C1-3 of stimulated unoperated mice, barrels C1-3 of stimulated mice with lesions showed the first discernible increase in metabolic rate four days after the lesion. The increase became distinct at 64 days, but attained statistical significance only approximately 160 days after the lesion. The lesion per se, i.e. without whisker stimulation, caused only a small increase in metabolic rate in barrels C1-3 accounting for not more than one fourth of the increase in metabolic rate measured after whisker deflection. The removal of whisker follicles C1-3 led, therefore, to an enlargement of the metabolic representations of the adjacent whiskers into the barrels deprived by the lesion. The gradual consolidation of the alterations of the metabolic whisker map coincided with the regeneration of follicular nerves in the whiskerpad. We detected anomalous deep nerves innervating follicles surrounding the lesion at approximately 64 days, and the number of myelinated nerve fibres in the deep nerves of these follicles was increasing with increasing time after the lesion. The coincidence of peripheral and central change suggests that the reorganization of the innervation of the sensory periphery plays an important role in the persistent alterations of the cortical somatotopy in adults following a lesion in the sensory periphery.
Collapse
Affiliation(s)
- P Melzer
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892-4030, USA
| | | |
Collapse
|
20
|
Melzer P, Smith CB. Plasticity of cerebral metabolic whisker maps in adult mice after whisker follicle removal--II. Modifications in the subcortical somatosensory system. Neuroscience 1998; 83:43-61. [PMID: 9466398 DOI: 10.1016/s0306-4522(97)00333-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The follicles of whiskers C1-3 were removed from the left side of the snout of adult mice. Adjacent whiskers B1-3 and D1-3 were stimulated while local rates of glucose utilization were measured with the [14C]2-deoxyglucose method two, four, eight, 64, 160 and approximately 250 days after follicle removal. Local metabolic activity in the trigeminal sensory brainstem and somatosensory thalamus was compared with that of unoperated mice with the same stimulation and of mice with the same lesion that had all whiskers clipped. Actual rates of glucose utilization were measured in brainstem subnuclei caudalis and interpolaris whereas metabolic activation was only assessable by colour-coded imaging in brainstem nucleus principalis and in the thalamic ventrobasal complex. Whisker stimulation activated the somatotopically appropriate loci in brainstem and thalamus. In addition, the territory deprived by follicle removal was metabolically activated in subnuclei caudalis and interpolaris at all time intervals examined. The activation was statistically significant in subnucleus interpolaris at two days, indicating that the metabolic representations of whiskers neighbouring the lesion rapidly expanded into the deprived territory. Nucleus principalis showed a broad metabolic activation at two and four days that was absent at the longer time intervals examined. Instead, at approximately 250 days the metabolic representations of the whiskers adjacent to the lesion were enlarged into the deprived territory as in the subnuclei. Since metabolic whisker representation in the ventrobasal complex appeared to have changed in the same fashion, follicle removal apparently resulted in congruent modifications of the whisker map in the three nuclei of termination as well as in the thalamic relay at the longest time interval examined. Since metabolic responsiveness of the deprived barrels in barrel cortex of the same animals increased statistically significantly only several months after follicle removal, the novel neural responses in the brainstem were not effectively transmitted to barrel cortex immediately and the slowly evolving cortical modifications are more likely to be associated with regrowth of the connectivity of primary neurons. By contrast, unmasking of hitherto suppressed inputs may underlie the early expansion of metabolic whisker representation in the brainstem.
Collapse
Affiliation(s)
- P Melzer
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892-4030, USA
| | | |
Collapse
|
21
|
Chapter 19. Spinal organization of C-fiber afferents related with nociception or non-nociception. PROGRESS IN BRAIN RESEARCH 1996. [DOI: 10.1016/s0079-6123(08)61096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Abstract
Vibrissal follicle-sinus complexes (F-SCs) in the mystacial pad of rodents are heavily innervated by different types of sensory nerve endings. One site in mystacial F-SCs, the inner conical body (ICB), is uniquely well innervated only in those species, such as the rat, that rhythmically whisk their mystacial vibrissae. In this study, we examined the innervation of rat nonmystacial F-SCs, which are not whisked. Supraorbital, posteroorbital, lateral cervical, median cervical, submental, and carpal forelimb F-SCs were cut on a cryostat and were either prepared for anti-human protein gene product (PGP 9.5) immunofluorescence or stained using the Winkelmann silver technique. Much of the innervation of the nonmystacial F-SCs is similar to that of mystacial F-SCs. All are innervated by a large deep vibrissal nerve (DVN) and several smaller superficial vibrissal nerves (SVNs). As in the mystacial pad, the SVNs show a distribution of Merkel and free nerve endings qualitatively similar to the rete ridge collar of all the nonmystacial F-SCs as well as provide circumferentially oriented endings to the ICBs to all but median-cervical and carpal F-SCs. Not only was the ICB innervation relatively sparse in median-cervical and carpal F-SCs, but a large portion of the carpal ICB innervation also ascended from the DVNs, which make only a small ICB contribution in other locations. Similar to mystacial pad F-SCs, the DVNs provided Merkel and lanceolate endings to the level of the ring sinus as well as reticular and irregular lanceolate-like endings to the level of the cavernous sinus. However, all but the posteroorbital F-SCs have relatively few lanceolate endings. Carpal F-SCs also have relatively few ring-sinus Merkel endings, which are diffusely distributed, are limited to the superficial portion of the outer root sheath. They also lack reticular and irregular lanceolate-like endings in the cavernous sinus. However, carpal F-SCs have a unique set of corpuscular endings in the ICB, ring sinus, and cavernous sinus that are rarely seen in other F-SCs. PGP 9.5 immunofluorescence also revealed two sets of fine-caliber profiles at the level of the ICB and ring sinus that were not previously seen in mystacial F-SCs. Although there was no correlation between ICB innervation and whisking, the regional variations in F-SC innervation suggest that functional differences may exist between vibrissae at different locations in the body.
Collapse
Affiliation(s)
- B T Fundin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
23
|
|
24
|
Shortland PJ, DeMaro JA, Jacquin MF. Trigeminal structure-function relationships: a reevaluation based on long-range staining of a large sample of brainstem a beta fibers. Somatosens Mot Res 1995; 12:249-75. [PMID: 8834301 DOI: 10.3109/08990229509093661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prior studies suggest that some classes of thickly myelinated (A beta) afferents have distinct morphologies in the trigeminal (V) brainstem complex, and that single fibers have collaterals with different shapes in the four V subnuclei. However, these conclusions are based upon relatively few and incompletely stained fibers and limited statistical rigor. In the present study, 104 fibers were stained more completely with neurobiotin in rats to provide within-fiber intersubnucleus comparisons, and between-fiber intrasubnucleus comparisons, of collaterals associated with a vibrissa, guard hairs, hairy skin, glabrous skin, or oral structures. Collaterals from all functional categories had similar qualitative features and were distributed somatotopically in the transverse plane according to known maps. Fiber categories were not disproportionately represented at particular sites along the brainstem's rostrocaudal axis, although most fibers adhered to an onion-leaf topography in caudalis. Surprisingly few structure-function relationships were revealed by multivariate analysis of variance and post hoc group comparisons, as follows: Arbors were larger in caudalis than in any other subnucleus; collaterals were most numerous in interpolaris; vibrissa afferents had more collaterals than oral and guard hair afferents; and oral fibers had larger arbors than vibrissa or guard hair afferents in subnucleus oralis. Peripheral receptor association and response adaptation rate failed to predict arbor shapes and terminal bouton numbers in any V subnucleus. These data confirm that the locations of V primary afferent arbors are predicted by their receptive fields. However, collateral number and morphology are predicted only to a very limited extent by the V subnucleus and peripheral receptor affiliation--a conclusion that contrasts with those of most prior studies of somatosensory primary afferents.
Collapse
Affiliation(s)
- P J Shortland
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
25
|
|
26
|
Johansson K, Arvidsson J. Central plasticity in rat trigeminal primary sensory neurons innervating vibrissae after neonatal peripheral nerve injury. Neurosci Lett 1994; 167:187-90. [PMID: 8177521 DOI: 10.1016/0304-3940(94)91058-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study was undertaken to investigate whether a neonatal vibrissa lesion in the rat may lead to a central plasticity in undamaged vibrissae innervating primary sensory neurons. One vibrissa follicle was removed on the day of birth. After 3-4 months, choleragenoid-horseradish-peroxidase was injected in an adjacent vibrissa follicle either within the row of the missing follicle or across the rows and in the corresponding contralateral follicle. The trigeminal ganglion and nucleus caudalis was studied following retrograde and transganglionic transport of the tracer. The number of labeled cells was not significantly different on the two sides, whereas the central terminal field of labeling was considerably increased on the side of the lesion, but only when the injected follicle was located in the same row as the missing one. Cortical plasticity after neonatal vibrissae follicle lesions may thus be associated with a corresponding plasticity in primary sensory neurons innervating the vibrissae.
Collapse
Affiliation(s)
- K Johansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
27
|
Rice FL, Kinnman E, Aldskogius H, Johansson O, Arvidsson J. The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 1993; 337:366-85. [PMID: 8282848 DOI: 10.1002/cne.903370303] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The innervation of the mystacial pad in the rat was investigated with the aid of antihuman protein gene product (PGP) 9.5 immunofluorescence. PGP 9.5 is ubiquitin carboxyl-terminal hydrolase, which is distributed throughout neuronal cytoplasm. This technique revealed all previously known innervation as well as a wide variety of small-caliber axons and some endings of large-caliber afferents that had not been observed before. Newly revealed innervation affiliated with vibrissal-follicle sinus complexes included 1) fine-caliber, radially oriented processes in the epidermal rete ridge collar; 2) a loose network of fine-caliber, circumferentially arrayed processes in the centrifugal part of the mesenchymal sheath at the level of the ring sinus; 3) a loose haphazard network of fine-caliber and medium-caliber processes in the mesenchymal sheath and among the trabeculae of the cavernous sinus; 4) a loose network of circumferentially arrayed processes within the mesenchymal sheath of the cavernous sinus and in close proximity to the basement membrane; 5) a dense network of reticular-like endings provided by large-caliber afferents to the mesenchymal sheath in the upper part of the cavernous sinus; and 6) fine-caliber innervation to the dermal papilla at the base of all vibrissal shafts. In the intervibrissal skin, a dense distribution of fine-caliber individual and clustered profiles was detected in the epidermis. In addition to previously known innervation, Merkel endings were consistently observed in the epidermis at the mouths of guard hairs, loose networks of fine-caliber axons were found around the necks of occasional guard hairs, and fine-caliber profiles were frequently affiliated with vellus hairs. Vascular profiles were heavily innervated throughout the dermis. Axons and motor end plates of the facial nerve innervation to papillary muscles also were labeled. Transection of the infraorbital nerve eliminated all but the facial nerve innervation. Unilateral removal of the superior cervical ganglion eliminated the innervation to the dermal papillae but caused no other noticeable reduction. PGP 9.5-like immunofluorescence was also moderately expressed in apparent Schwann cells, in Merkel cells only in the external root sheath of vibrissal follicles, and in apparent dendritic and/or Langerhans cells usually located in the epidermis and occasionally in the follicles. PGP 9.5-like immunofluorescence persisted in highly vacuolated profiles along the usual courses of medium to large-caliber axons 2 weeks after nerve transection. The possible functional role of the newly discovered innervation is considered along with that of previously identified afferents.
Collapse
Affiliation(s)
- F L Rice
- Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208
| | | | | | | | | |
Collapse
|
28
|
Rice FL. Structure, vascularization, and innervation of the mystacial pad of the rat as revealed by the lectin Griffonia simplicifolia. J Comp Neurol 1993; 337:386-99. [PMID: 8282849 DOI: 10.1002/cne.903370304] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mystacial pad of the rat is endowed with rows of vibrissal follicle-sinus complexes (F-SCs) that receive a dense and rich variety of innervation, much of which is C fibers. Each F-SC consists of a follicle at the core of a spindle-shaped, encapsulated vascular sinus. Previous studies have shown that the B subunit of the lectin Griffonia simplicifolia (GSA I-B4) binds selectively to a subset of small neurons in the trigeminal ganglion and to a subset of C fibers preferentially distributed to inner lamina II and outer lamina III of nucleus caudalis in the brainstem trigeminal complex in the rat. These laminae are also a major site of termination for afferents in superficial vibrissal nerves (SVNs) that innervate the upper portion of F-SCs. To determine the peripheral distribution of the afferents that bind GSA I-B4, mystacial pads from rats were prepared for fluorescence microscopy with GSA I-B4 conjugated to rhodamine. At the neck of each F-SC, numerous circumferentially oriented bundles of fine-caliber axonal profiles were labeled in the inner conical body, which receives nearly all of its innervation from the SVNs. A sparse, random distribution of fine-caliber profiles from deep vibrissal nerves was labeled at the level of the cavernous sinus in the deep half of the F-SCs. GSA I-B4 also labeled a variety of nonneural structures. By binding to vascular linings, GSA I-B4 revealed a dense, highly organized capillary system within the mesenchymal sheath that forms the inner lining of the vascular sinuses. Thus each F-SC appears to have a closed capillary system within the open vascular sinus. Trabeculae within the lumen of the cavernous sinus were also revealed to span between the sinus capsule and the mesenchymal sheath only about midway along the length of the follicle instead of the entire deeper half, as was previously believed. in addition, GSA I-B4 bound to the surface of follicular cells preferentially in the superficial half of the F-SCs. Sweat glands within the intervibrissal fur and some cells within sebaceous glands in F-SCs were also labeled as well as their ducts. The potential functional implications of these various features are discussed.
Collapse
Affiliation(s)
- F L Rice
- Department of Anatomy, Cell Biology and Neurobiology, Albany Medical College, New York 12208
| |
Collapse
|
29
|
Mosconi TM, Rice FL. Sequential differentiation of sensory innervation in the mystacial pad of the ferret. J Comp Neurol 1993; 333:309-25. [PMID: 8349846 DOI: 10.1002/cne.903330302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mystacial pad of the ferret has an elaborate sensory innervation provided by three types of terminal nerves that arise from the infraorbital branch of the trigeminal nerve. Deep and superficial vibrissal nerves innervate nearly exclusive targets in the large follicle-sinus complexes (F-SCs) at the base of each tactile vibrissa. Dermal plexus nerves innervate the fur between the vibrissae. Each type of nerve provides a similar variety of sensory endings, albeit to different targets. In this study, Winkelmann and Sevier-Munger reduced silver techniques revealed that most of the endings differentiate postnatally in an overlapping sequence like that observed previously in the rat. Afferents from the deep vibrissal nerves begin to differentiate first, followed successively by those from superficial vibrissal nerves and the dermal plexus. Within each type of nerve, Merkel endings begin to differentiate first, followed successively by lanceolate endings and circumferential endings. In the ferret, the differentiation of the intervibrissal fur and its innervation is slightly delayed but substantially overlaps the development of the vibrissal innervation, whereas in the rat it occurs almost entirely later. There was no evidence of a transient exuberant or misplaced innervation or other secondary remodeling. Differentiating afferents and endings are located only in the sites normally seen in the adult, suggesting a high degree of afferent-target specificity. In the ferret, innervation is virtually lacking in one target--the inner conical body of the F-SCs, which is densely innervated in the rat. This lack was due to a failure of innervation to develop rather than to a secondary elimination of a transient innervation.
Collapse
Affiliation(s)
- T M Mosconi
- Department of Anatomy and Cell Biology, UCLA Center for Health Sciences 90024
| | | |
Collapse
|
30
|
Sugiura Y, Terui N, Hosoya Y, Tonosaki Y, Nishiyama K, Honda T. Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol 1993; 332:315-25. [PMID: 8331218 DOI: 10.1002/cne.903320305] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In guinea pigs, intracellular labeling of the dorsal root ganglion (DRG) cells with Phaseolus vulgaris-leucoagglutinin (PHA-L) was used to demonstrate the central projections of somatic and visceral afferent C-fibers. The terminations of the afferent fibers were analyzed qualitatively and quantitatively with the aid of camera lucida drawings. Terminal branches of C-fibers of both somatic and visceral origin were, in general, distributed in accord with the organization of the neuropil in lamina of the spinal cord. Terminal boutons arranged from longitudinally coursing fibers were distributed in lamina I, while boutons in lamina II were scattered in an apparent random fashion. The synaptic enlargements were counted in gray matter of the spinal dorsal horn and measured on each terminal branch of a fiber. All synaptic boutons (over one thousand) of somatic fibers were found in the superficial dorsal horn (laminae I and II). More than 60% of the synaptic enlargements of the visceral afferents also were localized superficially (lamina I and adjacent dorsal funiculus) while 10-20% of the visceral enlargements appeared in deeper layers of the spinal cord. Boutons of somatic C-fibers were larger than those of visceral origin. Quantitative data of the unmyelinated afferent fibers are discussed in the context of the sensory functions of myelinated afferent fibers.
Collapse
Affiliation(s)
- Y Sugiura
- Department of Anatomy, Fukushima Medical College, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Jacquin MF, McCasland JS, Henderson TA, Rhoades RW, Woolsey TA. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system. J Comp Neurol 1993; 332:38-58. [PMID: 8390494 DOI: 10.1002/cne.903320104] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stimulation of one or several whiskers activates discrete foci throughout the trigeminal (V) neuraxis. These foci contribute to patterns, corresponding to the patterns of vibrissae, that have been directly related to aggregates of cells and axon terminals in the "barrel" cortex. Here, we combine high-resolution, 2-deoxyglucose (2DG) mapping and cytochrome oxidase (CO) staining to determine whether the known pattern of V primary afferent projections is sufficient to deduce the functional activation of their targets during exploratory behavior. Four adult hamsters had all of their large mystacial vibrissae trimmed acutely, except for C3 on the left, and B2 and D4 on the right; in two others, the left C3 and right A1 and E4 whiskers were spared. After fasting overnight, 2DG was injected and the animals behaved freely in the dark for 45 minutes. The brainstem, thalamus, and cortices were sectioned, then processed for both CO staining and 2DG autoradiography. Image-processing microscopy was used to separate the autoradiographic silver grains from the histochemical staining. CO patches were patterned in a whisker-like fashion in the full rostrocaudal extent of V nucleus principalis and in caudal portions of spinal V subnuclei interpolaris and caudalis, but absent in subnucleus oralis. 2DG silver grains were densest above those CO patches in the pattern corresponding to the active whiskers. There were no consistent 2DG foci in subnuclei oralis or rostral caudalis. In these same cases, prominent 2DG labeling was restricted to the appropriate barrels in the contralateral cortex. Only one case, however, displayed a clear and appropriate region of heightened 2DG uptake in contralateral ventroposteromedial thalamus (VPM) and the adjacent part of the reticular thalamic nucleus. Patterns of increased glucose utilization with single whisker stimulation are well matched to the CO patterns that mirror distributions of neurons associated with a vibrissa in the V brainstem complex, thalamus, and cortex. Single whiskers are represented by relatively homogeneous longitudinal columns of 2DG labeling in the V brainstem nuclei. The columns are not continuous through the axial extent of the V brainstem complex; rather, they occur separately within principalis, interpolaris, and caudalis. While whisker columns were consistently labeled in interpolaris and caudalis in all animals, the labeling was increasingly variable in principalis, barrel cortex, and VPM, respectively. This suggests that the behaving animal can and does significantly modulate activity in this major, synaptically secure pathway.
Collapse
Affiliation(s)
- M F Jacquin
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104
| | | | | | | | | |
Collapse
|
32
|
Mosconi TM, Rice FL, Song MJ. Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat. J Comp Neurol 1993; 328:232-51. [PMID: 8423242 DOI: 10.1002/cne.903280206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The innervation of the inner conical body of the vibrissal follicle-sinus complex of the rat was examined by high-voltage and conventional transmission electron microscopy of serial and semi-serial sections. The inner conical body is innervated by axons supplied almost exclusively by several superficial vibrissal nerves that arise from the infraorbital branch of the trigeminal nerve and converge upon the neck of the follicle-sinus complex. Each superficial vibrissal nerve contains a few A delta myelinated axons and several bundles of 20-30 unmyelinated axons. These axons enter the inner conical body and distribute circumferentially within 7-10 ring-like arrays that encircle the vibrissal follicle and are stacked through the superficial-to-deep extent of the inner conical body. Each ring consists of 1 or 2 myelinated axons and several small bundles of 2-15 unmyelinated axons enclosed in sheaves of parallel collagen fibrils. Myelinated axons provide exclusively lanceolate endings that may arise at the termination of the axon or at nodes of Ranvier. Within the small bundles, unmyelinated axons individually terminate in succession as abrupt cytoplasmic swellings referred to as cytoplasmic blebs, which contain mitochondria or clusters of clear or dense-core vesicles. Because of their affiliation with collagen fibrils and the proximity of myelinated axons, the blebbed endings may have been misinterpreted as Ruffini endings in previous studies. Their structure, distribution, and origin from unmyelinated axons suggest that the blebbed endings may constitute a unique array of low-threshold C-mechanoreceptors.
Collapse
Affiliation(s)
- T M Mosconi
- Department of Anatomy and Cell Biology, UCLA Center for Health Sciences 90024
| | | | | |
Collapse
|
33
|
Grant G. Projection patterns of primary sensory neurons studied by transganglionic methods: somatotopy and target-related organization. Brain Res Bull 1993; 30:199-208. [PMID: 8457868 DOI: 10.1016/0361-9230(93)90245-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anatomical organization of the centrally projecting branches of different peripheral sensory nerves was not possible to investigate efficiently until the development of the axonal tracing methods. Horseradish peroxidase applied peripherally could be visualized in central projection areas provided a sensitive histochemical method was used; this created the basis for transganglionic tracing from the periphery. This has permitted the investigation of large-scale projections from peripheral sensory nerves. The use of conjugates of horseradish peroxidase and lectins with affinities for different populations of primary sensory neurons, as well as the use of different postoperative survival times, has offered the possibility for selective visualization of projections from subsets of primary sensory neurons. For detailed studies of single afferent fiber projections, a combined physiological-anatomical approach using single-unit recording followed by intraaxonal application of horseradish peroxidase, has become the method of choice. This chapter will focus on results which have been achieved by transganglionic tracing methods, in regard to the organization of the central projections of peripheral sensory nerves.
Collapse
Affiliation(s)
- G Grant
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Waite PM, Jacquin MF. Dual innervation of the rat vibrissa: responses of trigeminal ganglion cells projecting through deep or superficial nerves. J Comp Neurol 1992; 322:233-45. [PMID: 1522251 DOI: 10.1002/cne.903220209] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rat vibrissal follicle-sinus complex is innervated by a deep vibrissal nerve (DVN) and several smaller fascicles traveling in the dermis [conus or superficial vibrissal nerves, (SVNs)]. The function of the SVNs is unknown, although it has been suggested in a comparative study that they form part of a diffuse, multivibrissal system. Anatomical and electrophysiological methods were used to test this hypothesis and to determine if DVN and SVN fibers have differing response profiles. No ganglion cells were double-labeled after retrograde tracer injections in the DVN and SVNs of single follicles. Electron microscopy showed that selective transection of the DVN caused no SVN degeneration or vice versa. Thus, the dual innervation of the vibrissa arises from separate ganglion cells that project through separate nerves. Ganglion cells with A-row vibrissa receptive fields were studied before and after cutting the DVN and/or SVNs to the responsive vibrissa in order to identify their peripheral trajectories. In this sample, 83% projected through a DVN and 17% via a SVN. SVN or DVN cells were not spontaneously active. All cells responded to single vibrissae only; none were responsive to intervibrissal hairs or skin. Latencies to electrical stimulation were similar for DVN and SVN cells. Adaptation rates and threshold measurements were also similar in the two groups: 60% of the DVN cells and 80% of the SVN cells gave slowly adapting responses to sustained vibrissal displacement; threshold displacements ranged from less than 1 degrees to greater than 15 degrees for both SVN and DVN cells. Direction sensitivity was found in all DVN and SVN slowly adapting cells, with most cells responding to movements in one or two quadrants. For SVN cells, sequential circumferential nerve sections indicated that the fiber's directional sensitivity matched the direction of the fiber's entry into the follicle. The two groups differed in their responses to pushing in or pulling on the hair shaft. All the DVN cells were responsive to both of these stimuli, while for SVN cells pushing activated only 40% and none were responsive to pulling the hair. Another difference in the two groups was that no injury discharges occurred after cutting SVNs, but were present in 44% of DVN cells. These data suggest that DVN and SVNs are similar in the majority of response properties. There is also no evidence to support the hypothesis that SVNs provide diffuse, multivibrissal inputs.
Collapse
Affiliation(s)
- P M Waite
- School of Anatomy, University of New South Wales, Kensington, Sydney, Australia
| | | |
Collapse
|
35
|
Itoh T, Sobue G, Ken E, Mitsuma T, Takahashi A, Trojanowski JQ. Phosphorylated high molecular weight neurofilament protein in the peripheral motor, sensory and sympathetic neuronal perikarya: system-dependent normal variations and changes in amyotrophic lateral sclerosis and multiple system atrophy. Acta Neuropathol 1992; 83:240-5. [PMID: 1557955 DOI: 10.1007/bf00296785] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using monoclonal antibody (Ta-51) that specifically binds phosphorylated high molecular weight neurofilament (pNFH) proteins, we investigated the occurrence of perikaryal pNFH in the spinal ventral horn motoneurons, intermediolateral column (ILC) neurons, sympathetic ganglion neurons and dorsal root ganglion (DRG) neurons obtained from patients with amyotrophic lateral sclerosis (ALS) and multiple system atrophy (MSA) and from control cases. In the controls, a system-dependent variation in perikaryal Ta-51 immunoreactivity was observed. Very few ventral horn cells and ILC neurons were stained with Ta-51, while large population of DRG neurons and sympathetic neurons were Ta-51 positive. The incidence of perikaryal immunoreactivity in the ventral horn cells was significantly increased in ALS and MSA. Some ILC neurons in ALS were Ta-51 positive and their incidence was significantly higher than that of the controls. These data suggest that both ILC neurons and ventral horn cells are affected with respect to pNFH metabolism in ALS and MSA. No significant difference was, however, detected in the Ta-51 immunoreactivity of both DRG and sympathetic ganglion neurons in ALS and MSA as compared with the controls.
Collapse
Affiliation(s)
- T Itoh
- Fourth Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Arvidsson J, Pfaller K, Gmeiner S. The ganglionic origins and central projections of primary sensory neurons innervating the upper and lower lips in the rat. Somatosens Mot Res 1992; 9:199-209. [PMID: 1414118 DOI: 10.3109/08990229209144771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Retrograde and transganglionic transport of horseradish peroxidase (HRP) was used to investigate the neurons innervating the upper and the lower lips and their central projections in the rat. Both the upper and the lower lips were observed to be innervated by a very large number of trigeminal sensory neurons, with their cell bodies located in the maxillary and the mandibular parts of the trigeminal ganglion, respectively. The central projections of neurons innervating the upper lip formed a long continuous column starting rostrally at midlevels of the trigeminal main sensory nucleus (5P) and extending caudally through the C1 dorsal horn, with occasional fibers reaching the C3 segment. The heaviest projections appeared in the middle portions of 5P and nucleus interpolaris (5I), as well as in the rostral part of nucleus caudalis (5C). A small but consistent projection to the solitary tract nucleus, originating from cells in the inferior vagal ganglion, was observed in the upper-lip experiments. The central projections from neurons innervating the lower lip also appeared as a long column located dorsally or dorsomedially to the projections from the upper lip. The most prominent projections from the lower lip were located in the caudal part of 5P, the middle part of 5I, and the caudal two-thirds of 5C. Sparse projections could be traced as far caudally as C4. At 5C and cervical levels, some labeling appeared contralaterally in the same location as on the ipsilateral side.
Collapse
Affiliation(s)
- J Arvidsson
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|