1
|
Metwalli AH, Pross A, Desfilis E, Abellán A, Medina L. Mapping of corticotropin-releasing factor, receptors, and binding protein mRNA in the chicken telencephalon throughout development. J Comp Neurol 2023. [PMID: 37393534 DOI: 10.1002/cne.25517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
Understanding the neural mechanisms that regulate the stress response is critical to know how animals adapt to a changing world and is one of the key factors to be considered for improving animal welfare. Corticotropin-releasing factor (CRF) is crucial for regulating physiological and endocrine responses, triggering the activation of the sympathetic nervous system and the hypothalamo-pituitary-adrenal axis (HPA) during stress. In mammals, several telencephalic areas, such as the amygdala and the hippocampus, regulate the autonomic system and the HPA responses. These centers include subpopulations of CRF containing neurons that, by way of CRF receptors, play modulatory roles in the emotional and cognitive aspects of stress. CRF binding protein also plays a role, buffering extracellular CRF and regulating its availability. CRF role in activation of the HPA is evolutionary conserved in vertebrates, highlighting the relevance of this system to help animals cope with adversity. However, knowledge on CRF systems in the avian telencephalon is very limited, and no information exists on detailed expression of CRF receptors and binding protein. Knowing that the stress response changes with age, with important variations during the first week posthatching, the aim of this study was to analyze mRNA expression of CRF, CRF receptors 1 and 2, and CRF binding protein in chicken telencephalon throughout embryonic and early posthatching development, using in situ hybridization. Our results demonstrate an early expression of CRF and its receptors in pallial areas regulating sensory processing, sensorimotor integration and cognition, and a late expression in subpallial areas regulating the stress response. However, CRF buffering system develops earlier in the subpallium than in the pallium. These results help to understand the mechanisms underlying the negative effects of noise and light during prehatching stages in chicken, and suggest that stress regulation becomes more sophisticated with age.
Collapse
Affiliation(s)
- Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
2
|
Wang Y, Hu P, Shan Q, Huang C, Huang Z, Chen P, Li A, Gong H, Zhou JN. Single-cell morphological characterization of CRH neurons throughout the whole mouse brain. BMC Biol 2021; 19:47. [PMID: 33722214 PMCID: PMC7962243 DOI: 10.1186/s12915-021-00973-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) is an important neuromodulator that is widely distributed in the brain and plays a key role in mediating stress responses and autonomic functions. While the distribution pattern of fluorescently labeled CRH-expressing neurons has been studied in different transgenic mouse lines, a full appreciation of the broad diversity of this population and local neural connectivity can only come from integration of single-cell morphological information as a defining feature. However, the morphologies of single CRH neurons and the local circuits formed by these neurons have not been acquired at brain-wide and dendritic-scale levels. RESULTS We screened the EYFP-expressing CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the whole mouse brain by using a fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers of CRH neurons were found in various brain regions. Follow-up reconstructions showed that hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches and that CRH neurons in several brain regions shared a common bipolar morphology. Further investigations of local CRH neurons in the medial prefrontal cortex unveiled somatic depth-dependent morphologies of CRH neurons that exhibited three types of mutual connections: basal dendrites (upper layer) with apical dendrites (layer 3); dendritic-somatic connections (in layer 2/3); and dendritic-dendritic connections (in layer 4). Moreover, hypothalamic CRH neurons were classified into two types according to their somatic locations and characteristics of dendritic varicosities. Rostral-projecting CRH neurons in the anterior parvicellular area had fewer and smaller dendritic varicosities, whereas CRH neurons in the periventricular area had more and larger varicosities that were present within dendrites projecting to the third ventricle. Arborization-dependent dendritic spines of CRH neurons were detected, among which the most sophisticated types were found in the amygdala and the simplest types were found in the hypothalamus. CONCLUSIONS By using the CRH-IRES-Cre;Ai32 mouse line and fMOST imaging, we obtained region-specific morphological distributions of CRH neurons at the dendrite level in the whole mouse brain. Taken together, our findings provide comprehensive brain-wide morphological information of stress-related CRH neurons and may facilitate further studies of the CRH neuronal system.
Collapse
Affiliation(s)
- Yu Wang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pu Hu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qinghong Shan
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaohuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Anan Li
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Kovner R, Fox AS, French DA, Roseboom PH, Oler JA, Fudge JL, Kalin NH. Somatostatin Gene and Protein Expression in the Non-human Primate Central Extended Amygdala. Neuroscience 2019; 400:157-168. [PMID: 30610938 DOI: 10.1016/j.neuroscience.2018.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
Alterations in central extended amygdala (EAc) function have been linked to anxiety, depression, and anxious temperament (AT), the early-life risk to develop these disorders. The EAc is composed of the central nucleus of the amygdala (Ce), the bed nucleus of the stria terminalis (BST), and the sublenticular extended amygdala (SLEA). Using a non-human primate model of AT and multimodal neuroimaging, the Ce and the BST were identified as key AT-related regions. Both areas are primarily comprised of GABAergic neurons and the lateral Ce (CeL) and lateral BST (BSTL) have among the highest expression of neuropeptides in the brain. Somatostatin (SST) is of particular interest because mouse studies demonstrate that SST neurons, along with corticotropin-releasing factor (CRF) neurons, contribute to a threat-relevant EAc microcircuit. Although the distribution of CeL and BSTL SST neurons has been explored in rodents, this system is not well described in non-human primates. In situ hybridization demonstrated an anterior-posterior gradient of SST mRNA in the CeL but not the BSTL of non-human primates. Triple-labeling immunofluorescence staining revealed that SST protein-expressing cell bodies are a small proportion of the total CeL and BSTL neurons and have considerable co-labeling with CRF. The SLEA exhibited strong SST mRNA and protein expression, suggesting a role for SST in mediating information transfer between the CeL and BSTL. These data provide the foundation for mechanistic non-human primate studies focused on understanding EAc function in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rothem Kovner
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA.
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, USA; California National Primate Research Center, University of California, Davis, CA, USA
| | - Delores A French
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA
| | - Julie L Fudge
- Department of Psychiatry, Rochester, NY, USA; Department of Neuroscience, Rochester, NY, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
4
|
Kelly EA, Fudge JL. The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know. Neurosci Biobehav Rev 2018; 90:247-259. [PMID: 29704516 PMCID: PMC5993645 DOI: 10.1016/j.neubiorev.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/28/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface.
Collapse
Affiliation(s)
- E A Kelly
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States
| | - J L Fudge
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States; University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Psychiatry, Rochester, NY, United States.
| |
Collapse
|
5
|
Pomrenze MB, Fetterly TL, Winder DG, Messing RO. The Corticotropin Releasing Factor Receptor 1 in Alcohol Use Disorder: Still a Valid Drug Target? Alcohol Clin Exp Res 2017; 41:1986-1999. [PMID: 28940382 PMCID: PMC5711524 DOI: 10.1111/acer.13507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 01/20/2023]
Abstract
Corticotropin releasing factor (CRF) is a neuropeptide that plays a key role in behavioral and physiological responses to stress. A large body of animal literature implicates CRF acting at type 1 CRF receptors (CRFR1) in consumption by alcohol-dependent subjects, stress-induced reinstatement of alcohol seeking, and possibly binge alcohol consumption. These studies have encouraged recent pilot studies of CRFR1 antagonists in humans with alcohol use disorder (AUD). It was a great disappointment to many in the field that these studies failed to show an effect of these compounds on stress-induced alcohol craving. Here, we examine these studies to explore potential limitations and discuss preclinical and human literature to ask whether CRFR1 is still a valid drug target to pursue for the treatment of AUD.
Collapse
Affiliation(s)
| | - Tracy L. Fetterly
- Department of Molecular Physiology & Biophysics, Vanderbilt
University, Nashville, TN
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University,
Nashville, TN
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt
University, Nashville, TN
- Vanderbilt Center for Addiction Research, Vanderbilt University,
Nashville, TN
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University,
Nashville, TN
| | - Robert O. Messing
- Institute for Neuroscience, University of Texas at Austin, Austin,
TX
- Departments of Neuroscience and Neurology, University of Texas at
Austin, Austin, TX
- Waggoner Center for Alcohol and Addiction Research, University of
Texas at Austin, Austin, TX
| |
Collapse
|
6
|
Fudge JL, Kelly EA, Pal R, Bedont JL, Park L, Ho B. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate. Neuropsychopharmacology 2017; 42:1563-1576. [PMID: 28220796 PMCID: PMC5518904 DOI: 10.1038/npp.2017.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 01/06/2023]
Abstract
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.
Collapse
Affiliation(s)
- Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily A Kelly
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ria Pal
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph L Bedont
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Park
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brian Ho
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Reproductive steroid receptors and actions in the locus coeruleus of male macaques: Part of an aggression circuit? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:210-22. [PMID: 27083854 PMCID: PMC4996758 DOI: 10.1016/j.pnpbp.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 11/23/2022]
Abstract
This study was initiated to determine whether the noradrenergic (NE) neurons of the locus coeruleus (LC) could mediate the stimulatory action of androgens on serotonin-related gene expression in male macaques. These experiments follow our observations that serotonin neurons lack androgen receptors (ARs), and yet respond to androgens. Male Japanese macaques (Macaca fuscata) were castrated for 5-7months and then treated for 3months with [1] placebo, [2] T (testosterone), [3] DHT (dihydrotestosterone; non-aromatizable androgen) plus ATD (steroidal aromatase inhibitor), or [4] FLUT (Flutamide; androgen antagonist) plus ATD (n=5/group). The noradrenergic (NE) innervation of the raphe was determined with immunolabeling of axons with an antibody to dopamine-β-hydroxylase (DBH). Immunolabeling of tyrosine hydroxylase (TH) dendrites and corticotropin releasing hormone (CRH) axons innervating the LC was also determined. Due to the longer treatment period employed, the expression of the cognate nuclear receptors was sought. Androgen receptor (AR), estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) immunostaining was accomplished. Quantitative image analysis was applied and immunopositive neurons or axons with boutons were measured. Double-label of NE neurons for each receptor plus TH determined whether the receptors were localized in NE neurons. Androgens with or without aromatase activity significantly stimulated DBH axon density in the raphe (ANOVA, p=0.006), and LC dendritic TH (ANOVA, p<0.0001), similar to serotonin-related mRNA expression in the raphe. There were significantly more AR-positive neurons in T- and DHT+ATD-treated groups compared to placebo or FLUT+ATD-treated groups (ANOVA, p=0.0014). There was no difference in the number of positive-neurons stained for ERα or ERβ. The CRH axon density in the LC was significantly reduced with aromatase inhibition, suggesting that CRH depends on estrogen, not androgens (ANOVA, p=0.0023). Double-immunohistochemistry revealed that NE neurons did not contain AR. Rather, AR-positive nuclei were found in neighboring cells that are likely neurons. However, >80% of LC NE neurons contained ERα or ERβ. In conclusion, the LC NE neurons may transduce the stimulatory effect of androgens on serotonin-related gene expression. Since LC NE neurons lack AR, the androgenic stimulation of dendritic TH and axonal DBH may be indirectly mediated by other neurons. Estrogen, either from metabolism of T or from de novo synthesis, appears necessary for robust CRH innervation of the LC, which differs from female macaques.
Collapse
|
8
|
Shu YM, Ni RJ, Sun YJ, Fang H, Zhou JN. Distribution of corticotropin-releasing factor in the tree shrew brain. Brain Res 2015; 1618:270-85. [PMID: 26074350 DOI: 10.1016/j.brainres.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF) in the brain plays an important role in regulations of physiological and behavioral processes, yet CRF distribution in tree shrew brain has not been thoroughly and systematically reported. Here we examined the distribution of CRF immunoreactivity in the brain of tree shrews (Tupaia belangeri chinensis) using immunohistochemical techniques. CRF-immunoreactive (-ir) cells and fibers were present in the rhinencephalon, telencephalon, diencephalon, mesencephalon, metencephalon and myelencephalon of saline- and colchicine-treated tree shrews. Laminar distribution of CRF-ir cells was found in the main olfactory bulb and neocortex. Compared with saline-treated tree shrews, a larger number of CRF-ir cells in colchicine-treated tree shrews were found in the bed nucleus of the stria terminalis, paraventricular hypothalamic nucleus, medial preoptic area, dorsomedial hypothalamic nucleus, reuniens thalamic nucleus, inferior colliculus, Edinger-Westphal nucleus, median raphe nucleus, locus coeruleus, parabrachial nucleus, dorsal tegmental nucleus, lateral reticular nucleus, and inferior olive. CRF-ir fibers from the hypothalamic paraventricular nucleus projected toward and through the internal zone of the median eminence. In addition, density of CRF immunoreactivity is significantly different in the bed nucleus of the stria terminalis, central amygdaloid nucleus, suprachiasmatic nucleus, median raphe nucleus, Edinger-Westphal nucleus, locus coeruleus and inferior olive between tree shrews and rats after saline or colchicine treatment. Our findings provide, for the first time, the comprehensive description of CRF immunoreactivity and whole brain mapping of CRF in tree shrews, which is an anatomical basis for the participation of CRF system in the regulation of numerous behaviors.
Collapse
Affiliation(s)
- Yu-Mian Shu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Rong-Jun Ni
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Yun-Jun Sun
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Hui Fang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China.
| |
Collapse
|
9
|
Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience 2015; 289:153-65. [PMID: 25595987 DOI: 10.1016/j.neuroscience.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
Abstract
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
Collapse
|
10
|
Corticotropin-releasing factor facilitates epileptiform activity in the entorhinal cortex: roles of CRF2 receptors and PKA pathway. PLoS One 2014; 9:e88109. [PMID: 24505399 PMCID: PMC3913751 DOI: 10.1371/journal.pone.0088109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.
Collapse
|
11
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
12
|
Bethea CL, Reddy AP. The effect of long-term ovariectomy on midbrain stress systems in free ranging macaques. Brain Res 2012; 1488:24-37. [PMID: 23036275 PMCID: PMC3501558 DOI: 10.1016/j.brainres.2012.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 12/29/2022]
Abstract
Communication between the serotonin system and the CRF system plays a pivotal role in the mediation of stress and stress reactivity. CRF appears to be inhibitory of serotonin neurotransmission through the CRF receptor type 1 (CRF-R1). Serotonin neurons also detect the urocortins, which are thought to be anxiolytic. Components of the CRF system in the serotonergic dorsal raphe region were examined in macaques that were ovary-intact or ovariectomized for 3 years living in a relatively natural environment. Female Japanese macaques (Macaca fuscata) were ovariectomized or tubal-ligated (n=5/group) and returned to their natal troop for 3 years. Quantitation of (1) CRF innervation of the serotonergic dorsal raphe, (2) CRF-Receptor type 1 (CRF-R1) in the dorsal raphe, (3) Urocortin 1 (UCN1) cells near the Edinger-Westfal nucleus and (4) UCN1 axons, was obtained with immunocytochemical staining and image analysis. There was no statistical difference in CRF axonal staining in the dorsal raphe, or in UCN1 axonal staining near the dorsal raphe. However, the average number of detectable UCN1 postive cells was significantly lower in the Ovx group than in the Intact group (p=0.003). Average CRF-R1 positive pixel number and positive cell number were significantly higher in the Ovx group than in the Intact group (p=0.005 and 0.02, respectivly). The higher expression of CRF-R1 and lower expression of UCN1 in the Ovx group indicates they may be more vulnerable to stress. The greater expression of CRF-R1 could cause a greater inhibition of serotonin upon a stress-induced increase in CRF as well.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
13
|
Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, Cameron JL. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat 2011; 41:200-18. [PMID: 21683135 DOI: 10.1016/j.jchemneu.2011.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 10/24/2022]
Abstract
This chapter reviews the neurobiological effects of stress sensitivity and s-citalpram (CIT) treatment observed in our nonhuman primate model of functional hypothalamic amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress-sensitive (SS) and others are highly stress-resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that CIT treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to have a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | | | | | |
Collapse
|
14
|
Power ML, Williams LE, Gibson SV, Schulkin J, Helfers J, Zorrilla EP. Pattern of maternal circulating CRH in laboratory-housed squirrel and owl monkeys. Am J Primatol 2010; 72:1004-12. [PMID: 20872786 PMCID: PMC2947327 DOI: 10.1002/ajp.20850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The anthropoid primate placenta appears to be unique in producing corticotropin-releasing hormone (CRH). Placental CRH is involved in an endocrine circuit key to the production of estrogens during pregnancy. CRH induces cortisol production by the maternal and fetal adrenal glands, leading to further placental CRH production. CRH also stimulates the fetal adrenal glands to produce dehydroepiandrostendione sulfate (DHEAS), which the placenta converts into estrogens. There are at least two patterns of maternal circulating CRH across gestation among anthropoids. Monkeys examined to date (Papio and Callithrix) have an early-to-mid gestational peak of circulating CRH, followed by a steady decline to a plateau level, with a possible rise near parturition. In contrast, humans and great apes have an exponential rise in circulating CRH peaking at parturition. To further document and compare patterns of maternal circulating CRH in anthropoid primates, we collected monthly blood samples from 14 squirrel monkeys (Saimiri boliviensis) and ten owl monkeys (Aotus nancymaae) during pregnancy. CRH immunoreactivity was measured from extracted plasma by using solid-phase radioimmunoassay. Both squirrel and owl monkeys displayed a mid-gestational peak in circulating CRH: days 45-65 of the 152-day gestation for squirrel monkeys (mean±SEM CRH=2,694±276 pg/ml) and days 60-80 of the 133-day gestation for owl monkeys (9,871±974 pg/ml). In squirrel monkeys, circulating CRH declined to 36% of mean peak value by 2 weeks before parturition and then appeared to increase; the best model for circulating CRH over gestation in squirrel monkeys was a cubic function, similar to previous results for baboons and marmosets. In owl monkeys, circulating CRH appeared to reach plateau with no subsequent significant decline approaching parturition, although a cubic function was the best fit. This study provides additional evidence for a mid-gestational peak of maternal circulating CRH in ancestral anthropoids that has been lost in the hominoid lineage.
Collapse
Affiliation(s)
- M L Power
- Conservation Ecology Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Sanchez RL, Reddy AP, Bethea CL. Ovarian steroid regulation of the midbrain corticotropin releasing factor and urocortin systems in macaques. Neuroscience 2010; 171:893-909. [PMID: 20833230 DOI: 10.1016/j.neuroscience.2010.08.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 10/19/2022]
Abstract
A significant number of postmenopausal women report increased anxiety and vulnerability to stress, which has been linked to decreased secretion of ovarian steroids. Communication between the serotonin system and the corticotropin releasing factor (CRF) system determines stress sensitivity or resilience. This study examines the effects of the ovarian steroids, estradiol (E) and progesterone (P) on the CRF system components that impact serotonin neurons in the midbrain of nonhuman primates. Ovariectomized rhesus macaques were treated with placebo, E alone for 1 month, or E supplemented with P for the last 2 weeks. Quantitative (q)RT-PCR and immunocytochemistry were employed. E±P treatment decreased CRF-R1 and increased CRF-R2 gene expression in hemi-midbrain blocks and in laser captured serotonin neurons. Also in hemi-midbrains, E treatment increased urocortin 1 (UCN1) and CRFBP gene expression, but supplemental P treatment reversed these effects. E±P decreased CRF fiber density in the dorsal, interfascicular and median raphe nuclei and decreased CRF-R1 immunostaining in the dorsal raphe. E increased CRF-R2 immunostaining in the dorsal and median raphe. E±P increased UCN1 immunostaining in the cell bodies and increased UCN1 fiber density in the caudal linear nucleus. Estrogen receptor beta (ERβ), but not ERα was detected in the nucleus of UCN1-positive neurons. While the mechanism of ovarian hormone regulation of the midbrain CRF system requires further investigation, these studies clearly demonstrate another pathway by which ovarian hormones may have positive effects on anxiety and mood regulation.
Collapse
Affiliation(s)
- R L Sanchez
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
16
|
Lima FB, Centeno ML, Costa ME, Reddy AP, Cameron JL, Bethea CL. Stress sensitive female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene expression that is not reversed by citalopram. Neuroscience 2009; 164:676-91. [PMID: 19671441 PMCID: PMC2762017 DOI: 10.1016/j.neuroscience.2009.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 12/30/2022]
Abstract
Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. When stressed with a paradigm of relocation and diet for 60 days or two menstrual cycles, highly stress resilient monkeys (HSR) continued to ovulate during the stress cycles whereas stress sensitive monkeys (SS) did not. After cessation of stress, monkeys characterized as HSR or SS were administered placebo (PL) or S-citalopram (CIT) for 15 weeks at doses that normalized ovarian steroid secretion in the SS animals and that maintained blood CIT levels in a therapeutic range. After euthanasia, the brain was perfused with 4% paraformaldehyde. The pontine midbrain was blocked and sectioned at 25 microm. The expression of four genes pivotal to serotonin neural function was assessed in the four groups of monkeys (n=4/group). Fev (fifth Ewing variant) ETS transcription factor, tryptophan hydroxylase 2 (TPH2), the serotonin reuptake transporter (SERT), and the 5HT1A autoreceptor were determined at 7-8 levels of the dorsal raphe nucleus with in situ hybridization (ISH) using radiolabeled- and digoxygenin-incorporated riboprobes. Positive pixel area and cell number were measured with Slidebook 4.2 in the digoxigenin assay for Fev. Optical density (OD) and positive pixel area were measured with NIH Image software in the radiolabeled assays for TPH2, SERT and 5HT1A. All data were analyzed with two-way ANOVA. SS monkeys had significantly fewer Fev-positive cells and lower Fev-positive pixel area in the dorsal raphe than HSR monkeys. SS monkeys also had significantly lower levels of TPH2, SERT and 5HT1A mRNAs in the dorsal raphe nucleus than HSR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. These data suggest that SS monkeys have fewer serotonin (5-HT) neurons than HSR monkeys, and that they have deficient Fev expression, which in turn, leads to deficient TPH2, SERT and 5HT1A expression. In addition, the therapeutic effect of CIT is probably achieved through mechanisms other than alteration of 5-HT-related gene expression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents, Second-Generation/blood
- Antidepressive Agents, Second-Generation/pharmacology
- Citalopram/blood
- Citalopram/pharmacology
- Female
- Gene Expression
- Macaca fascicularis
- Pons/drug effects
- Pons/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Messenger/metabolism
- Raphe Nuclei/drug effects
- Raphe Nuclei/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Species Specificity
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
Collapse
Affiliation(s)
- F B Lima
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hsu DT, Price JL. Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 2009; 512:825-48. [PMID: 19085970 DOI: 10.1002/cne.21934] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study examines subcortical connections of paraventricular thalamic nucleus (Pa) following small anterograde and retrograde tracer injections in cynomolgus monkeys (Macaca fascicularis). An anterograde tracer injection into the dorsal midline thalamus revealed strong projections to the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus. Retrograde tracer injections into these areas labeled neurons specifically in Pa. Following a retrograde tracer injection into Pa, labeled neurons were found in the hypothalamus, dorsal raphe, and periaqueductal gray. Pa contained a remarkably high density of axons and axonal varicosities immunoreactive for serotonin (5-HT) and orexin/hypocretin (ORX), as well as a moderate density of fibers immunoreactive for corticotropin-releasing hormone (CRH). A retrograde tracer injection into Pa combined with immunohistochemistry demonstrated that ORX and 5-HT axons originate from neurons in the hypothalamus and midbrain. Pa-projecting neurons were localized in the same nuclei of the hypothalamus, amygdala, and midbrain as CRH neurons, although no double labeling was found. The connections of Pa and its innervation by 5-HT, ORX, and CRH suggest that it may relay stress signals between the midbrain and hypothalamus with the accumbens nucleus, basal amygdala, and subgenual cortex as part of a circuit that manages stress and possibly stress-related psychopathologies.
Collapse
Affiliation(s)
- David T Hsu
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
18
|
Bethea CL, Centeno ML, Cameron JL. Neurobiology of stress-induced reproductive dysfunction in female macaques. Mol Neurobiol 2008; 38:199-230. [PMID: 18931961 PMCID: PMC3266127 DOI: 10.1007/s12035-008-8042-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 11/24/2022]
Abstract
It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
19
|
The comparative distributions of the monoamine transporters in the rodent, monkey, and human amygdala. Brain Struct Funct 2008; 213:73-91. [PMID: 18283492 PMCID: PMC9741847 DOI: 10.1007/s00429-008-0176-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/31/2008] [Indexed: 12/14/2022]
Abstract
The monoamines in the amygdala modulate multiple aspects of emotional processing in the mammalian brain, and organic or pharmacological dysregulation of these systems can result in affective pathologies. Knowledge of the normal distribution of these neurotransmitters, therefore, is central to our understanding of both the normal processes regulated by the amygdala and the pathological conditions associated with monoaminergic dysregulation. The monoaminergic transporters have proven to be accurate and reliable markers of the distributions of their substrates. The purpose of this review was twofold: First, to briefly recount the functional relevance of dopamine, serotonin, and norepinephrine transmission in the amygdala, and second, to describe and compare the distributions of the monoamine transporters in the rodent, monkey, and human brain. The transporters were found to be heterogeneously distributed in the amygdala. The dopamine transporter (DAT) is consistently found to be extremely sparsely distributed, however the various accounts of its subregional topography are inconsistent, making any cross-species comparisons difficult. The serotonin transporter (SERT) had the greatest overall degree of labeling of the three markers, and was characterized by substantial inter-species variability in its relative distribution. The norepinephrine transporter (NET) was shown to possess an intermediate level of labeling, and like the SERT, its distribution is not consistent across the three species. The results of these comparisons indicate that caution should be exercised when using animal models to investigate the complex processes modulated by the monoamines in the amygdala, as their relative contributions to these functions may differ across species.
Collapse
|
20
|
Comparison of Acute and Chronic Neurochemical Effects of Cocaine and Cocaine Cues in Rhesus Monkeys and Rodents: Focus on Striatal and Cortical Dopamine Systems. Rev Neurosci 2008; 19:113-28. [DOI: 10.1515/revneuro.2008.19.2-3.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Centeno ML, Sanchez RL, Reddy AP, Cameron JL, Bethea CL. Corticotropin-releasing hormone and pro-opiomelanocortin gene expression in female monkeys with differences in sensitivity to stress. Neuroendocrinology 2007; 86:277-88. [PMID: 17934253 DOI: 10.1159/000109877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 07/14/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The expressions of corticotropin-releasing hormone (CRH) and pro-opiomelanocortin (POMC) were assessed in brain tissue collected from nonstressed female cynomolgus monkeys previously categorized as highly stress resilient (HSR), medium stress resilient (MSR), or stress sensitive (SS) with respect to stress-induced anovulation. METHODS In situ hybridization and quantitative image analysis was used to measure mRNAs coding for CRH in the hypothalamic paraventricular nucleus (PVN) and thalamic center median-subfascicular complex (CM-Sf). Then, CRH neurons in the PVN were immunostained and the area of immunostaining was measured. Also, CRH fibers were immunostained in the central nucleus of the amygdala and the area of immunostaining was obtained. Finally, POMC mRNA expression was characterized in the hypothalamic infundibular nucleus. The groups were compared with ANOVA and Student-Newman-Keul's (SNK) post hoc comparison. RESULTS CRH mRNA was significantly elevated in the caudal PVN in the MSR and SS animals compared to HSR animals (p < 0.05, SNK). There was a significant increase in average and total CRH-positive area in the MSR and SS groups compared to the HSR group (p < 0.05, SNK). There was also a significant increase in CRH volume in the MSR and SS groups compared to the HSR group (p < 0.05, SNK). In the CM-Sf, the average CRH optical density was significantly higher in the MSR and SS groups than in the HSR group (p < 0.05, SNK). In the central nucleus of the amygdala, the area of CRH fiber staining was significantly higher in the SS group than in the MSR or HSR groups (p < 0.05, SNK). There was no difference between the groups in POMC mRNA expression in the mediobasal hypothalamus. CONCLUSION Macaques that exhibit immediate suppression of reproductive function upon stress are considered stress sensitive. These animals have elevated CRH in the hypothalamus and limbic structures, which may play a role in suppressing the hypothalamic-gonadal axis upon stress initiation.
Collapse
Affiliation(s)
- Maria Luisa Centeno
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
22
|
Risbrough VB, Stein MB. Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 2006; 50:550-61. [PMID: 16870185 PMCID: PMC1884405 DOI: 10.1016/j.yhbeh.2006.06.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 12/11/2022]
Abstract
Anxiety disorders are a group of mental disorders that include generalized anxiety disorder (GAD), panic disorder, phobic disorders (e.g., specific phobias, agoraphobia, social phobia) and posttraumatic stress disorder (PTSD). Anxiety disorders are among the most common of all mental disorders and, when coupled with an awareness of the disability and reduced quality of life they convey, they must be recognized as a serious public health problem. Over 20 years of preclinical studies point to a role for the CRF system in anxiety and stress responses. Clinical studies have supported a model of CRF dysfunction in depression and more recently a potential contribution to specific anxiety disorders (i.e., panic disorder and PTSD). Much work remains in both the clinical and preclinical fields to inform models of CRF function and its contribution to anxiety. First, we will review the current findings of CRF and HPA axis abnormalities in anxiety disorders. Second, we will discuss startle reflex measures as a tool for translational research to determine the role of the CRF system in development and maintenance of clinical anxiety.
Collapse
|
23
|
Gilmor ML, Skelton KH, Nemeroff CB, Owens MJ. The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. J Pharmacol Exp Ther 2003; 305:434-9. [PMID: 12606697 DOI: 10.1124/jpet.102.045419] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticotropin-releasing factor (CRF) plays a preeminent role in coordinating the endocrine, autonomic, and behavioral responses to stress. Dysregulation of both hypothalamic and extrahypothalamic CRF systems have been reported in patients with major depression and post-traumatic stress disorder. Moreover, effective treatment of these conditions leads to normalization of these CRF systems. Although there is virtually no data concerning alterations of CRF systems in bipolar disorder (manic depressive illness), previous work indicates that valproic acid, an anticonvulsant also effective in the treatment of acute mania, alters central CRF neuronal systems. In the current studies, we chronically administered valproic acid and lithium, two clinically effective mood stabilizers, in nonstressed rats to extend our previous findings. Chronic valproic acid administration decreased CRF mRNA expression in the paraventricular nucleus of the hypothalamus; lithium administration increased CRF mRNA expression in the central nucleus of the amygdala. Although valproic acid increased CRF(1) receptor mRNA expression in the cortex, CRF(1) receptor binding was decreased in both the basolateral amygdala and cortex, suggesting that chronic valproate treatment may in fact dampen the overall tone in this central stress pathway. Valproate treatment decreased CRF(2A) mRNA expression in both the lateral septum and hypothalamus, although CRF(2A) receptor binding was unchanged. Lithium administration decreased CRF(1) mRNA expression in both the amygdala and frontal cortex, but CRF(1) receptor binding also remained unchanged. These results suggest that the therapeutic actions of these mood stabilizers may, in part, result from their actions on central CRF neuronal systems. The distinct actions of each drug on CRF systems may underlie their synergistic clinical effects.
Collapse
Affiliation(s)
- Michelle L Gilmor
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1639 Pierce Dr., WMB Suite 4000, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
24
|
Austin MC, Janosky JE, Murphy HA. Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol Psychiatry 2003; 8:324-32. [PMID: 12660805 DOI: 10.1038/sj.mp.4001250] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of clinical investigations and postmortem brain studies have provided evidence that excessive corticotropin-releasing hormone (CRH) secretion and neurotransmission is involved in the pathophysiology of depressive illness, and several studies have suggested that the hyperactivity in CRH neurotransmission extends beyond the hypothalamus involving several extra-hypothalamic brain regions. The present study was designed to test the hypothesis that CRH levels are increased in specific brainstem regions of suicide victims with a diagnosis of major depression. Frozen tissue sections of the pons containing the locus coeruleus and caudal raphe nuclei from 11 matched pairs of depressed suicide and control male subjects were processed for radioimmunocytochemistry using a primary antiserum to CRH and a ([125])I-IgG secondary antibody. The optical density corresponding to the level of CRH-immunoreactivity (IR) was quantified in specific pontine regions from the film autoradiographic images. The level of CRH-IR was increased by 30% in the locus coeruleus, 39% in the median raphe and 45% in the caudal dorsal raphe in the depressed suicide subjects compared to controls. No difference in CRH-IR was found in the dorsal tegmentum or medial parabrachial nucleus between the subject groups. These findings reveal that CRH-IR levels are specifically increased in norepinephrine- and serotonin-containing pontine nuclei of depressed suicide men, and thus they are consistent with the hypothesis that CRH neurotransmission is elevated in extra-hypothalamic brain regions of depressed subjects.
Collapse
Affiliation(s)
- M C Austin
- Department of Psychiatry, University of Pittsburgh, School of Medicine, PA 15213, USA.
| | | | | |
Collapse
|
25
|
S�nchez MM, Young LJ, Plotsky PM, Insel TR. Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990607)408:3<365::aid-cne5>3.0.co;2-n] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Raber J, Koob GF, Bloom FE. Interferon-alpha and transforming growth factor-beta 1 regulate corticotropin-releasing factor release from the amygdala: comparison with the hypothalamic response. Neurochem Int 1997; 30:455-63. [PMID: 9106261 DOI: 10.1016/s0197-0186(96)00082-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interferon-alpha (IFN-alpha) and transforming growth factor-beta 1 (TGF-beta 1) have been reported in different brain regions. The amygdala contains high levels of corticotropin releasing factor (CRF) and has been implicated as a central site for its stress-related autonomic and behavioral response. IFN-alpha will release arginine vasopressin (AVP) from both amygdala and hypothalamus, which further supports a role for the amygdala in neuroimmune interactions. In the present study, we compared the effects of these cytokines on the in vitro release of CRF from the amygdala and hypothalamus. In addition, we evaluated the possible involvement of guanylate cyclase-mediated signaling in CRF release. IFN-alpha stimulates CRF release from both amygdala and hypothalamus. The CRF release by IFN-alpha, Interleukin-2 (IL-2) and acetylcholine is blocked by guanylate cyclase inhibitors, indicating a role for cGMP accumulation in this CRF release. TGF-beta 1 had no effect on basal release of CRF, nor on the CRF-release induced by IL-2, but selectively blocked the acetylcholine-induced release in both amygdala and hypothalamus. Taken with a previous report that TGF-beta 1 specifically inhibits AVP release by acetylcholine, these results suggest that TGF-beta 1 may modulate HPA axis activation, by antagonizing (acetylcholine-evoked) CRF and AVP release. These data further support a role for the amygdala in the bidirectional communication between neuroendocrine and immune system.
Collapse
Affiliation(s)
- J Raber
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
27
|
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997; 76:957-1006. [PMID: 9027863 DOI: 10.1016/s0306-4522(96)00405-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Comparative neuroanatomical investigations in primates and non-primates have helped disentangle the anatomy of the basal forebrain region known as the substantia innominata. The most striking aspect of this region is its subdivision into two major parts. This reflects the fundamental organizational scheme for this portion of the forebrain. According to this scheme, two major subcortical telencephalic structures, i.e. the striatopallidal complex and extended amygdala, form large diagonally oriented bands. The rostroventral extension of the pallidum accounts for a large part of the rostral subcommissural substantia innominata, while the sublenticular substantia innominata is primarily occupied by elements of the extended amygdala. Also dispersed across this region is the basal nucleus of Meynert, which is part of a more or less continuous collection of cholinergic and non-cholinergic corticopetal and thalamopetal cells, which stretches from the septum diagonal band rostrally to the caudal globus pallidus. The basal nucleus of Meynert is especially prominent in the primate, where it is sometimes inappropriately applied as a synonym for the substantia innominata, thereby tacitly ignoring the remaining components. In most mammals, the extended amygdala presents itself as a ring of neurons encircling the internal capsule and basal ganglia. The extended amygdala may be further subdivided, i.e. into the central extended amygdala (related to the central amygdaloid nucleus) and the medial extended amygdala (related to the medial amygdaloid nucleus), which generally form separate corridors both in the sublenticular region and along the supracapsular course of the stria terminalis. The extended amygdala is directly continuous with the caudomedial shell of the accumbens, and to some extent appears to merge with it. Together the accumbens shell and extended amygdala form an extensive forebrain continuum, which establishes specific neuronal circuits with the medial prefrontal-orbitofrontal cortex and medial temporal lobe. This continuum is particularly characterized by a prominent system of long intrinsic association fibers, and a variety of highly differentiated downstream projections to the hypothalamus and brainstem. The various components of the extended amygdala, together with the shell of the accumbens, are ideally structured to generate endocrine, autonomic and somatomotor aspects of emotional and motivational states. Behavioral observations support this proposition and demonstrate the relevance of these structures to a variety of functions, ranging from the various elements of the reproductive cycle to drug-seeking behavior. The neurochemical and connectional features common to the accumbens shell and the extended amygdala are especially relevant to understanding the etiology and treatment of neuropsychiatric disorders. This is discussed in general terms, and also in specific relation to the neurodevelopmental theory of schizophrenia and to the neurosurgical treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- L Heimer
- Department of Otolaryngology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|