1
|
Sadiq A, Funk AT, Waugh JL. The striatal compartments, striosome and matrix, are embedded in largely distinct resting state functional networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628392. [PMID: 39763746 PMCID: PMC11702670 DOI: 10.1101/2024.12.13.628392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The striatum is divided into two interdigitated tissue compartments, the striosome and matrix. These compartments exhibit distinct anatomical, neurochemical, and pharmacological characteristics and have separable roles in motor and mood functions. Little is known about the functions of these compartments in humans. While compartment-specific roles in neuropsychiatric diseases have been hypothesized, they have yet to be directly tested. Investigating compartment-specific functions is crucial for understanding the symptoms produced by striatal injury, and to elucidating the roles of each compartment in healthy human skills and behaviors. We mapped the functional networks of striosome and matrix in humans in vivo. We utilized a diverse cohort of 674 healthy adults, derived from the Human Connectome Project, including all subjects with complete diffusion and functional MRI data and excluding subjects with substance use disorders. We identified striatal voxels with striosome-like and matrix-like structural connectivity using probabilistic diffusion tractography. We then investigated resting state functional connectivity (rsFC) using these compartment-like voxels as seeds. We found widespread differences in rsFC between striosome-like and matrix-like seeds (p < 0.05, FWE corrected for multiple comparisons), suggesting that striosome and matrix occupy distinct functional networks. Slightly shifting seed voxel locations (<4 mm) eliminated these rsFC differences, underscoring the anatomic precision of these networks. Striosome-seeded networks exhibited ipsilateral dominance; matrix-seeded networks had contralateral dominance. Next, we assessed compartment-specific engagement with the triple-network model (default mode, salience, and frontoparietal networks). Striosome-like voxels dominated rsFC with the default mode network bilaterally. The anterior insula (a primary node in the salience network) had higher rsFC with striosome-like voxels. The inferior and middle frontal cortices (primary nodes, frontoparietal network) had stronger rsFC with matrix-like voxels on the left, and striosome-like voxels on the right. Since striosome-like and matrix-like voxels occupy highly segregated rsFC networks, striosome-selective injury may produce different motor, cognitive, and behavioral symptoms than matrix-selective injury. Moreover, compartment-specific rsFC abnormalities may be identifiable before disease-related structural injuries are evident. Localizing rsFC differences provides an anatomic substrate for understanding how the tissue-level organization of the striatum underpins complex brain networks, and how compartment-specific injury may contribute to the symptoms of specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alishba Sadiq
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adrian T. Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Beck DW, Heaton CN, Davila LD, Rakocevic LI, Drammis SM, Tyulmankov D, Vara P, Giri A, Umashankar Beck S, Zhang Q, Pokojovy M, Negishi K, Batson SA, Salcido AA, Reyes NF, Macias AY, Ibanez-Alcala RJ, Hossain SB, Waller GL, O'Dell LE, Moschak TM, Goosens KA, Friedman A. Model of a striatal circuit exploring biological mechanisms underlying decision-making during normal and disordered states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605535. [PMID: 39211231 PMCID: PMC11361035 DOI: 10.1101/2024.07.29.605535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decision-making requires continuous adaptation to internal and external contexts. Changes in decision-making are reliable transdiagnostic symptoms of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a mathematical space for decision-making computations depending on context, and how the matrix compartment defines action value depending on the space. The model explains multiple experimental results and unifies other theories like reward prediction error, roles of the direct versus indirect pathways, and roles of the striosome versus matrix, under one framework. We also found, through new analyses, that striosome and matrix neurons increase their synchrony during difficult tasks, caused by a necessary increase in dimensionality of the space. The model makes testable predictions about individual differences in disorder susceptibility, decision-making symptoms shared among neuropsychiatric disorders, and differences in neuropsychiatric disorder symptom presentation. The model reframes the role of the striosomal circuit in neuroeconomic and disorder-affected decision-making. Highlights Striosomes prioritize decision-related data used by matrix to set action values. Striosomes and matrix have different roles in the direct and indirect pathways. Abnormal information organization/valuation alters disorder presentation. Variance in data prioritization may explain individual differences in disorders. eTOC Beck et al. developed a computational model of how a striatal circuit functions during decision-making. The model unifies and extends theories about the direct versus indirect pathways. It further suggests how aberrant circuit function underlies decision-making phenomena observed in neuropsychiatric disorders.
Collapse
|
3
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Yoshida T, Wickersham IR, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic Direct-Indirect Basal Ganglia Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596922. [PMID: 38915684 PMCID: PMC11195572 DOI: 10.1101/2024.06.01.596922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These S-D1 and S-D2 striosomal pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement oppositely to the modulation by the canonical pathways: S-D1 is inhibitory and S-D2 is excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ian R. Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Johnny H. Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Jonathan T. Ting
- Human Cell Types Dept, Allen Institute for Brain Science, Seattle WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| |
Collapse
|
4
|
Puelles L, Stühmer T, Rubenstein JLR, Diaz C. Critical test of the assumption that the hypothalamic entopeduncular nucleus of rodents is homologous with the primate internal pallidum. J Comp Neurol 2023; 531:1715-1750. [PMID: 37695031 PMCID: PMC11418882 DOI: 10.1002/cne.25536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
The globus pallidus (GP) of primates is divided conventionally into distinct internal and external parts. The literature repeats since 1930 the opinion that the homolog of the primate internal pallidum in rodents is the hypothalamic entopeduncular nucleus (embedded within fiber tracts of the cerebral peduncle). To test this idea, we explored its historic fundaments, checked the development and genoarchitecture of mouse entopeduncular and pallidal neurons, and examined relevant comparative connectivity data. We found that the extratelencephalic mouse entopeduncular structure consists of four different components arrayed along a dorsoventral sequence in the alar hypothalamus. The ventral entopeduncular nucleus (EPV), with GABAergic neurons expressing Dlx5&6 and Nkx2-1, lies within the hypothalamic peduncular subparaventricular area. Three other formations-the dorsal entopeduncular nucleus (EPD), the prereticular entopeduncular nucleus (EPPRt ), and the preeminential entopeduncular nucleus (EPPEm )-lie within the overlying paraventricular area, under the subpallium. EPD contains glutamatergic neurons expressing Tbr1, Otp, and Pax6. The EPPRt has GABAergic cells expressing Isl1 and Meis2, whereas the EPPEm population expresses Foxg1 and may be glutamatergic. Genoarchitectonic observations on relevant areas of the mouse pallidal/diagonal subpallium suggest that the GP of rodents is constituted as in primates by two adjacent but molecularly and hodologically differentiable telencephalic portions (both expressing Foxg1). These and other reported data oppose the notion that the rodent extratelencephalic entopeduncular nucleus is homologous to the primate internal pallidum. We suggest instead that all mammals, including rodents, have dual subpallial GP components, whereas primates probably also have a comparable set of hypothalamic entopeduncular nuclei. Remarkably, there is close similarity in some gene expression properties of the telencephalic internal GP and the hypothalamic EPV. This apparently underlies their notable functional analogy, sharing GABAergic neurons and thalamopetal connectivity.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, El Palmar (Murcia), 30120, Spain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California
| | - Carmen Diaz
- School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, 02006, Spain
| |
Collapse
|
5
|
Funk AT, Hassan AAO, Brüggemann N, Sharma N, Breiter HC, Blood AJ, Waugh JL. In humans, striato-pallido-thalamic projections are largely segregated by their origin in either the striosome-like or matrix-like compartments. Front Neurosci 2023; 17:1178473. [PMID: 37954873 PMCID: PMC10634229 DOI: 10.3389/fnins.2023.1178473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 11/14/2023] Open
Abstract
Cortico-striato-thalamo-cortical (CSTC) loops are fundamental organizing units in mammalian brains. CSTCs process limbic, associative, and sensorimotor information in largely separated but interacting networks. CTSC loops pass through paired striatal compartments, striosome (aka patch) and matrix, segregated pools of medium spiny projection neurons with distinct embryologic origins, cortical/subcortical structural connectivity, susceptibility to injury, and roles in behaviors and diseases. Similarly, striatal dopamine modulates activity in striosome and matrix in opposite directions. Routing CSTCs through one compartment may be an anatomical basis for regulating discrete functions. We used differential structural connectivity, identified through probabilistic diffusion tractography, to distinguish the striatal compartments (striosome-like and matrix-like voxels) in living humans. We then mapped compartment-specific projections and quantified structural connectivity between each striatal compartment, the globus pallidus interna (GPi), and 20 thalamic nuclei in 221 healthy adults. We found that striosome-originating and matrix-originating streamlines were segregated within the GPi: striosome-like connectivity was significantly more rostral, ventral, and medial. Striato-pallido-thalamic streamline bundles that were seeded from striosome-like and matrix-like voxels transited spatially distinct portions of the white matter. Matrix-like streamlines were 5.7-fold more likely to reach the GPi, replicating animal tract-tracing studies. Striosome-like connectivity dominated in six thalamic nuclei (anteroventral, central lateral, laterodorsal, lateral posterior, mediodorsal-medial, and medial geniculate). Matrix-like connectivity dominated in seven thalamic nuclei (centromedian, parafascicular, pulvinar-anterior, pulvinar-lateral, ventral lateral-anterior, ventral lateral-posterior, ventral posterolateral). Though we mapped all thalamic nuclei independently, functionally-related nuclei were matched for compartment-level bias. We validated these results with prior thalamostriate tract tracing studies in non-human primates and other species; where reliable data was available, all agreed with our measures of structural connectivity. Matrix-like connectivity was lateralized (left > right hemisphere) in 18 thalamic nuclei, independent of handedness, diffusion protocol, sex, or whether the nucleus was striosome-dominated or matrix-dominated. Compartment-specific biases in striato-pallido-thalamic structural connectivity suggest that routing CSTC loops through striosome-like or matrix-like voxels is a fundamental mechanism for organizing and regulating brain networks. Our MRI-based assessments of striato-thalamic connectivity in humans match and extend the results of prior tract tracing studies in animals. Compartment-level characterization may improve localization of human neuropathologies and improve neurosurgical targeting in the GPi and thalamus.
Collapse
Affiliation(s)
- Adrian T. Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Asim A. O. Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX, United States
| | - Norbert Brüggemann
- Department of Neurology and Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Hans C. Breiter
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anne J. Blood
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard University, Boston, MA, United States
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
6
|
Alonso-Martínez C, Rubio-Teves M, Porrero C, Clascá F. Cerebellar and basal ganglia inputs define three main nuclei in the mouse ventral motor thalamus. Front Neuroanat 2023; 17:1242839. [PMID: 37645018 PMCID: PMC10461449 DOI: 10.3389/fnana.2023.1242839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.
Collapse
Affiliation(s)
| | | | - César Porrero
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Abstract
Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
8
|
Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-subcortical interactions in goal-directed behavior. Physiol Rev 2023; 103:347-389. [PMID: 35771984 PMCID: PMC9576171 DOI: 10.1152/physrev.00048.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022] Open
Abstract
Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks. In this review, we discuss the field's evolving understanding of how cortical and subcortical regions in placental mammals interact cooperatively, not only via top-down cortical-subcortical inputs but through bottom-up interactions, especially via the thalamus. We describe our current understanding of the circuitry of both the cortex and two exemplar subcortical structures, the superior colliculus and striatum, to identify which information is prioritized by which regions. We then describe the functional circuits these regions form with one another, and the thalamus, to create parallel loops and complex networks for brainwide information flow. Finally, we challenge the classic view that functional modules are contained within specific brain regions; instead, we propose that certain regions prioritize specific types of information over others, but the subnetworks they form, defined by their anatomical connections and functional dynamics, are the basis of true specialization.
Collapse
Affiliation(s)
- K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi Ning Leow
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nhat Minh Le
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rafiq Huda
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
9
|
Waugh JL, Hassan A, Kuster JK, Levenstein JM, Warfield SK, Makris N, Brüggemann N, Sharma N, Breiter HC, Blood AJ. An MRI method for parcellating the human striatum into matrix and striosome compartments in vivo. Neuroimage 2021; 246:118714. [PMID: 34800665 PMCID: PMC9142299 DOI: 10.1016/j.neuroimage.2021.118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian striatum is comprised of intermingled tissue compartments, matrix and striosome. Though indistinguishable by routine histological techniques, matrix and striosome have distinct embryologic origins, afferent/efferent connections, surface protein expression, intra-striatal location, susceptibilities to injury, and functional roles in a range of animal behaviors. Distinguishing the compartments previously required post-mortem tissue and/or genetic manipulation; we aimed to identify matrix/striosome non-invasively in living humans. We used diffusion MRI (probabilistic tractography) to identify human striatal voxels with connectivity biased towards matrix-favoring or striosome-favoring regions (determined by prior animal tract-tracing studies). Segmented striatal compartments replicated the topological segregation and somatotopic organization identified in animal matrix/striosome studies. Of brain regions mapped in prior studies, our human brain data confirmed 93% of the compartment-selective structural connectivity demonstrated in animals. Test-retest assessment on repeat scans found a voxel classification error rate of 0.14%. Fractional anisotropy was significantly higher in matrix-like voxels, while mean diffusivity did not differ between the compartments. As mapped by the Talairach human brain atlas, 460 regions were significantly biased towards either matrix or striosome. Our method allows the study of striatal compartments in human health and disease, in vivo, for the first time.
Collapse
Affiliation(s)
- J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States; Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - Aao Hassan
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - J K Kuster
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Rheumatology, Allergy and Immunology Section, Massachusetts General Hospital, Boston, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Yale School of Medicine, New Haven, CN, United States; Wellcome Centre for Integrative Neuroimaging, National Institutes of Health, Bethesda, MD, United States.
| | - S K Warfield
- Department of Radiology, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - N Makris
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| | - N Brüggemann
- Department of Neurology, University of Oxford, Oxford, United Kingdom; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - N Sharma
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - H C Breiter
- Laboratory of Neuroimaging and Genetics, United States; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| |
Collapse
|
10
|
McElvain LE, Chen Y, Moore JD, Brigidi GS, Bloodgood BL, Lim BK, Costa RM, Kleinfeld D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron 2021; 109:1721-1738.e4. [PMID: 33823137 PMCID: PMC8169061 DOI: 10.1016/j.neuron.2021.03.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.
Collapse
Affiliation(s)
- Lauren E. McElvain
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA,Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Yuncong Chen
- Department of Computer Science, University of California San Diego, La Jolla, CA 92093, USA,These authors contributed equally
| | - Jeffrey D. Moore
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA 02138, USA,These authors contributed equally
| | - G. Stefano Brigidi
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brenda L. Bloodgood
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Rui M. Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal,Zuckerman Institute and Department of Neuroscience, Columbia University, New York 10027 USA,Correspondence: (DK), (RMC)
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA,Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA,Lead contact,Correspondence: (DK), (RMC)
| |
Collapse
|
11
|
Miyamoto Y, Fukuda T. The habenula-targeting neurons in the mouse entopeduncular nucleus contain not only somatostatin-positive neurons but also nitric oxide synthase-positive neurons. Brain Struct Funct 2021; 226:1497-1510. [PMID: 33787995 PMCID: PMC8096748 DOI: 10.1007/s00429-021-02264-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
The entopeduncular nucleus (EPN) in rodents is one of the two major output nuclei of the basal ganglia and corresponds to the internal segment of the globus pallidus in primates. Previous studies have shown that the EPN contains three types of neurons that project to different targets, namely, parvalbumin (PV)-, somatostatin (SOM)-, and choline acetyltransferase-positive neurons. However, we have recently reported that neurons lacking immunoreactivities for these substances are present in the EPN. Here, we demonstrate that 27.7% of all EPN neurons showed immunoreactivity for nitric oxide synthase (NOS). Among them, NOS-only positive and NOS/SOM double-positive neurons accounted for 20.1% and 6.8%, respectively, whereas NOS/PV double-positive neurons were rarely observed. NOS-containing neurons were distributed in a shell region surrounding the thalamus-targeting, PV-rich core region of the EPN, especially in the ventromedial part of the shell. The retrograde tracer fluoro-gold (FG) was injected into several target regions of EPN neurons. Among FG-labeled EPN neurons after injection into the lateral habenula (LHb), NOS-only positive, NOS/SOM double-positive, and SOM-only positive neurons accounted for 25.7%, 15.2%, and 59.1%, respectively. We conclude that NOS-positive neurons are the second major population of LHb-targeting EPN neurons, suggesting their possible involvement in behaviors in response to aversive stimuli.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
12
|
Goldstein Ferber S, Weller A, Yadid G, Friedman A. Discovering the Lost Reward: Critical Locations for Endocannabinoid Modulation of the Cortico-Striatal Loop That Are Implicated in Major Depression. Int J Mol Sci 2021; 22:1867. [PMID: 33668515 PMCID: PMC7918043 DOI: 10.3390/ijms22041867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Depression, the most prevalent psychiatric disorder in the Western world, is characterized by increased negative affect (i.e., depressed mood, cost value increase) and reduced positive affect (i.e., anhedonia, reward value decrease), fatigue, loss of appetite, and reduced psychomotor activity except for cases of agitative depression. Some forms, such as post-partum depression, have a high risk for suicidal attempts. Recent studies in humans and in animal models relate major depression occurrence and reoccurrence to alterations in dopaminergic activity, in addition to other neurotransmitter systems. Imaging studies detected decreased activity in the brain reward circuits in major depression. Therefore, the location of dopamine receptors in these circuits is relevant for understanding major depression. Interestingly, in cortico-striatal-dopaminergic pathways within the reward and cost circuits, the expression of dopamine and its contribution to reward are modulated by endocannabinoid receptors. These receptors are enriched in the striosomal compartment of striatum that selectively projects to dopaminergic neurons of substantia nigra compacta and is vulnerable to stress. This review aims to show the crosstalk between endocannabinoid and dopamine receptors and their vulnerability to stress in the reward circuits, especially in corticostriatal regions. The implications for novel treatments of major depression are discussed.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Aron Weller
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
13
|
Friedman A, Hueske E, Drammis SM, Toro Arana SE, Nelson ED, Carter CW, Delcasso S, Rodriguez RX, Lutwak H, DiMarco KS, Zhang Q, Rakocevic LI, Hu D, Xiong JK, Zhao J, Gibb LG, Yoshida T, Siciliano CA, Diefenbach TJ, Ramakrishnan C, Deisseroth K, Graybiel AM. Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington's Disease Model. Cell 2020; 183:918-934.e49. [PMID: 33113354 DOI: 10.1016/j.cell.2020.09.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.
Collapse
Affiliation(s)
- Alexander Friedman
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sabrina M Drammis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian E Toro Arana
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik D Nelson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody W Carter
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastien Delcasso
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raimundo X Rodriguez
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hope Lutwak
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaden S DiMarco
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qingyang Zhang
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lara I Rakocevic
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua K Xiong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiajia Zhao
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leif G Gibb
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Matsushima A, Graybiel AM. Combinatorial Developmental Controls on Striatonigral Circuits. Cell Rep 2020; 31:107778. [PMID: 32553154 PMCID: PMC7433760 DOI: 10.1016/j.celrep.2020.107778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Cortical pyramidal cells are generated locally, from pre-programmed progenitors, to form functionally distinct areas. By contrast, striatal projection neurons (SPNs) are generated remotely from a common source, undergo migration to form mosaics of striosomes and matrix, and become incorporated into functionally distinct sectors. Striatal circuits might thus have a unique logic of developmental organization, distinct from those of the neocortex. We explore this possibility in mice by mapping one set of SPNs, those in striosomes, with striatonigral projections to the dopamine-containing substantia nigra pars compacta (SNpc). Same-age SPNs exhibit topographic striatonigral projections, according to their resident sector. However, the different birth dates of resident SPNs within a given sector specify the destination of their axons within the SNpc. These findings highlight a logic intercalating birth date-dependent and birth date-independent factors in determining the trajectories of SPN axons and organizing specialized units of striatonigral circuitry that could influence behavioral expression and vulnerabilities to disease.
Collapse
Affiliation(s)
- Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| |
Collapse
|
15
|
Prager EM, Plotkin JL. Compartmental function and modulation of the striatum. J Neurosci Res 2019; 97:1503-1514. [PMID: 31489687 DOI: 10.1002/jnr.24522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a central role in guiding numerous complex behaviors, ranging from motor control to action selection and reward learning. The diverse responsibilities of the striatum are reflected by the complexity of its organization. In this review, we will summarize what is currently known about the compartmental layout of the striatum, an organizational principle that is crucial for allowing the striatum to guide such a diverse array of behaviors. We will focus on the anatomical and functional properties of striosome (patch) and matrix compartments of the striatum, and how the engagement of these compartments is uniquely controlled by their afferents, intrinsic properties, and neuromodulation. We will give examples of how advances in technology have opened the door to functionally dissecting the striatum's compartmental design, and close by offering thoughts on the future and relevance for human disease.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
16
|
|
17
|
Mehlman ML, Winter SS, Taube JS. Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. II. Neuroanatomical studies. J Neurophysiol 2019; 121:371-395. [PMID: 30427743 PMCID: PMC6397393 DOI: 10.1152/jn.00144.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 11/22/2022] Open
Abstract
An animal's directional heading within its environment is encoded by the activity of head direction (HD) cells. In rodents, these neurons are found primarily within the limbic system in the interconnected structures that form the limbic HD circuit. In our accompanying report in this issue, we describe two HD cell populations located outside of this circuit in the medial precentral cortex (PrCM) and dorsal striatum (DS). These extralimbic areas receive their HD signals from the limbic system but do not provide critical input or feedback to limbic HD cells (Mehlman ML, Winter SS, Valerio S, Taube JS. J Neurophysiol 121: 350-370, 2019.). In this report, we complement our previous lesion and recording experiments with a series of neuroanatomical tracing studies in rats designed to examine patterns of connectivity between the PrCM, DS, limbic HD circuit, and related spatial processing circuitry. Retrograde tracing revealed that the DS receives direct input from numerous structures known to contain HD cells and/or other spatially tuned cell types. Importantly, these projections preferentially target and converge within the most medial portion of the DS, the same area in which we previously recorded HD cells. The PrCM receives direct input from a subset of these spatial processing structures. Anterograde tracing identified indirect pathways that could permit the PrCM and DS to convey self-motion information to the limbic HD circuit. These tracing studies reveal the anatomical basis for the functional relationships observed in our lesion and recording experiments. Collectively, these findings expand our understanding of how spatial processing circuitry functionally and anatomically extends beyond the limbic system into the PrCM and DS. NEW & NOTEWORTHY Head direction (HD) cells are located primarily within the limbic system, but small populations of extralimbic HD cells are found in the medial precentral cortex (PrCM) and dorsal striatum (DS). The neuroanatomical tracing experiments reported here explored the pathways capable of transmitting the HD signal to these extralimbic areas. We found that projections arising from numerous spatial processing structures converge within portions of the PrCM and DS that contain HD cells.
Collapse
Affiliation(s)
- Max L Mehlman
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| | - Shawn S Winter
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| |
Collapse
|
18
|
Hong S, Amemori S, Chung E, Gibson DJ, Amemori KI, Graybiel AM. Predominant Striatal Input to the Lateral Habenula in Macaques Comes from Striosomes. Curr Biol 2018; 29:51-61.e5. [PMID: 30554903 DOI: 10.1016/j.cub.2018.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Striosomes, neurochemically specialized modules in the striatum, are thought to be nodes in circuits extending, via basal ganglia pathways, from mood-related neocortical regions to dopamine-containing neurons of the substantia nigra. Yet striosomes have remained beyond the reach of electrophysiological methods to identify them, especially in non-human primates. Such work is needed for translational as well as for basic science. Here we introduce a method to identify striosomes on-line in awake, behaving macaques. We combined electrical microstimulation of the striatum with simultaneous electrophysiological recording in the lateral habenula (LHb) followed by immunohistochemistry. We demonstrate that striosomes provide the predominant striatal input to the macaque pallido-habenular circuit, which is known to function in relation to reinforcement signaling. Further, our experiments suggest that striosomes from different striatal regions may convergently influence the lateral habenula. This work now opens the way to defining the functions of striosomes in behaving primates in relation to mood, motivation, and action.
Collapse
Affiliation(s)
- Simon Hong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Chung
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken-Ichi Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Hakubi Center for Advanced Research and Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Amemori KI, Amemori S, Gibson DJ, Graybiel AM. Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation. Neuron 2018; 99:829-841.e6. [PMID: 30100255 DOI: 10.1016/j.neuron.2018.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Persistent thoughts inducing irrationally pessimistic and repetitive decisions are often symptoms of mood and anxiety disorders. Regional neural hyperactivities have been associated with these disorders, but it remains unclear whether there is a specific brain region causally involved in these persistent valuations. Here, we identified potential sources of such persistent states by microstimulating the striatum of macaques performing a task by which we could quantitatively estimate their subjective pessimistic states using their choices to accept or reject conflicting offers. We found that this microstimulation induced irrationally repetitive choices with negative evaluations. Local field potentials recorded in the same microstimulation sessions exhibited modulations of beta-band oscillatory activity that paralleled the persistent negative states influencing repetitive decisions. These findings demonstrate that local striatal zones can causally affect subjective states influencing persistent negative valuation and that abnormal beta-band oscillations can be associated with persistency in valuation accompanied by an anxiety-like state.
Collapse
Affiliation(s)
- Ken-Ichi Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA; The Hakubi Center for Advanced Research and Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Bloem B, Huda R, Sur M, Graybiel AM. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. eLife 2017; 6:32353. [PMID: 29251596 PMCID: PMC5764569 DOI: 10.7554/elife.32353] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/16/2017] [Indexed: 12/14/2022] Open
Abstract
Striosomes were discovered several decades ago as neurochemically identified zones in the striatum, yet technical hurdles have hampered the study of the functions of these striatal compartments. Here we used 2-photon calcium imaging in neuronal birthdate-labeled Mash1-CreER;Ai14 mice to image simultaneously the activity of striosomal and matrix neurons as mice performed an auditory conditioning task. With this method, we identified circumscribed zones of tdTomato-labeled neuropil that correspond to striosomes as verified immunohistochemically. Neurons in both striosomes and matrix responded to reward-predicting cues and were active during or after consummatory licking. However, we found quantitative differences in response strength: striosomal neurons fired more to reward-predicting cues and encoded more information about expected outcome as mice learned the task, whereas matrix neurons were more strongly modulated by recent reward history. These findings open the possibility of harnessing in vivo imaging to determine the contributions of striosomes and matrix to striatal circuit function.
Collapse
Affiliation(s)
- Bernard Bloem
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Rafiq Huda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
21
|
Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making. Cell 2017; 171:1191-1205.e28. [PMID: 29149606 DOI: 10.1016/j.cell.2017.10.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022]
Abstract
Effective evaluation of costs and benefits is a core survival capacity that in humans is considered as optimal, "rational" decision-making. This capacity is vulnerable in neuropsychiatric disorders and in the aftermath of chronic stress, in which aberrant choices and high-risk behaviors occur. We report that chronic stress exposure in rodents produces abnormal evaluation of costs and benefits resembling non-optimal decision-making in which choices of high-cost/high-reward options are sharply increased. Concomitantly, alterations in the task-related spike activity of medial prefrontal neurons correspond with increased activity of their striosome-predominant striatal projection neuron targets and with decreased and delayed striatal fast-firing interneuron activity. These effects of chronic stress on prefronto-striatal circuit dynamics could be blocked or be mimicked by selective optogenetic manipulation of these circuits. We suggest that altered excitation-inhibition dynamics of striosome-based circuit function could be an underlying mechanism by which chronic stress contributes to disorders characterized by aberrant decision-making under conflict. VIDEO ABSTRACT.
Collapse
|
22
|
Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, McCarroll SA, Sabatini BL. Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron 2017; 94:138-152.e5. [PMID: 28384468 DOI: 10.1016/j.neuron.2017.03.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/31/2017] [Accepted: 03/09/2017] [Indexed: 01/07/2023]
Abstract
The basal ganglia (BG) integrate inputs from diverse sensorimotor, limbic, and associative regions to guide action-selection and goal-directed behaviors. The entopeduncular nucleus (EP) is a major BG output nucleus and has been suggested to channel signals from distinct BG nuclei to target regions involved in diverse functions. Here we use single-cell transcriptional and molecular analyses to demonstrate that the EP contains at least three classes of projection neurons-glutamate/GABA co-releasing somatostatin neurons, glutamatergic parvalbumin neurons, and GABAergic parvalbumin neurons. These classes comprise functionally and anatomically distinct output pathways that differentially affect EP target regions, such as the lateral habenula (LHb) and thalamus. Furthermore, LHb- and thalamic-projecting EP neurons are differentially innervated by subclasses of striatal and pallidal neurons. Therefore, we identify previously unknown subdivisions within the EP and reveal the existence of cascading, molecularly distinct projections through striatum and globus pallidus to EP targets within epithalamus and thalamus.
Collapse
Affiliation(s)
- Michael L Wallace
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee Wui Huang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrienne C Philson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan Z Macosko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
The Lateral Habenula Circuitry: Reward Processing and Cognitive Control. J Neurosci 2017; 36:11482-11488. [PMID: 27911751 DOI: 10.1523/jneurosci.2350-16.2016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
There has been a growing interest in understanding the role of the lateral habenula (LHb) in reward processing, affect regulation, and goal-directed behaviors. The LHb gets major inputs from the habenula-projecting globus pallidus and the mPFC, sending its efferents to the dopaminergic VTA and SNc, serotonergic dorsal raphe nuclei, and the GABAergic rostromedial tegmental nucleus. Recent studies have made advances in our understanding of the LHb circuit organization, yet the precise mechanisms of its involvement in complex behaviors are largely unknown. To begin to address this unresolved question, we present here emerging cross-species perspectives with a goal to provide a more refined understanding of the role of the LHb circuits in reward and cognition. We begin by highlighting recent findings from rodent experiments using optogenetics, electrophysiology, molecular, pharmacology, and tracing techniques that reveal diverse neural phenotypes in the LHb circuits that may underlie previously undescribed behavioral functions. We then discuss results from electrophysiological studies in macaques that suggest that the LHb cooperates with the anterior cingulate cortex to monitor action outcomes and signal behavioral adjustment. Finally, we provide an integrated summary of cross-species findings and discuss how further research on the connectivity, neural signaling, and physiology of the LHb circuits can deepen our understanding of the role of the LHb in normal and maladaptive behaviors associated with mental illnesses and drug abuse.
Collapse
|
24
|
The lateral habenula and the serotonergic system. Pharmacol Biochem Behav 2017; 162:22-28. [PMID: 28528079 DOI: 10.1016/j.pbb.2017.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
The habenula (Hb) is an epithalamic structure differentiated into two nuclear complexes, medial (MHb) and lateral habenula (LHb). After decades of relative neglect, interest in the Hb resurged when it was demonstrated that LHb neurons play a key role in encoding disappointments and expectation of punishments. Consistent with such a role, the LHb has been implicated in a broad array of functions and pathologic conditions, notably in mechanisms of stress and pain, as well as in the pathophysiology of mood disorders. So far, the vast majority of research involving the LHb has focused on its role in regulating midbrain dopamine release. However, the LHb is also robustly interconnected in a reciprocal manner with a set of rostral serotonin (5-HT) nuclei. Thus, there is increasing evidence that the LHb is amply linked to the dorsal (DR) and median raphe nucleus (MnR) by a complex network of parallel topographically organized direct and indirect pathways. Here, we summarize research about the interconnections of the LHb with different subregions of the DR and MnR, as well as findings about 5-HT-dependent modulation of LHb neurons. Finally, we discuss the contribution of distinct LHb-raphe loops to stress and stress-related psychiatric disorders including anxiety and depression.
Collapse
|
25
|
Abstract
The basal ganglia, a group of subcortical nuclei, play a crucial role in decision making by selecting actions and evaluating their outcomes1,2. While much is known about the function of the basal ganglia circuitry in selection1,3,4, how these nuclei contribute to outcome evaluation is less clear. Here we show that neurons in the habenula-projecting globus pallidus (GPh) are essential for evaluating action outcomes and are regulated by a specific set of inputs from the basal ganglia. We found in a classical conditioning task that individual mouse GPh neurons bidirectionally encode whether an outcome is better or worse than expected. Mimicking these evaluation signals with optogenetic inhibition or excitation is sufficient to reinforce or discourage actions in a decision making task. Moreover, cell-type-specific synaptic manipulations revealed that the inhibitory and excitatory inputs to the GPh are necessary for mice to appropriately evaluate positive and negative feedback, respectively. Finally, using rabies virus-assisted monosynaptic tracing5, we discovered that the GPh is embedded in a basal ganglia circuit wherein it receives inhibitory input from both striosomal and matrix compartments of the striatum, and excitatory input from the “limbic” regions of the subthalamic nucleus (STN). Our results provide the first direct evidence that information about the selection and evaluation of actions is channelled through distinct sets of basal ganglia circuits, with the GPh representing a key locus where information of opposing valence is integrated to determine whether action outcomes are better or worse than expected.
Collapse
|
26
|
Gerfen C, Bolam J. The Neuroanatomical Organization of the Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00001-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Crittenden J, Graybiel A. Disease-Associated Changes in the Striosome and Matrix Compartments of the Dorsal Striatum. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00039-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict. Cell 2015; 161:1320-33. [PMID: 26027737 DOI: 10.1016/j.cell.2015.04.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023]
Abstract
A striking neurochemical form of compartmentalization has been found in the striatum of humans and other species, dividing it into striosomes and matrix. The function of this organization has been unclear, but the anatomical connections of striosomes indicate their relation to emotion-related brain regions, including the medial prefrontal cortex. We capitalized on this fact by combining pathway-specific optogenetics and electrophysiology in behaving rats to search for selective functions of striosomes. We demonstrate that a medial prefronto-striosomal circuit is selectively active in and causally necessary for cost-benefit decision-making under approach-avoidance conflict conditions known to evoke anxiety in humans. We show that this circuit has unique dynamic properties likely reflecting striatal interneuron function. These findings demonstrate that cognitive and emotion-related functions are, like sensory-motor processing, subject to encoding within compartmentally organized representations in the forebrain and suggest that striosome-targeting corticostriatal circuits can underlie neural processing of decisions fundamental for survival.
Collapse
|
29
|
Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res 2015; 290:17-31. [PMID: 25907747 DOI: 10.1016/j.bbr.2015.04.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/26/2022]
Abstract
Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA.
| | - Chen Yang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Aaron Tan
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Miyamoto Y, Fukuda T. Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 2015; 94:37-49. [PMID: 25722090 DOI: 10.1016/j.neures.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
The entopeduncular nucleus (EPN) is one of the major output nuclei of the basal ganglia in rodents. Previous studies have divided it into rostral and caudal halves, with the former containing somatostatin (SOM)-immunoreactive neurons and the latter dominated by parvalbumin (PV)-containing neurons, respectively. However, it is unclear whether this simple rostrocaudal segmentation is appropriate, and the possibility of the existence of other neuronal populations remains to be investigated. In this study the cytoarchitecture of the mouse EPN was analyzed immunohistochemically. Substance P (SP)-immunoreactivity determined the extent of the EPN, which was 800 μm-long along the rostrocaudal axis. PV-positive neurons were concentrated in the caudal two-thirds of this range. PV-negative neurons were abundant in the rostral half but were further located caudally around the PV neuron-rich core. PV(+)/SOM(-) and PV(-)/SOM(+) neurons constituted 28.6% and 45.7% of EPN neurons, respectively, whereas the remaining population (25.7%) exhibited neither immunoreactivity. Eleven percent of EPN neurons lacked immunoreactivity for glutamic acid decarboxylase, indicating their non-GABAergic nature. Three-dimensional reconstruction revealed that PV-rich/SP-poor core was surrounded by PV-poor/SP-rich shell region. Therefore, presumptive thalamus-targeting PV neurons are outnumbered by other populations, and the regional heterogeneity shown here might be related to functionally distinct pathways through the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
31
|
Grillner S, Robertson B. The basal ganglia downstream control of brainstem motor centres--an evolutionarily conserved strategy. Curr Opin Neurobiol 2015; 33:47-52. [PMID: 25682058 DOI: 10.1016/j.conb.2015.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/21/2023]
Abstract
The basal ganglia plays a crucial role in decision-making and control of motion. The output of the basal ganglia consists of tonically active GABAergic neurons, a proportion of which project to different brainstem centres and another part projecting to thalamus and back to cortex. The focus here is on the former part, which keeps the different brainstem motor-centres tonically inhibited under resting conditions. These centres will be disinhibited when called into action. In the control of motion the direct pathway will promote movement and the indirect pathway inhibit competing movement patterns counteracting the motor-command issued. The basal ganglia detailed structure and function are conserved throughout the vertebrate evolution, including the afferent (e.g. habenulae) and efferent control of the dopamine system.
Collapse
Affiliation(s)
- Sten Grillner
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Brita Robertson
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
32
|
Benhamou L, Cohen D. Electrophysiological characterization of entopeduncular nucleus neurons in anesthetized and freely moving rats. Front Syst Neurosci 2014; 8:7. [PMID: 24574980 PMCID: PMC3918587 DOI: 10.3389/fnsys.2014.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/12/2014] [Indexed: 11/30/2022] Open
Abstract
The EntoPeduncular nucleus (EP), which is homologous to the internal segment of the Globus Pallidus (GPi) in primates, is one of the two basal ganglia (BG) output nuclei. Despite their importance in cortico-BG information processing, EP neurons have rarely been investigated in rats and there is no available electrophysiological characterization of EP neurons in vivo. We recorded and analyzed the activity of EP neurons in freely moving as well as anesthetized rats, and compared their activity patterns. Examination of neuronal firing statistics during wakefulness suggested that similar to neurons recorded in the primate GPi, EP neurons are a single population characterized by Poisson-like firing. Under isoflurane anesthesia the firing rate of EP neurons decreased substantially and their coefficient of variation and relative duration of quiescence periods increased. Investigation of the relationship between firing rate and depth of anesthesia revealed two distinct neuronal groups: one that decreased its firing rate with the increase in anesthesia level, and a second group where the firing rate was independent of anesthesia level. Post-hoc examination of the firing properties of the two groups showed that they were statistically distinct. These results may thus help reconcile in vitro studies in rats and primates which have reported two distinct neuronal populations, and in vivo studies in behaving primates indicating one homogeneous population. Our data support the existence of two distinct neuronal populations in the rat EP that can be distinguished by their characteristic firing response to anesthesia.
Collapse
Affiliation(s)
- Liora Benhamou
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
33
|
Hong S, Hikosaka O. Diverse sources of reward value signals in the basal ganglia nuclei transmitted to the lateral habenula in the monkey. Front Hum Neurosci 2013; 7:778. [PMID: 24294200 PMCID: PMC3826593 DOI: 10.3389/fnhum.2013.00778] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/28/2013] [Indexed: 01/04/2023] Open
Abstract
The lateral habenula (LHb) plays an important role in motivational decision making. Neurons in the primate LHb signal negative ‘reward prediction errors’ and inhibit midbrain dopamine (DA) neurons. These negative reward prediction error signals in the LHb are, at least partly, provided by a distinct group of neurons in the border region of the globus pallidus internal segment (GPb). However, it is still unclear whether other basal ganglia nuclei provide the LHb with reward signals, either through the GPb or through different circuits. As a first step to answer this question, we electrically stimulated various parts of the basal ganglia and monitored the neural activity in the LHb in the awake monkey. First, we found that low intensity stimulations in the GPb and the internal segment of the globus pallidus (GPi) evoked a short latency (5 ms) excitatory response in LHb neurons. Second, LHb neurons were inhibited by stimulations in the ventral pallidum (VP). These results suggest that reward-related signals are transmitted to the LHb mainly through excitatory connections from the GPb and inhibitory connections from the VP. Finally, excitations or inhibitions are induced in LHb neurons from diverse but patchy regions in the striatum. These effects have considerably longer latencies, suggesting that they may be mediated by the GPb or the VP. The patchy nature of the stimulation effect raises the possibility that the striosomes are the source of reward-related signals transmitted to the LHb.
Collapse
Affiliation(s)
- Simon Hong
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA ; Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
34
|
Independent circuits in the basal ganglia for the evaluation and selection of actions. Proc Natl Acad Sci U S A 2013; 110:E3670-9. [PMID: 24003130 DOI: 10.1073/pnas.1314815110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basal ganglia are critical for selecting actions and evaluating their outcome. Although the circuitry for selection is well understood, how these nuclei evaluate the outcome of actions is unknown. Here, we show in lamprey that a separate evaluation circuit, which regulates the habenula-projecting globus pallidus (GPh) neurons, exists within the basal ganglia. The GPh neurons are glutamatergic and can drive the activity of the lateral habenula, which, in turn, provides an indirect inhibitory influence on midbrain dopamine neurons. We show that GPh neurons receive inhibitory input from the striosomal compartment of the striatum. The striosomal input can reduce the excitatory drive to the lateral habenula and, consequently, decrease the inhibition onto the dopaminergic system. Dopaminergic neurons, in turn, provide feedback that inhibits the GPh. In addition, GPh neurons receive direct projections from the pallium (cortex in mammals), which can increase the GPh activity to drive the lateral habenula to increase the inhibition of the neuromodulatory systems. This circuitry, thus, differs markedly from the "direct" and "indirect" pathways that regulate the pallidal (e.g., globus pallidus) output nuclei involved in the control of motion. Our results show that a distinct reward-evaluation circuit exists within the basal ganglia, in parallel to the direct and indirect pathways, which select actions. Our results suggest that these circuits are part of the fundamental blueprint that all vertebrates use to select actions and evaluate their outcome.
Collapse
|
35
|
Tajima K, Fukuda T. Region-specific diversity of striosomes in the mouse striatum revealed by the differential immunoreactivities for mu-opioid receptor, substance P, and enkephalin. Neuroscience 2013; 241:215-28. [DOI: 10.1016/j.neuroscience.2013.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
|
36
|
Gonçalves L, Sego C, Metzger M. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol 2012; 520:1278-300. [PMID: 22020635 DOI: 10.1002/cne.22787] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mesopontine rostromedial tegmental nucleus (RMTg) is a mostly γ-aminobutyric acid (GABA)ergic structure believed to be a node for signaling aversive events to dopamine (DA) neurons in the ventral tegmental area (VTA). The RMTg receives glutamatergic inputs from the lateral habenula (LHb) and sends substantial GABAergic projections to the VTA, which also receives direct projections from the LHb. To further specify the topography of LHb projections to the RMTg and VTA, small focal injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were aimed at different subdivisions of the LHb. The subnuclear origin of LHb inputs to the VTA and RMTg was then confirmed by injections of the retrograde tracer cholera toxin subunit b into the VTA or RMTg. Furthermore, we compared the topographic position of retrogradely labeled neurons in the RMTg resulting from VTA injections with that of anterogradely labeled axons emerging from the LHb. As revealed by anterograde and retrograde tracing, LHb projections were organized in a strikingly topographic manner, with inputs to the RMTg mostly arising from the lateral division of the LHb (LHbL), whereas inputs to the VTA mainly emerged from the medial division of the LHb (LHbM). In the RMTg, profusely branched LHb axons were found in close register with VTA projecting neurons and were frequently apposed to the latter. Overall, our findings demonstrate that LHb inputs to the RMTg and VTA arise from different divisions of the LHb and provide direct evidence for a disynaptic pathway that links the LHbL to the VTA via the RMTg.
Collapse
Affiliation(s)
- Luciano Gonçalves
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | | |
Collapse
|
37
|
Amemori KI, Graybiel AM. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making. Nat Neurosci 2012; 15:776-85. [PMID: 22484571 PMCID: PMC3369110 DOI: 10.1038/nn.3088] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/14/2012] [Indexed: 11/09/2022]
Abstract
The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. We took as a clue evidence that in healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent-process like organization of neurons representing motivationally positive and negative subjective value. These two neuronal populations overlapped spatially, except in one pACC subzone, where neurons with negative coding were more numerous. Strikingly, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.
Collapse
Affiliation(s)
- Ken-ichi Amemori
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
38
|
Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci U S A 2011; 109:E164-73. [PMID: 22203996 DOI: 10.1073/pnas.1119348109] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The medial (MHb) and lateral (LHb) habenulae are a small group of nuclei that regulate the activity of monoaminergic neurons. Disruptions to these nuclei lead to deficits in a range of cognitive and motor functions from sleep to decision making. Interestingly, the habenular nuclei are present in all vertebrates, suggesting that they provide a common neural mechanism to influence these diverse functions. To unravel conserved habenula circuitry and approach an understanding of their basic function, we investigated the organization of these nuclei in the lamprey, one of the phylogenetically oldest vertebrates. Based on connectivity and molecular expression, we show that the MHb and LHb circuitry is conserved in the lamprey. As in mammals, separate populations of neurons in the LHb homolog project directly or indirectly to dopamine and serotonin neurons through a nucleus homologous to the GABAergic rostromedial mesopontine tegmental nucleus and directly to histamine neurons. The pallidal and hypothalamic inputs to the LHb homolog are also conserved. In contrast to other species, the habenula projecting pallidal nucleus is topographically distinct from the dorsal pallidum, the homolog of the globus pallidus interna. The efferents of the MHb homolog selectively target the interpeduncular nucleus. The MHb afferents arise from sensory (medial olfactory bulb, parapineal, and pretectum) and not limbic areas, as they do in mammals; consequently, the "context" in which this circuitry is recruited may have changed during evolution. Our results indicate that the habenular nuclei provide a common vertebrate circuitry to adapt behavior in response to rewards, stress, and other motivating factors.
Collapse
|
39
|
Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci 2011; 31:11457-71. [PMID: 21832176 DOI: 10.1523/jneurosci.1384-11.2011] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lateral habenula (LHb) neurons signal negative "reward-prediction errors" and inhibit midbrain dopamine (DA) neurons. Yet LHb neurons are largely glutamatergic, indicating that this inhibition may occur through an intermediate structure. Recent studies in rats have suggested a candidate for this role, the GABAergic rostromedial tegmental nucleus (RMTg), but this neural pathway has not yet been tested directly. We now show using electrophysiology and anatomic tracing that (1) the monkey has an inhibitory structure similar to the rat RMTg; (2) RMTg neurons receive excitatory input from the LHb, exhibit negative reward-prediction errors, and send axonal projections near DA soma; and (3) stimulating this structure inhibits DA neurons. Surprisingly, some RMTg neurons responded to reward cues earlier than the LHb, and carry "state-value" signals not found in DA neurons. Thus, our data suggest that the RMTg translates LHb reward-prediction errors (negative) into DA reward-prediction errors (positive), while transmitting additional motivational signals to non-DA networks.
Collapse
|
40
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
41
|
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011; 5:53. [PMID: 21887131 PMCID: PMC3157016 DOI: 10.3389/fnana.2011.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.
Collapse
Affiliation(s)
- Matthew W Rice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
42
|
The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 2011; 11:503-13. [PMID: 20559337 DOI: 10.1038/nrn2866] [Citation(s) in RCA: 699] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Surviving in a world with hidden rewards and dangers requires choosing the appropriate behaviours. Recent discoveries indicate that the habenula plays a prominent part in such behavioural choice through its effects on neuromodulator systems, in particular the dopamine and serotonin systems. By inhibiting dopamine-releasing neurons, habenula activation leads to the suppression of motor behaviour when an animal fails to obtain a reward or anticipates an aversive outcome. Moreover, the habenula is involved in behavioural responses to pain, stress, anxiety, sleep and reward, and its dysfunction is associated with depression, schizophrenia and drug-induced psychosis. As a highly conserved structure in the brain, the habenula provides a fundamental mechanism for both survival and decision-making.
Collapse
|
43
|
The habenula prevents helpless behavior in larval zebrafish. Curr Biol 2010; 20:2211-6. [PMID: 21145744 DOI: 10.1016/j.cub.2010.11.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/16/2010] [Accepted: 11/09/2010] [Indexed: 01/02/2023]
Abstract
Animals quickly learn to avoid predictable danger. However, if pre-exposed to a strong stressor, they do not display avoidance even if this causes continued contact with painful stimuli [1, 2]. In rodents, lesioning the habenula, an epithalamic structure that regulates the monoaminergic system, has been reported to reduce avoidance deficits caused by inescapable shock [3]. This is consistent with findings that inability to overcome a stressor is accompanied by an increase in serotonin levels [4]. However, other studies conclude that habenula lesions cause avoidance deficits [5, 6]. These contradictory results may be caused by lesions affecting unintended regions [6]. To clarify the role of the habenula, we used larval zebrafish, whose transparency and amenability to genetic manipulation enables more precise disruption of cells. We show that larval zebrafish learn to avoid a light that has been paired with a mild shock but fail to do so when pre-exposed to inescapable shock. Photobleaching of habenula afferents expressing the photosensitizer KillerRed causes a similar failure in avoidance. Expression of tetanus toxin in dorsal habenula neurons is sufficient to prevent avoidance. We suggest that this region may signal the ability to control a stressor, and that its disruption could contribute to anxiety disorders.
Collapse
|
44
|
Weiss T, Veh RW. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 2010; 172:74-93. [PMID: 20974229 DOI: 10.1016/j.neuroscience.2010.10.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 11/26/2022]
Abstract
Based on the specificity of its inputs and targets, the lateral habenular complex (LHb) constitutes a pivotal motor-limbic interface implicated in various cerebral functions particularly in regulating monoamine transmission. Despite its functional significance, cellular characteristics underlying LHb functionality have not been examined systematically. The present study aimed to correlate morphological and electrophysiological properties of neurons within the different subnuclei of the LHb using whole-cell recording and neurobiotin labeling in rat slice preparations. Morphological analysis revealed a heterogeneous population of projection neurons randomly distributed throughout the LHb. According to somatodendritic characteristics four main categories were classified including spherical, fusiform, polymorphic and vertical cells. Electrophysiological characterization of neurons within the different categories demonstrated homologous profiles and no significant differences between groups. Typically, LHb neurons possessed high input resistances and long membrane time constants. They also displayed time-dependent inward rectification and distinct afterhyperpolarization. A salient electrophysiological feature of LHb neurons was their ability to generate rebound bursts of action potentials in response to membrane hyperpolarization. Based on the pattern of spontaneous activity, neurons were classified as silent, tonic or bursting. The occurrence of distinctive firing modes was not related to topographic allocation. The patterns of spontaneous firing and evoked discharge were highly sensitive to alterations in membrane potential and merged upon de- and hyperpolarizing current injection and synaptic stimulation. Besides projection neurons, recordings revealed the existence of a subpopulation of cells possessing morphological and physiological properties of neocortical neurogliaform cells. They were considered to be interneurons. Our data suggest that neurons within the different LHb subnuclei behave electrophysiologically more similar than expected, considering their morphological heterogeneity. We conclude that the formation of functional neuronal entities within the LHb may be achieved through defined synaptic inputs to particular neurons, rather than by individual neuronal morphologies and intrinsic membrane properties.
Collapse
Affiliation(s)
- T Weiss
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
45
|
Cell Types in the Different Nuclei of the Basal Ganglia. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Kowski A, Veh R, Weiss T. Dopaminergic activation excites rat lateral habenular neurons in vivo. Neuroscience 2009; 161:1154-65. [DOI: 10.1016/j.neuroscience.2009.04.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
47
|
Tanaka K, Amano N, Satoda T, Murata T, Kawagishi S, Yoshino K, Mizuno N. Influences of entopeduncular nucleus stimulation upon electromyogram activity of masticatory muscles. Neuroscience 2008; 155:969-82. [DOI: 10.1016/j.neuroscience.2008.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
48
|
Künzle H. The presence and absence of prosencephalic cell groups relaying striatal information to the medial and lateral thalamus in tenrec. J Anat 2008; 212:795-816. [PMID: 18510507 DOI: 10.1111/j.1469-7580.2008.00905.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although there are remarkable differences regarding the output organization of basal ganglia between mammals and non-mammals, mammalian species with poorly differentiated brain have scarcely been investigated in this respect. The aim of the present study was to identify the pallidal neurons giving rise to thalamic projections in the Madagascar lesser hedgehog tenrec (Afrotheria). Following tracer injections into the thalamus, retrogradely labelled neurons were found in the depth of the olfactory tubercle (particularly the hilus of the Callejal islands and the insula magna), in subdivisions of the diagonal band complex, the peripeduncular region and the thalamic reticular nucleus. No labelled cells were seen in the globus pallidus. Pallidal neurons were tentatively identified on the basis of their striatal afferents revealed hodologically using anterograde axonal tracer substances and immunohistochemically with antibodies against enkephalin and substance P. The data showed that the tenrec's medial thalamus received prominent projections from ventral pallidal cells as well as from a few neurons within and ventral to the cerebral peduncle. The only regions projecting to the lateral thalamus appeared to be the thalamic reticular nucleus (RTh) and the dorsal peripeduncular nucleus (PpD). On the basis of immunohistochemical data and the topography of its thalamic projections, the PpD was considered to be an equivalent to the pregeniculate nucleus in other mammals. There was no evidence of entopeduncular (internal pallidal) neurons being present within the RTh/PpD complex, neuropils of which did not stain for enkephalin and substance P. The ventrolateral portion of RTh, the only region eventually receiving a striatal input, projected to the caudolateral rather than the rostrolateral thalamus. Thus, the striatopallidal output organization in the tenrec appeared similar, in many respects, to the output organization in non-mammals. This paper considers the failure to identify entopeduncular neurons projecting to the rostrolateral thalamus in a mammal with a little differentiated cerebral cortex, and also stresses the discrepancy between this absence and the presence of a distinct external pallidal segment (globus pallidus).
Collapse
Affiliation(s)
- Heinz Künzle
- Anatomisches Institut, LM Universität München, Germany.
| |
Collapse
|
49
|
Abstract
In this contribution to the CNS Spectrums neuroanatomy series, Stefanie Geisler, MD, discusses the lateral habenula (LHb). This nuclear complex is one of the areas of the brain that forms part of the cross-talk between limbic fore-brain and some important ascending modulatory pathways. Situated at the caudal end of the dorsal diencephalon and classically regarded as projecting largely to the brainstem, including the serotoninergic raphe nuclei, the LHb receives afferents from widespread forebrain areas. Therefore, the LHb is able to influence serotonin tone in the brain, and has long interested neuroanatomists as a potential limbic-motor interface. Nonetheless, the LHb was not much discussed outside neuroanatomical circles until recently, when it was discovered that its impact on the mesotelencephalic dopamine system is probably much greater than had been assumed. The LHb has become a hot topic. This article-addresses these developments and emphasizes the clinical relevance of this interesting brain structure.
Collapse
|
50
|
Zhang R, Oorschot DE. Total number of neurons in the habenular nuclei of the rat epithalamus: a stereological study. J Anat 2006; 208:577-85. [PMID: 16637880 PMCID: PMC2100216 DOI: 10.1111/j.1469-7580.2006.00573.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The total number of neurons in the medial and lateral habenular nuclei of the rat epithalamus was estimated using modern stereological counting methods and systematic random sampling techniques. Six to eight young adult male rats, and a complete set of serial 40-microm glycolmethacrylate sections for each rat, were used to quantify neuronal numbers. After a random start, a systematic subset (e.g. every third) of the serial sections was used to estimate the total volume of each nucleus using Cavalieri's method. The same set of sampled sections was used to estimate the number of neurons in a known subvolume (i.e. the numerical density N(v)) by the optical disector method. Multiplication of the total volume by N(v) yielded the total number of neurons. It was found that the right medial habenular nucleus consisted, on average, of 18,000 neurons (with a coefficient of variation of 0.18), while the right lateral habenular nucleus had 13,000 neurons on average (0.14). These total neuronal numbers provide important data for the transfer of information through these nuclei and for species comparisons.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Anatomy and Structural Biology, and the Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|