1
|
Hossain K, Erata E, Schiapparelli L, Soderling SH. The Epilepsy-Aphasia Syndrome gene, Cnksr2, Plays a Critical Role in the Anterior Cingulate Cortex Mediating Vocal Communication. eNeuro 2024; 12:ENEURO.0532-24.2024. [PMID: 39694826 PMCID: PMC11747972 DOI: 10.1523/eneuro.0532-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
Epilepsy Aphasia Syndrome (EAS) is a spectrum of childhood disorders that exhibit complex co-morbidities that include epilepsy and the emergence of cognitive and language disorders. CNKSR2 is an X-linked gene in which mutations are linked to EAS. We previously demonstrated Cnksr2 knockout (KO) mice model key phenotypes of EAS analogous to those present in clinical patients with mutations in the gene. Cnksr2 KO mice have increased seizures, impaired learning and memory, increased levels of anxiety, and loss of ultrasonic vocalizations (USV). The intricate interplay between these diverse phenotypes at the brain regional and cell type level remains unknown. Here we leverage conditional deletion of the X-linked Cnksr2 in a neuronal cell type manner in male mice to demonstrate that anxiety and impaired USVs track with its loss from excitatory neurons. Finally, we further narrow the essential role of Cnksr2 loss in USV deficits to excitatory neurons of the Anterior Cingulate Cortex (ACC), a region in mice recently implicated in USV production associated with specific emotional states or social contexts, such as mating calls, distress calls, or social bonding signals. Together, our results reveal Cnksr2-based mechanisms that underlie USV impairments that suggest communication impairments can be dissociated from seizures or anxiety. Furthermore, we highlight the cortical circuitry important for initiating USVs.Significance Statement Epilepsy-Aphasia Syndromes are at the severe end of a spectrum of cognitive-behavioral symptoms that are seen in childhood epilepsies and are currently an inadequately understood disorder. The prognosis of EAS is frequently poor and patients have life-long language and cognitive disturbances. We show that the deletion of Cnksr2 specifically within glutamatergic neurons of the anterior cingulate cortex leads to ultrasonic vocalization impairments, providing an important new understanding of the modulation of vocal communication.
Collapse
Affiliation(s)
- Kazi Hossain
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Eda Erata
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Lucio Schiapparelli
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA.
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
2
|
Risueno-Segovia C, Koç O, Champéroux P, Hage SR. Cardiovascular mechanisms underlying vocal behavior in freely moving macaque monkeys. iScience 2022; 25:103688. [PMID: 35036873 PMCID: PMC8749184 DOI: 10.1016/j.isci.2021.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Communication is a keystone of animal behavior. However, the physiological states underlying natural vocal signaling are still largely unknown. In this study, we investigated the correlation of affective vocal utterances with concomitant cardiorespiratory mechanisms. We telemetrically recorded electrocardiography, blood pressure, and physical activity in six freely moving and interacting cynomolgus monkeys (Macaca fascicularis). Our results demonstrate that vocal onsets are strengthened during states of sympathetic activation, and are phase locked to a slower Mayer wave and a faster heart rate signal at ∼2.5 Hz. Vocalizations are coupled with a distinct peri-vocal physiological signature based on which we were able to predict the onset of vocal output using three machine learning classification models. These findings emphasize the role of cardiorespiratory mechanisms correlated with vocal onsets to optimize arousal levels and minimize energy expenditure during natural vocal production. Cardiovascular signals are measured telemetrically in freely moving macaques A distinct cardiovascular physiological signature is present before vocal onset Vocal onsets are phase locked to the Mayer wave and heart rate signals Vocal onsets prediction is performed using machine learning classification models
Collapse
Affiliation(s)
- Cristina Risueno-Segovia
- Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences-International Max Planck Research School, University of Tübingen, Österberg-Street 3, 72074 Tübingen, Germany
| | - Okan Koç
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany
| | - Pascal Champéroux
- European Research Biology Center, ERBC, Chemin de Montifault, 18800 Baugy, France
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Boyle CE, Parkar A, Barror A, Kubin L. Noradrenergic terminal density varies among different groups of hypoglossal premotor neurons. J Chem Neuroanat 2019; 100:101651. [PMID: 31128245 PMCID: PMC6717541 DOI: 10.1016/j.jchemneu.2019.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
In obstructive sleep apnea (OSA) patients, contraction of the muscles of the tongue is needed to protect the upper airway from collapse. During wakefulness, norepinephrine directly excites motoneurons that innervate the tongue and other upper airway muscles but its excitatory effects decline during sleep, thus contributing to OSA. In addition to motoneurons, NE may regulate activity in premotor pathways but little is known about these upstream effects. To start filling this void, we injected a retrograde tracer (beta-subunit of cholera toxin-CTb; 5-10 nl, 1%) into the hypoglossal (XII) motor nucleus in 7 rats. We then used dual immunohistochemistry and brightfield microscopy to count dopamine beta-hydroxylase (DBH)-positive axon terminals closely apposed to CTb cells located in five anatomically distinct XII premotor regions. In different premotor groups, we found on the average 2.2-4.3 closely apposed DBH terminals per cell, with ˜60% more terminals on XII premotor neurons located in the ventrolateral pontine parabrachial region and ventral medullary gigantocellular region than on XII premotor cells of the rostral or caudal intermediate medullary reticular regions. This difference suggests stronger control by norepinephrine of the interneurons that mediate complex behavioral effects than of those mediating reflexes or respiratory drive to XII motoneurons.
Collapse
Affiliation(s)
- Caroline E Boyle
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anjum Parkar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Barror
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Sun L, Tang Y, Yan K, Yu J, Zou Y, Xu W, Xiao K, Zhang Z, Li W, Wu B, Hu Z, Chen K, Fu ZF, Dai J, Cao G. Differences in neurotropism and neurotoxicity among retrograde viral tracers. Mol Neurodegener 2019; 14:8. [PMID: 30736827 PMCID: PMC6368820 DOI: 10.1186/s13024-019-0308-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/13/2019] [Indexed: 01/01/2023] Open
Abstract
Background Neurotropic virus-based tracers have been extensively applied in mapping and manipulation of neural circuits. However, their neurotropic and neurotoxic properties remain to be fully characterized. Methods Through neural circuit tracing, we systematically compared the neurotropism discrepancy among different multi-trans-synaptic and mono-synaptic retrograde viral tracers including pseudorabies virus (PRV), rabies virus (RV), and the newly engineered retro adeno-associated virus (rAAV2-retro) tracers. The (single-cell) RNA sequencing analysis was utilized for seeking possible attribution to neurotropism discrepancy and comparing cell toxicity caused by viral infection between glycoprotein-deleted RV (RV-∆G) and rAAV2-retro. Viral toxicity induced microglia activation and neuronal protein change were evaluated by immunohistochemistry. Results Multi-trans-synaptic retrograde viral tracers, PRV and RV, exhibit differential neurotropism when they were used for central neural circuit tracing from popliteal lymph nodes. Mono-synaptic retrograde tracers, including RV-∆G and rAAV2-retro, displayed discrepant neurotropic property, when they were applied to trace the inputs of lateral hypothalamic area and medial preoptic nucleus. rAAV2-retro demonstrated preference in cerebral cortex, whereas RV-∆G prefers to label basal ganglia and hypothalamus. Remarkably, we detected a distinct preference for specific cortical layer of rAAV2-retro in layer 5 and RV-∆G in layer 6 when they were injected into dorsal lateral geniculate nucleus to label corticothalamic neurons in primary visual cortex. Complementation of TVA receptor gene in RV-resistant neurons enabled EnvA-pseudotyped RV infection, supporting receptors attribution to viral neurotropism. Furthermore, both RV-∆G and rAAV2-retro exerted neurotoxic influence at the injection sites and retrogradely labeled sites, while the changes were more profound for RV-∆G infection. Finally, we demonstrated a proof-of-concept strategy for more comprehensive high-order circuit tracing of a specific target nucleus by combining rAAV2-retro, RV, and rAAV tracers. Conclusions Different multi-trans-synaptic and mono-synaptic retrograde viral tracers exhibited discrepant neurotropism within certain brain regions, even cortical layer preference. More neurotoxicity was observed under RV-∆G infection as compared with rAAV2-retro. By combining rAAV2-retro, RV, and rAAV tracers, high-order circuit tracing can be achieved. Our findings provide important reference for appropriate application of viral tracers to delineate the landscape and dissect the function of neural network. Electronic supplementary material The online version of this article (10.1186/s13024-019-0308-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leqiang Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajie Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keji Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsong Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihui Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beili Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kening Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
5
|
Leiras R, Martín-Cora F, Velo P, Liste T, Canedo A. Cat's medullary reticulospinal and subnucleus reticularis dorsalis noxious neurons form a coupled neural circuit through collaterals of descending axons. J Neurophysiol 2015; 115:324-44. [PMID: 26581870 DOI: 10.1152/jn.00603.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/04/2015] [Indexed: 12/17/2022] Open
Abstract
Animals and human beings sense and react to real/potential dangerous stimuli. However, the supraspinal mechanisms relating noxious sensing and nocifensive behavior are mostly unknown. The collateralization and spatial organization of interrelated neurons are important determinants of coordinated network function. Here we electrophysiologically studied medial medullary reticulospinal neurons (mMRF-RSNs) antidromically identified from the cervical cord of anesthetized cats and found that 1) more than 40% (79/183) of the sampled mMRF-RSNs emitted bifurcating axons running within the dorsolateral (DLF) and ventromedial (VMF) ipsilateral fascicles; 2) more than 50% (78/151) of the tested mMRF-RSNs with axons running in the VMF collateralized to the subnucleus reticularis dorsalis (SRD) that also sent ipsilateral descending fibers bifurcating within the DLF and the VMF. This percentage of mMRF collateralization to the SRD increased to more than 81% (53/65) when considering the subpopulation of mMRF-RSNs responsive to noxiously heating the skin; 3) reciprocal monosynaptic excitatory relationships were electrophysiologically demonstrated between noxious sensitive mMRF-RSNs and SRD cells; and 4) injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin evidenced mMRF to SRD and SRD to mMRF projections contacting the soma and proximal dendrites. The data demonstrated a SRD-mMRF network interconnected mainly through collaterals of descending axons running within the VMF, with the subset of noxious sensitive cells forming a reverberating circuit probably amplifying mutual outputs simultaneously regulating motor activity and spinal noxious afferent input. The results provide evidence that noxious stimulation positively engages a reticular SRD-mMRF-SRD network involved in pain-sensory-to-motor transformation and modulation.
Collapse
Affiliation(s)
- Roberto Leiras
- Department of Physiology, Faculty Medicine, University Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Martín-Cora
- Department of Physiology, Faculty Medicine, University Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia Velo
- Department of Physiology, Faculty Medicine, University Santiago de Compostela, Santiago de Compostela, Spain
| | - Tania Liste
- Department of Physiology, Faculty Medicine, University Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Canedo
- Department of Physiology, Faculty Medicine, University Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Simonyan K, Feng X, Henriquez VM, Ludlow CL. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat. Front Integr Neurosci 2012; 6:97. [PMID: 23162441 PMCID: PMC3498623 DOI: 10.3389/fnint.2012.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition, and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia, and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF) inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS) solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI) in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF) with a trend in the left solitary tract nucleus (NTS) only in animals with combined LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone) may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (mal)plastic changes within the laryngeal central sensory control.
Collapse
Affiliation(s)
- Kristina Simonyan
- Departments of Neurology and Otolaryngology, Mount Sinai School of Medicine New York, NY, USA ; Laryngeal and Speech Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
7
|
Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res 2012; 222:113-23. [PMID: 22855309 DOI: 10.1007/s00221-012-3200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.
Collapse
|
8
|
Origins of arousal: roles for medullary reticular neurons. Trends Neurosci 2012; 35:468-76. [PMID: 22626543 DOI: 10.1016/j.tins.2012.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 01/12/2023]
Abstract
The existence of a primitive CNS function involved in the activation of all vertebrate behaviors, generalized arousal (GA), has been proposed. Here, we provide an overview of the neuroanatomical, neurophysiological and molecular properties of reticular neurons within the nucleus gigantocellularis (NGC) of the mammalian medulla, and propose that the properties of these neurons equip them to contribute powerfully to GA. We also explore the hypothesis that these neurons may have evolved from the Mauthner cell in the medulla of teleost fish, although NGC neurons have a wider range of action far beyond the specific escape network served by Mauthner cells. Understanding the neuronal circuits that control and regulate GA is central to understanding how motivated behaviors such as hunger, thirst and sexual behaviors arise.
Collapse
|
9
|
Martin EM, Pavlides C, Pfaff D. Multimodal sensory responses of nucleus reticularis gigantocellularis and the responses' relation to cortical and motor activation. J Neurophysiol 2010; 103:2326-38. [PMID: 20181730 DOI: 10.1152/jn.01122.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity of large neurons of the nucleus reticularis gigantocellularis (NRGc) in the medullary reticular formation potentially allows both for the integration of stimuli, in several modalities, that would demand immediate action, and for coordinated activation of cortical and motoric activity. We have simultaneously recorded cortical local field potentials, neck muscle electromyograph (EMG), and the neural activity of medullary NRGc neurons in unrestrained, unanesthetized rats to determine whether the activity of the NRGc is consistent with the modulation of general arousal. We observed excitatory responses of individual NRGc neurons to all modalities tested: tactile, visual, auditory, vestibular, and olfactory. Excitation was directly linked to increases in neck muscle EMG amplitude and corresponded with increases in the power of fast oscillations (30 to 80 Hz) of cortical activity and decreases in the power of slow oscillations (2 to 8 Hz). Because these reticular formation neurons can respond to broad ranges of stimuli with increased firing rates associated with the initiation of behavioral responses, we infer that they are part of an elementary "first responder" CNS arousal mechanism.
Collapse
|
10
|
Chen L, Brown RE, McKenna JT, McCarley RW. Animal models of narcolepsy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 8:296-308. [PMID: 19689311 DOI: 10.2174/187152709788921717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA 02301, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
The amygdala plays a crucial role in the orchestration and modulation of the organism response to aversive, stressful events. This response could be conceived as the result of two interdependent components. The first is represented by sets of visceral and motor responses aimed at helping the organism to cope with the present event. The second is the acquisition and modulation of memories relative to the stressful stimulus and its context. This latter component contributes to the instatement of conditioned stress responses that are essential to the capability of the organism to predict future exposures to similar stimuli in order to avoid them or counteract them effectively. In the amygdala, these two components become fully integrated. Massive networks link the amygdala to the hypothalamus, midbrain and brainstem. These networks convey visceral, humoral and nociceptive information to the amygdala and mediate its effects on the hypothalamic-pituitary-adrenal axis as well on autonomic and motor centers. On the other hand, interactions between the amygdala and interconnected cortical networks play a crucial role in acquisition, consolidation and extinction of learning relative to the stressful stimulus. Within the scope of this review, current evidence relative to the interaction between the amygdala and cortical networks will be considered in relationship to the integration of the conditioned response to stress.
Collapse
Affiliation(s)
- Sabina Berretta
- Harvard Medical School, Department of Psychiatry, 25 Shattuck Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
12
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
13
|
Boldogköi Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M. Novel tracing paradigms--genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 2004; 72:417-45. [PMID: 15177785 DOI: 10.1016/j.pneurobio.2004.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
The mammalian CNS is composed of an extremely complex meshwork of highly ordered interconnections among billions of neurons. To understand the diverse functions of this neuronal network we need to differentiate between functionally related and nonrelated elements. A powerful labeling method for defining intricate neural circuits is based on the utilization of neurotropic herpesviruses, including pseudorabies virus and herpes simplex virus type 1. The recent development of genetically engineered tracing viruses can open the way toward the conception of novel tract-tracing paradigms. These new-generation tracing viruses may facilitate the clarification of problems, which were inaccessible to earlier approaches. This article first presents a concise review of the general aspects of neuroanatomical tracing protocols. Subsequently, it discusses the molecular biology of alpha-herpesviruses, and the genetic manipulation and gene expression techniques that are utilized for the construction of virus-based tracers. Finally, it describes the current utilization of genetically modified herpesviruses for circuit analysis, and the future directions in their potential applications.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dong HW, Swanson LW. Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 2003; 463:434-72. [PMID: 12836178 DOI: 10.1002/cne.10758] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The basic organization of an exceptionally complex pattern of axonal projections from one distinct cell group of the bed nuclei of the stria terminalis, the rhomboid nucleus (BSTrh), was analyzed with the PHAL anterograde tract-tracing method in rats. Brain areas that receive a strong to moderate input from the BSTrh fall into nine general categories: central autonomic control network (central amygdalar nucleus, descending hypothalamic paraventricular nucleus, parasubthalamic nucleus and dorsal lateral hypothalamic area, ventrolateral periaqueductal gray, lateral parabrachial nucleus and caudal nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and salivatory nuclei), gustatory system (rostral nucleus of the solitary tract and medial parabrachial nucleus), neuroendocrine system (periventricular and paraventricular hypothalamic nuclei, hypothalamic visceromotor pattern generator network), orofaciopharyngeal motor control (rostral tip of the dorsal nucleus ambiguus, parvicellular reticular nucleus, retrorubral area, and lateral mesencephalic reticular nucleus), respiratory control (lateral nucleus of the solitary tract), locomotor or exploratory behavior control and reward prediction (nucleus accumbens, substantia innominata, and ventral tegmental area), ingestive behavior control (descending paraventricular nucleus and dorsal lateral hypothalamic area), thalamocortical feedback loops (medial-midline-intralaminar thalamus), and behavioral state control (dorsal raphé and locus coeruleus). Its pattern of axonal projections and its position in the basal telencephalon suggest that the BSTrh is part of a striatopallidal differentiation involved in modulating the expression of ingestive behaviors, although it may have other functions as well.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| | | |
Collapse
|
15
|
Scott G, Westberg KG, Vrentzos N, Kolta A, Lund JP. Effect of lidocaine and NMDA injections into the medial pontobulbar reticular formation on mastication evoked by cortical stimulation in anaesthetized rabbits. Eur J Neurosci 2003; 17:2156-62. [PMID: 12786982 DOI: 10.1046/j.1460-9568.2003.02670.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons of the dorsal nucleus reticularis pontis caudalis (nPontc) fire rhythmically during fictive mastication, while neurons of the ventral half tend to fire tonically (Westberg et al., 2001). This paper describes the changes in the pattern of rhythmical mastication elicited by stimulation of the sensorimotor cortex during inhibition or excitation of neurons in this nucleus and adjacent parts of nucleus reticularis gigantocellularis (Rgc) in the anaesthetized rabbit. Masticatory movements and electromyographic (EMG) activity of the masseter and digastric muscles produced by cortical stimulation were recorded before, during and after injections of a local anaesthetic (lidocaine) or excitatory amino acid N-methyl-d-aspartate (NMDA) into nPontc and Rgc through a microsyringe with attached microelectrode to record neuronal activity. Lidocaine inhibited local neurons and modified the motor program, and the effects varied with the site of injection. Most injections into the ventral half of nPontc increased cycle duration, digastric burst duration and burst area. The action of lidocaine in dorsal nPontc was more variable, although burst duration and area were often decreased. The effects on the muscle activity were always bilateral. Lidocaine block of the rostromedial part of Rgc had no effect on movements or on EMGs. Injections of NMDA excited local neurons and when injected into ventral nPontc, it completely blocked mastication. Dorsal injections either had no effect or increased cycle frequency, while decreasing burst duration and area. No increases in EMG burst duration or area were observed with NMDA. Our findings suggest that neurons of ventral nPontc tonically inhibit other parts of the central pattern generator during mastication, while dorsal neurons have mixed effects. We incorporated these findings into a new model of the masticatory central pattern generator.
Collapse
Affiliation(s)
- G Scott
- Faculty of Dentistry, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
16
|
Tsuboi A, Kolta A, Chen CC, Lund JP. Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur J Neurosci 2003; 17:229-38. [PMID: 12542659 DOI: 10.1046/j.1460-9568.2003.02450.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trigeminal principal sensory nucleus (NVsnpr) contains both trigemino-thalamic neurons and interneurons projecting to the reticular formation and brainstem motor nuclei. Here we describe the inputs and patterns of firing of NVsnpr neurons during fictive mastication in anaesthetized and paralysed rabbits to determine the role that NVsnpr may play in patterning mastication. Of the 272 neurons recorded in NVsnpr, 107 changed their firing patterns during repetitive stimulation of the left or right sensorimotor cortex to induce fictive mastication. Thirty increased their firing tonically. Seventy-seven became rhythmically active, but only 31 fired in phase with mastication. The others discharged in bursts at more than twice the frequency of trigeminal motoneurons. Most rhythmic masticatory neurons were concentrated in the dorsal part, and those which fired during the jaw closing phase of the cycle were confined to the anterior pole of the nucleus. Most of these cells had inputs from muscle spindle afferents, whereas most of those firing during jaw opening had inputs from periodontal receptors. Non-masticatory rhythmical neurons had receptive fields on the lips and face. The majority of rhythmical masticatory units were modulated during fictive mastication evoked by both the left and right cortices and only four changed their phase of firing when switching from one cortex to the other. When coupled with the finding that NVsnpr neurons exhibit spontaneous bursting in vitro[Sandler et al. (1998) Neuroscience, 83, 891], the results described here suggest that neurons of dorsal NVsnpr may form the core of the central pattern generator for mastication.
Collapse
Affiliation(s)
- A Tsuboi
- Faculty of Dentistry, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|
17
|
Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 2002; 16:1959-73. [PMID: 12453060 DOI: 10.1046/j.1460-9568.2002.02257.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuronal network responsible for paradoxical sleep (PS) onset and maintenance has not previously been identified in the rat, unlike the cat. To fill this gap, this study has developed a new technique involving the recording of sleep-wake states in unanaesthetized head-restrained rats whilst locally administering pharmacological agents by microiontophoresis from glass multibarrel micropipettes, into the dorsal pontine tegmentum and combining this with functional neuroanatomy. Pharmacological agents used for iontophoretic administration included carbachol, kainic acid, bicuculline and gabazine. The injection sites and their efferents were then identified by injections of anterograde (phaseolus vulgaris leucoagglutinin) or retrograde (cholera toxin B subunit) tracers through an adjacent barrel of the micropipette assembly and by C-Fos immunostaining. Bicuculline, gabazine and kainic acid ejections specifically into the pontine sublaterodorsal nucleus (SLD) induced within a few minutes a PS-like state characterized by a continuous muscle atonia, low voltage EEG and a lack of reaction to stimuli. In contrast, carbachol ejections into the SLD induced wakefulness. In PHA-L, glycine and C-Fos multiple double-labelling experiments, anterogradely labelled fibres originating from the SLD were seen apposed on glycine and C-Fos positive neurons (labelled after 90 min of pharmacologically induced PS-like state) from the ventral gigantocellular and parvicellular reticular nuclei. Altogether, these data indicate that the SLD nuclei contain a population of neurons playing a crucial role in PS onset and maintenance. Furthermore, they suggest that GABAergic disinhibition and glutamate excitation of these neurons might also play a crucial role in the onset of PS.
Collapse
Affiliation(s)
- Romuald Boissard
- CNRS FRE 2469, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373 LYON Cedex 08, France
| | | | | | | | | | | |
Collapse
|
18
|
Wang MR, Kuo JS, Chai CY. Cardiovascular and vocalization reactions elicited by N-methyl-D-aspartate in the pretentorial periaqueductal grey of cats. Clin Exp Pharmacol Physiol 2002; 29:759-71. [PMID: 12165039 DOI: 10.1046/j.1440-1681.2002.03728.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Cats were anaesthetized with urethane (1100-1200 mg/kg, i.p.), supplemented with halothane inhalation during surgery. Responses in terms of systemic arterial pressure, mean systemic arterial pressure(MSAP), heart rate, mean blood flow of the common carotid artery and femoral artery, amplitude and frequency of vocalizations, thoracic-abdominal contractions and limb movements were recorded. 2. Microinjection of N-methyl-D-aspartate (NMDA; 20 mmol/L, 200 nL) into the pretentorial periaqueductal grey (PAG) produced two classes of response: (i) cardiovascular responses and vocalization; and (ii) cardiovascular responses without vocalization. 3. For class 1 responses, five types of vocalization concomitant with pressor (VPR) or depressor (VDPR) responses were observed: (i) type 1 VDPR and VPR, elicited in the rostral and caudal part of the dorsal PAG, produced vocalization of slight hissing, with or without limb movement, moderately increased flow of the common carotid and slightly increased flow of the femoral arteries; (ii) types 2 and 3 VPR, elicited in the dorsolateral and intermediate-lateral PAG, produced hissing-howling and growling, increased respiratory movement, with or without repetitive burst limb movements or stretching of paws, slightly decreased common carotid artery flow and inconsistent changes (increased or decreased slightly) in femoral artery flow; (iii) type 4 VPR, elicited in the dorsomedial and intermediate-medial PAG, produced meowing-crying but without limb movements, common carotid artery flow was increased, but the femoral artery flow was slightly decreased or increased markedly; and (iv) type 5 VPR, elicited in the ventromedial PAG, produced meowing-screaming with or without limb movements, common carotid artery flow increased moderately and femoral artery flow increased markedly. Vocalization was loud and wild in type 4 and 5 responses. 4. For class 2 responses, two types of responses were observed: (i) a pressor response (PR) alone, elicited in the dorsolateral and intermediate-lateral PAG, produced inconsistent changes in common carotid and femoral artery flow, which increased, decreased or underwent no change; and (ii) a depressor response (DPR) elicited in the ventrolateral PAG produced moderate increases of common carotid and femoral artery flow. 5. The reduction of resistance in the femoral artery was more prominent (P < 0.05) in type 1 VDPR than in DPR. Similar changes occurred in the femoral artery among types 3 (P < 0.05) and 5 VPR (P < 0.005) and PR. In addition, the frequency of vocalization was significantly positively correlated with the increase in MSAP (P < 0.05) and mean common carotid and femoral artery flow (both P < 0.01) in all types of VPR. 6. These results suggest the presence of neurons involved in the expression of defence reactions in a longitudinal, complicated functional organization in the entire PAG column. In particular, NMDA stimulation of the medial, dorsal and dorsolateral PAG may elicit five different types of defence reactions, expressed by various forms of cardiovascular alterations concomitant with vocalization responses.
Collapse
Affiliation(s)
- Ming R Wang
- Graduate Institute of Life Science, National Defense Medical Center, Taichung Veterans General Hospital, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | | | | |
Collapse
|
19
|
Abstract
Vocalization is a complex behaviour pattern, consisting of essentially three components: laryngeal activity, respiratory movements and supralaryngeal (articulatory) activity. The motoneurones controlling this behaviour are located in various nuclei in the pons (trigeminal motor nucleus), medulla (facial nucleus, nucl. ambiguus, hypoglossal nucleus) and ventral horn of the spinal cord (cervical, thoracic and lumbar region). Coordination of the different motoneurone pools is carried out by an extensive network comprising the ventrolateral parabrachial area, lateral pontine reticular formation, anterolateral and caudal medullary reticular formation, and the nucl. retroambiguus. This network has a direct access to the phonatory motoneurone pools and receives proprioceptive input from laryngeal, pulmonary and oral mechanoreceptors via the solitary tract nucleus and principal as well as spinal trigeminal nuclei. The motor-coordinating network needs a facilitatory input from the periaqueductal grey of the midbrain and laterally bordering tegmentum in order to be able to produce vocalizations. Voluntary control of vocalization, in contrast to completely innate vocal reactions, such as pain shrieking, needs the intactness of the forebrain. Voluntary control over the initiation and suppression of vocal utterances is carried out by the mediofrontal cortex (including anterior cingulate gyrus and supplementary as well as pre-supplementary motor area). Voluntary control over the acoustic structure of vocalizations is carried out by the motor cortex via pyramidal/corticobulbar as well as extrapyramidal pathways. The most important extrapyramidal pathway seems to be the connection motor cortex-putamen-substantia nigra-parvocellular reticular formation-phonatory motoneurones. The motor cortex depends upon a number of inputs for fulfilling its task. It needs a cerebellar input via the ventrolateral thalamus for allowing a smooth transition between consecutive vocal elements. It needs a proprioceptive input from the phonatory organs via nucl. ventralis posterior medialis thalami, somatosensory cortex and inferior parietal cortex. It needs an input from the ventral premotor and prefrontal cortex, including Broca's area, for motor planning of longer purposeful utterances. And it needs an input from the supplementary and pre-supplementary motor area which give rise to the motor commands executed by the motor cortex.
Collapse
Affiliation(s)
- Uwe Jürgens
- German Primate Centre, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Westberg KG, Scott G, Olsson KA, Lund JP. Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit. Eur J Neurosci 2001; 14:1709-18. [PMID: 11860465 DOI: 10.1046/j.0953-816x.2001.01782.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we describe functional characteristics of neurons forming networks generating oral ingestive motor behaviours. Neurons in medial reticular nuclei on the right side of the brainstem between the trigeminal and hypoglossal motor nuclei were recorded in anaesthetized and paralysed rabbits during two types of masticatory-like motor patterns induced by electrical stimulation of the left (contralateral) or right (ipsilateral) cortical masticatory areas. Sixty-seven neurons in nucleus reticularis pontis caudalis (nPontc), nucleus reticularis parvocellularis (nParv), and nucleus reticularis gigantocellularis (Rgc) were studied. These were classified as phasic or tonic depending on their firing pattern during the fictive jaw movement cycle. Phasic neurons located in the dorsal part of nPontc were active during the jaw opening phase, whilst those in dorsal nParv tended to fire during the closing phase. In most neurons, burst duration and firing frequency changed between the two motor patterns, but there was little change in phase of firing. Tonic units were mainly recorded in the ventral half of nPontc, and at the junction between Rgc and caudal nParv. Cortical inputs with short latency from the contralateral masticatory area were more frequent in phasic (82%) than tonic (44%) neurons, whilst inputs from the ipsilateral cortex were equal in the two subgroups (57% and 56%). Phasic neurons had significantly shorter mean contralateral than ipsilateral cortical latencies, whilst there was no difference among tonic neurons. Intra- and perioral primary afferent inputs activated both types of neurons at oligo-synaptic latencies. Our results show that subpopulations of neurons in medial reticular nuclei extending from the caudal part of the trigeminal motor nucleus to the rostral third of the hypoglossal motor nucleus are active during the fictive masticatory motor behaviour. Unlike masticatory neurons in the lateral tegmentum, the medial subpopulations are spatially organized according to discharge pattern.
Collapse
Affiliation(s)
- K G Westberg
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
21
|
Orer HS, Barman SM, Gebber GL. Effects on sympathetic activity of 8-OHDPAT and clonidine in cat medullary lateral tegmental field. Am J Physiol Heart Circ Physiol 2001; 281:H613-22. [PMID: 11454564 DOI: 10.1152/ajpheart.2001.281.2.h613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to test the hypothesis that 8-hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT) and clonidine reduce sympathetic nerve discharge (SND) and mean arterial pressure (MAP), in part by actions in the medullary lateral tegmental field (LTF). We microinjected these drugs bilaterally into the LTF of baroreceptor-innervated and -denervated cats anesthetized with Dial-urethane. Neither drug altered SND (as quantified by using power spectral analysis) or MAP when injected into the LTF of baroreceptor-denervated cats. However, cardiac-related power in SND was significantly increased to 148 +/- 12 (mean +/- SE) and 149 +/- 5% of control by microinjections of 8-OHDPAT (n = 5) and clonidine (n = 5), respectively, in baroreceptor-innervated cats whose MAP was kept constant; there was no change in 0- to 6-Hz power or total power. SND was significantly reduced by microinjection of these drugs into the rostral ventrolateral medulla of baroreceptor-innervated and -denervated cats. In conclusion, although 8-OHDPAT and clonidine did not reduce SND when injected into the LTF, they acted in this region to facilitate baroreceptor reflex control of SND, as evidenced by a selective increase in cardiac-related power.
Collapse
Affiliation(s)
- H S Orer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michican 48824, USA
| | | | | |
Collapse
|
22
|
Abstract
Behavioral analysis of the NK1 receptor gene knock-out (NK1-/-) mouse indicated that substance P was closely involved in orchestrating the physiological and behavioral response of the animal to major environmental stressors. In particular, endogenous pain control mechanisms, such as stress-induced analgesia were substantially impaired in mutant mice, suggesting a reduction in descending inhibitory controls to the spinal cord from the brainstem. To directly test the integrity of descending controls in NK1-/- mice, we have analyzed c-Fos expression in laminae I-II of the lumbar and cervical cord and in the rostral ventromedial medulla in an experimental paradigm known to require recruitment of descending inhibitory controls. Anesthetized mice were stimulated with water at 50 degrees C either on their forepaw, hindpaw, or on both the hindpaw plus forepaw concurrently. Wild-type mice, naive or treated with an NK1 antagonist (RP67580) or its inactive isomer (RP68651), were compared with NK1-/- mice. C-Fos expression at the lumbar laminae I-II level was significantly reduced, whereas it was significantly greater in the raphe magnus and pallidus nuclei in the double stimulation situation in wild-type compared with NK1-/- mice. Blocking the NK1 receptor pharmacologically reproduced, in an enantiomere-selective manner, the data from NK1-/- mice, with no evidence for recruitment of descending inhibition at the lumbar cord level after forepaw stimulation. The present study demonstrates that the NK1 receptor is essential for the full development of noxiously evoked descending inhibition.
Collapse
|
23
|
Leger L, Charnay Y, Hof PR, Bouras C, Cespuglio R. Anatomical distribution of serotonin-containing neurons and axons in the central nervous system of the cat. J Comp Neurol 2001. [DOI: 10.1002/cne.1133] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Kolta A, Westberg KG, Lund JP. Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J Chem Neuroanat 2000; 19:175-95. [PMID: 10989261 DOI: 10.1016/s0891-0618(00)00061-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurons of several nuclei within the medial pontomedullar reticular formation are active during mastication, but their relationship with other elements of the pattern generating circuits have never been clearly defined. In this paper, we have studied the connection of this area with the trigeminal motor nucleus and with pools of last-order interneurons of the lateral brainstem. Retrograde tracing techniques were used in combination with immunohistochemistry to define populations of glutamatergic and GABAergic neurons. Injections of tracer into the Vth motor nucleus marked neurons in several trigeminal nuclei including the ipsilateral mesencephalic nucleus, the contralateral Vth motor nucleus, the dorsal cap of the main sensory nucleus and the rostral divisions of the spinal nucleus bilaterally. Many last-order interneurons formed a bilateral lateral band running caudally from Regio h (the zone surrounding the Vth motor nucleus), through the parvocellular reticular formation and Vth spinal caudal nucleus. Injections of tracer into Regio h, an area rich in last-order interneurons, marked, in addition to the areas listed above, a large number of neurons in the medial reticular formation bilaterally. The major difference between injection sites was that most neurons projecting to the Vth motor nucleus were located laterally, whereas most of those projecting to Regio h were found medially. Both populations contained glutamatergic and GABAergic neurons intermingled. Our results indicate that neurons of the medial reticular formation that are active during mastication influence Vth motoneurons output via relays in Regio h and other adjacent nuclei.
Collapse
Affiliation(s)
- A Kolta
- Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Québec, H3C 3J7, Montréal, Canada.
| | | | | |
Collapse
|
25
|
Coolen LM, Jansen HT, Goodman RL, Wood RI, Lehman MN. A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin. J Neurosci Methods 1999; 91:1-8. [PMID: 10522819 DOI: 10.1016/s0165-0270(99)00055-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In studying reciprocally connected brain networks, it is advantageous to use techniques that allow simultaneous visualization of both efferent and afferent connections from a single injection site. We report on a new technique to achieve this using pressure injections of a mixture of biotinylated dextran amine (BDA) and the beta subunit of cholera toxin (Ctb). Adult male hamsters (n = 12) received 20-30-nl injections of either a 1:1 mixture of BDA (Sigma, 10%) and Ctb (List Biological, 0.5%), or each tracer by itself, into the medial amygdala. Adult female sheep (n = 4) received 200-300 nl of the combined tracer into the A15 region of the hypothalamus. After 1 (hamster) or 2 weeks' (sheep) survival, animals were perfused with 4% paraformaldehyde. Sections were double-labeled, first for BDA histochemistry using nickel-enhanced DAB, then for Ctb using a PAP technique and unenhanced DAB. In all animals, combined injections resulted in clear and consistent patterns of both anterograde and retrograde labeling. Ctb immunoreactivity was distinct and easily distinguished from BDA labeling. There was no evidence for loss of sensitivity of either tracer due to the combined delivery; no differences were seen between combined or single tracer injections in numbers of retrogradely-labeled cells or in the distribution of anterogradely-labeled fibers. In summary, the combined delivery of BDA and Ctb is an easy and reliable technique for simultaneous afferent and efferent tract tracing in both small and large animals; it could potentially be combined with immunocytochemistry to determine the neurochemical content of labeled cells or fibers.
Collapse
Affiliation(s)
- L M Coolen
- Department of Cell Biology, University of Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The essential elements controlling trigeminal motoneurons during feeding lie between the trigeminal and facial motor nuclei. These include populations of neurons in the medial reticular formation and pre-motoneurons in the lateral brainstem that reorganize to generate various patterns. Orofacial sensory feedback, antidromic firing in spindle afferents and intrinsic properties of motoneurons also contribute to the final masticatory motor output.
Collapse
Affiliation(s)
- J P Lund
- Faculty of Dentistry Department of Physiology, McGill University, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
27
|
Fung ML, Huang Q, Zhou D, St John WM. The morphology and connections of neurons in the gasping centre of adult rats. Neuroscience 1997; 76:1237-44. [PMID: 9027882 DOI: 10.1016/s0306-4522(96)00453-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal activities in the intermediate reticular nucleus and adjacent lateral tegmental field are critical for the neurogenesis of the ventilatory pattern of gasping. We report herein the anatomical features of these neurons, their axonal projections and the location of neurons providing afferent inputs. These neuroanatomical evaluations were performed by iontophoretic injection of the tracer Neurobiotin into the region of the intermediate reticular nucleus of the rat. At the site of injection, neurons having soma of 30-50 microns were filled. Labelled axons and terminals were observed in ipsilateral regions which contain neurons having established functions in the control of ventilatory activity. These regions include the nucleus ambiguous and motor nuclei of the hypoglossal and facial nerves. In addition, axonal projections extended to the contralateral region of the intermediate reticular nucleus. From this contralateral region, retrograde tracing revealed projections to the site of injection. Similarly, many ipsilateral regions which received axonal terminals from the region of the intermediate reticular nucleus had reciprocal projections to this region. These anatomical results support the physiological observation that the neurogenesis of gasping involves a synchronized activation of diverse components of the brainstem ventilatory control system.
Collapse
Affiliation(s)
- M L Fung
- Department of Physiology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
28
|
Vertes RP, Crane AM. Descending projections of the posterior nucleus of the hypothalamus: Phaseolus vulgaris leucoagglutinin analysis in the rat. J Comp Neurol 1996; 374:607-31. [PMID: 8910738 DOI: 10.1002/(sici)1096-9861(19961028)374:4<607::aid-cne9>3.0.co;2-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
No previous report in any species has systematically examined the descending projections of the posterior nucleus of the hypothalamus (PH). The present report describes the descending projections of the PH in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin. PH fibers mainly descend to the brainstem through two routes: dorsally, within the central tegmental tract, and ventromedially, within the mammillo-tegmental tract and its caudal extension, ventral reticulo-tegmental tracts. PH fibers were found to distribute densely to several nuclei of the brainstem. They are (from rostral to caudal) 1) lateral/ ventrolateral regions of the diencephalo-mesopontine periaqueductal gray (PAG); 2) the peripeduncular nucleus; 3) discrete nuclei of pontomesencephalic central gray (dorsal raphe nucleus, laterodorsal tegmental nucleus, and Barrington's nucleus); 4) the longitudinal extent of the central core of the mesencephalic through meduallary reticular formation (RF); 5) the ventromedial medulla (nucleus gigantocellularis pars alpha, nucleus raphe magnus, and nucleus raphe pallidus); 6) the ventrolateral medulla (nucleus reticularis parvocellularis and the rostral ventrolateral medullary region); and 7) the inferior olivary nucleus. PH fibers originating from the caudal PH distribute much more heavily than those from the rostral PH to the lower brainstem. The PH has been linked to the control of several important functions, including respiration, cardiovascular activity, locomotion, antinociception, and arousal/wakefulness. It is likely that descending PH projections, particularly those to the PAG, the pontomesencephalic RF, Barrington's nucleus, and parts of the ventromedial and ventrolateral medulla, serve a role in a PH modulation of complex behaviors involving integration of respiratory, visceromotor, and somatomotor activity.
Collapse
Affiliation(s)
- R P Vertes
- Center for Complex Systems, Florida Atlantic University, Boca Raton 33431, USA
| | | |
Collapse
|
29
|
Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 1996; 48:21-53. [PMID: 8830347 DOI: 10.1016/0301-0082(95)00034-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central control of cardiovascular function has been keenly studied for a number of decades. Of particular interest are the homeostatic control mechanisms, such as the baroreceptor heart-rate reflex, the chemoreceptor reflex, the Bezold-Jarisch reflex and the Breuer-Hering reflex. These neurally-mediated reflexes share a common termination point for their respective centrally-projecting sensory afferents, namely the nucleus tractus solitarius (NTS). Thus, the NTS clearly plays a critical role in the integration of peripherally initiated sensory information regarding the status of blood pressure, heart rate and respiratory function. Many endogenous neurochemicals, from simple amino acids through biogenic amines to complex peptides have the ability to modulate blood pressure and heart rate at the level of the NTS. This review will attempt to collate the current knowledge regarding the roles of neuromodulators in the NTS, the receptor types involved in mediating observed responses and the degree of importance of such neurochemicals in the tonic regulation of the cardiovascular system. The neural pathway that controls the baroreceptor heart-rate reflex will be the main focus of attention, including discussion of the identity of the neurotransmitter(s) thought to act at baroafferent terminals within the NTS. In addition, this review will provide a timely update on the use of recently developed molecular biological techniques that have been employed in the study of the NTS, complementing more classical research.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|