1
|
Forbes C, Coccarelli A, Xu Z, Meade RD, Kenny GP, Binnewies S, Bach AJE. Biophysical versus machine learning models for predicting rectal and skin temperatures in older adults. J Therm Biol 2025; 128:104078. [PMID: 40010162 DOI: 10.1016/j.jtherbio.2025.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
This study compares the efficacy of machine learning models to traditional biophysical models in predicting rectal (Tre) and skin (Tsk) temperatures of older adults (≥60 years) during prolonged heat exposure. Five machine learning models were trained on data using 4-fold cross validation from 162 day-long (8-9h) sessions involving 76 older adults across six environments, from thermoneutral to heatwave conditions. These models were compared to three biophysical models: the JOS-3 model, the Gagge two-node model, and an optimised two-node model. Our findings show that machine learning models, particularly ridge regression, outperformed biophysical models in prediction accuracy. The ridge regression model achieved a Root-Mean Squared Error (RMSE) of 0.27 °C for Tre, and 0.73 °C for Tsk. Among the best biophysical models, the optimised two-node model achieved an RMSE of 0.40 °C for Tre, while JOS-3 achieved an RMSE of 0.74 °C for Tsk. Of all models, ridge regression had the highest proportion of participants with Tre RMSEs within clinically meaningful thresholds at 70% (<0.3 °C) and the highest proportion for Tsk at 88% (<1.0 °C), tied with the JOS-3 model. Our results suggest machine learning models better capture the complex thermoregulatory responses of older adults during prolonged heat exposure. The study highlights machine learning models' potential for personalised heat risk assessments and real-time predictions. Future research should expand upon training datasets, incorporate more dynamic conditions, and validate models in real-world settings. Integrating these models into home-based monitoring systems or wearable devices could enhance heat management strategies for older adults.
Collapse
Affiliation(s)
- Connor Forbes
- School of Information and Communication Technology, Griffith University, Gold Coast, Australia
| | - Alberto Coccarelli
- Zienkiewicz Institute for Modelling, AI and Data, Mechanical Engineering Department, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Zhiwei Xu
- School Medicine and Dentistry, Griffith University, Gold Coast, Australia; Cities Research Institute, Griffith University, Gold Coast, Australia
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada; Harvard T.H. Chan School of Public Health, Harvard University, Boston, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Sebastian Binnewies
- School of Information and Communication Technology, Griffith University, Gold Coast, Australia
| | - Aaron J E Bach
- Cities Research Institute, Griffith University, Gold Coast, Australia; School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia.
| |
Collapse
|
2
|
Cheng H, Ding D, Dai J, Li G, Zhang K, Li J, Wei L, Zhang X, Hou J. Effect of a reduced arterial axial pre-stretch ratio during aging on the cardiac output and cerebral blood flow in the healthy elders. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108468. [PMID: 39442288 DOI: 10.1016/j.cmpb.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE It is an indisputable physiological phenomenon that the arterial axial pre-stretch ratio (AAPSR) decreases with age, but little attention has been paid to the effect of this reduction on chronic diseases during aging. METHODS Here we reported an experimental method to simulate arteries aging, developed a fluid-structure interaction model with the effect of AAPSR changes, and compared it with the anatomy data and structural parameters of the human thoracic aorta. RESULTS We showed that with the process of aging, the decrease of AAPSR leads to a decline of arterial elasticity, a decrease of arterial elastic strain energy, which weakens the ability to promote blood circulation, the corresponding decrease in cardiac output (CO) and cerebral blood flow (CBF) causes distal organ and body tissue ischemia, which is one of the main causes of increased blood pressure and decreased cerebral perfusion in the elderly. CONCLUSIONS Thus, reduced AAPSR is the one of main manifestation of arteries aging and has an important impact on hypertension and hypoperfusion of the brain in the process of human aging. The research contributes to a better understanding of the physiological and pathological mechanisms of aging-related diseases.
Collapse
Affiliation(s)
- Heming Cheng
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China..
| | - Dongfang Ding
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jifeng Dai
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Gen Li
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ke Zhang
- Department of Hydraulic Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jianyun Li
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Liuchuang Wei
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xue Zhang
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jie Hou
- Department of Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China..
| |
Collapse
|
3
|
Cheng H, Dai J, Li G, Ding D, Li J, Zhang K, Wei L, Hou J. Quantitative analysis of systemic perfusion and cerebral blood flow in the modeling of aging and orthostatic hypotension. Front Physiol 2024; 15:1353768. [PMID: 39148746 PMCID: PMC11324494 DOI: 10.3389/fphys.2024.1353768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction: Orthostatic hypotension (OH) is common among the older population. The mechanism hypothesized by OH as a risk factor for cognitive decline and dementia is repeated transient cerebral blood flow deficiency. However, to our knowledge, quantitative evaluation of cardiac output and cerebral blood flow due to acute blood pressure changes resulting from postural changes is rare. Methods: We report a new fluid-structure interaction model to analyze the quantitative relationship of cerebral blood flow during OH episodes. A device was designed to simulate the aging of blood vessels. Results and Discussion: The results showed that OH was associated with decreased transient cerebral blood flow. With the arterial aging, lesions, the reduction in cerebral blood flow is accelerated. These findings suggest that systolic blood pressure regulation is more strongly associated with cerebral blood flow than diastolic blood pressure, and that more severe OH carries a greater risk of dementia. The model containing multiple risk factors could apply to analyze and predict for individual patients. This study could explain the hypothesis that transient cerebral blood flow deficiency in recurrent OH is associated with cognitive decline and dementia.
Collapse
Affiliation(s)
- Heming Cheng
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jifeng Dai
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Gen Li
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Dongfang Ding
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jianyun Li
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Ke Zhang
- Department of Hydraulic Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liuchuang Wei
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jie Hou
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Targui B, Castro-Gomez JF, Hernández-González O, Valencia-Palomo G, Guerrero-Sánchez ME. Observer-based control for plasma glucose regulation in type 1 diabetes mellitus patients with unknown input delay. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3826. [PMID: 38705952 DOI: 10.1002/cnm.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
This article introduces an observer-based control strategy tailored for regulating plasma glucose in type 1 diabetes mellitus patients, addressing challenges like unknown time-varying delays and meal disturbances. This control strategy is based on an extended Bergman minimal model, a nonlinear glucose-insulin model to encompass unknown inputs, such as unplanned meals, exercise disturbances, or delays. The primary contribution lies in the design of an observer-based state feedback control in the presence of unknown long delays, which seeks to support and enhance the performance of the traditional artificial pancreas by considering realistic scenarios. The observer and control gains for the observer-based control are computed through linear matrix inequalities formulated from Lyapunov conditions that guarantee closed-loop stability. This design deploys a soft and gentle dynamic response, similar to a natural pancreas, despite meal disturbances and input delays. Numerical tests demonstrate the scheme's effectiveness in glycemic level regulation and hypoglycemic episode avoidance.
Collapse
Affiliation(s)
- Boubekeur Targui
- Laboratoire d'Ingénierie des Systèmes (LIS), Université de Caen Normandie, Caen, France
| | | | | | | | | |
Collapse
|
5
|
Zhou S, Ouyang L, Li B, Hodder S, Yao R. A thermoregulation model based on the physical and physiological characteristics of Chinese elderly. Comput Biol Med 2024; 172:108262. [PMID: 38479196 DOI: 10.1016/j.compbiomed.2024.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Given the increasing aging population and rising living standards in China, developing an accurate and straightforward thermoregulation model for the elderly has become increasingly essential. To address this need, an existing one-segment four-node thermoregulation model for the young was selected as the base model. This study developed the base model considering age-related physical and physiological changes to predict mean skin temperatures of the elderly. Measured data for model optimization were collected from 24 representative healthy Chinese elderly individuals (average age: 67 years). The subjects underwent temperature step changes between neutral and warm conditions with a temperature range of 25-34 °C. The model's demographic representation was first validated by comparing the subjects' physical characteristics with Chinese census data. Secondly, sensitivity analysis was performed to investigate the influences of passive system parameters on skin and core temperatures, and adjustments were implemented using measurement or literature data specific to the Chinese elderly. Thirdly, the active system was modified by resetting the body temperature set points. The active parameters to control thermoregulation activities were further optimized using the TPE (Tree-structured Parzen Estimator) hyperparameter tuning method. The model's accuracy was further verified using independent experimental data for a temperature range of 18-34 °C for Chinese elderly. By comprehensively considering age-induced thermal response changes, the proposed model has potential applications in designing and optimizing thermal management systems in buildings, as well as informing energy-efficient strategies tailored to the specific needs of the Chinese elderly population.
Collapse
Affiliation(s)
- Shan Zhou
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Center for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Linyuan Ouyang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Center for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Center for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Simon Hodder
- School of Design & Creative Arts, Loughborough University, Loughborough, LE11 3TU, UK
| | - Runming Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China; National Center for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China; School of the Built Environment, University of Reading, Reading, RG6 6DB, UK.
| |
Collapse
|
6
|
Arsad FS, Hod R, Ahmad N, Baharom M, Ja'afar MH. Assessment of indoor thermal comfort temperature and related behavioural adaptations: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27089-9. [PMID: 37211568 DOI: 10.1007/s11356-023-27089-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Thermal comfort is linked to our health, well-being, and productivity. The thermal environment is one of the main factors that influence thermal comfort and, consequently, the productivity of occupants inside buildings. Meanwhile, behavioural adaptation is well known to be the most critical contributor to the adaptive thermal comfort model. This systematic review aims to provide evidence regarding indoor thermal comfort temperature and related behavioural adaptation. Studies published between 2010 and 2022 examining indoor thermal comfort temperature and behavioural adaptations were considered. In this review, the indoor thermal comfort temperature ranges from 15.0 to 33.8 °C. The thermal comfort temperature range varied depending on several factors, such as climatic features, ventilation mode, type of buildings, and age of the study population. Elderly and younger children have distinctive thermal acceptability. Clothing adjustment, fan usage, AC usage, and open window were the most common adaptive behaviour performed. Evidence shows that behavioural adaptations were also influenced by climatic features, ventilation mode, type of buildings, and age of the study population. Building designs should incorporate all factors that affect the thermal comfort of the occupants. Awareness of practical behavioural adaptations is crucial to ensure occupants' optimal thermal comfort.
Collapse
Affiliation(s)
- Fadly Syah Arsad
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Bandar Tun Razak, Kuala Lumpur, Malaysia.
| | - Norfazilah Ahmad
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Mazni Baharom
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja'afar
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Bandar Tun Razak, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Wéber R, Gyürki D, Paál G. First blood: An efficient, hybrid one- and zero-dimensional, modular hemodynamic solver. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3701. [PMID: 36948891 DOI: 10.1002/cnm.3701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 03/11/2023] [Indexed: 05/13/2023]
Abstract
Low-dimensional (1D or 0D) models can describe the whole human blood circulation, for example, 1D distributed parameter model for the arterial network and 0D concentrated models for the heart or other organs. This paper presents a combined 1D-0D solver, called first_blood, that solves the governing equations of fluid dynamics to model low-dimensional hemodynamic effects. An extended method of characteristics is applied here to solve the momentum, and mass conservation equations and the viscoelastic wall model equation, mimicking the material properties of arterial walls. The heart and the peripheral lumped models are solved with a general zero-dimensional (0D) nonlinear solver. The model topology can be modular, that is, first_blood can solve any 1D-0D hemodynamic model. To demonstrate the applicability of first_blood, the human arterial system, the heart and the peripherals are modelled using the solver. The simulation time of a heartbeat takes around 2 s, that is, first_blood requires only twice the real-time for the simulation using an average PC, which highlights the computational efficiency. The source code is available on GitHub, that is, it is open source. The model parameters are based on the literature suggestions and on the validation of output data to obtain physiologically relevant results.
Collapse
Affiliation(s)
- Richárd Wéber
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dániel Gyürki
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - György Paál
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
8
|
Coccarelli A, Nelson MD. Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques. Ann Biomed Eng 2023; 51:479-492. [PMID: 36709231 PMCID: PMC9928923 DOI: 10.1007/s10439-022-03134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/25/2022] [Indexed: 01/30/2023]
Abstract
Reactive hyperemia is a well-established technique for the non-invasive evaluation of the peripheral microcirculatory function, measured as the magnitude of limb re-perfusion after a brief period of ischemia. Despite widespread adoption by researchers and clinicians alike, many uncertainties remain surrounding interpretation, compounded by patient-specific confounding factors (such as blood pressure or the metabolic rate of the ischemic limb). Mathematical modeling can accelerate our understanding of the physiology underlying the reactive hyperemia response and guide in the estimation of quantities which are difficult to measure experimentally. In this work, we aim to provide a comprehensive guide for mathematical modeling techniques that can be used for describing the key phenomena involved in the reactive hyperemia response, alongside their limitations and advantages. The reported methodologies can be used for investigating specific reactive hyperemia aspects alone, or can be combined into a computational framework to be used in (pre-)clinical settings.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
9
|
Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change and climate-sensitive disasters caused by climatic hazards have a significant and increasing direct and indirect impact on human health. Due to its vast area, complex geographical environment and various climatic conditions, Russia is one of the countries that suffers significantly from frequent climate hazards. This paper provides information about temperature extremes in Russia in the beginning of the 21st century, and their impact on human health. A literature search was conducted using the electronic databases Web of Science, Science Direct, Scopus, and e-Library, focusing on peer-reviewed journal articles published in English and in Russian from 2000 to 2021. The results are summarized in 16 studies, which are divided into location-based groups, including Moscow, Saint Petersburg and other large cities located in various climatic zones: in the Arctic, in Siberia and in the southern regions, in ultra-continental and monsoon climate. Heat waves in cities with a temperate continental climate lead to a significant increase in all-cause mortality than cold waves, compared with cities in other climatic zones. At the same time, in northern cities, in contrast to the southern regions and central Siberia, the influence of cold waves is more pronounced on mortality than heat waves. To adequately protect the population from the effects of temperature waves and to carry out preventive measures, it is necessary to know specific threshold values of air temperature in each city.
Collapse
|
10
|
Coccarelli A, Carson JM, Aggarwal A, Pant S. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Biomech Model Mechanobiol 2021; 20:1231-1249. [PMID: 33683514 PMCID: PMC8298378 DOI: 10.1007/s10237-021-01437-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel-Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol's multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system's haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Jason M Carson
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- Data Science Building, Swansea University Medical School, Swansea University, Swansea, UK
- HDR-UK Wales and Northern Ireland, Health Data Research UK, London, UK
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
11
|
Bahloul MA, Laleg Kirati TM. Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silicostudy. Physiol Meas 2021; 42. [PMID: 33761470 DOI: 10.1088/1361-6579/abf1b1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Objective. Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-parameter equivalent circuit models for apparent arterial compliance using a fractional-order capacitor (FOC). FOCs, which generalize capacitors and resistors, display a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation.Approach. The proposed framework describes the dynamic relationship between the blood-pressure input and the blood volume, using linear fractional-order differential equations.Main results. The results show that the proposed models present a reasonable fit with thein-silicodata of more than 4000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as the pulse-wave velocity indexes.Significance. Therefore, the fractional-order-based paradigm for arterial compliance shows notable potential as an alternative tool in the analysis of arterial stiffness.
Collapse
Affiliation(s)
- Mohamed A Bahloul
- Electrical, and Mathematical Sciences, and Engineering Division (CEMSE), King Abdullah University of Science, and Technology (KAUST), Thuwal 23955- 6900, Makkah Province, Saudi Arabia
| | - Taous-Meriem Laleg Kirati
- Electrical, and Mathematical Sciences, and Engineering Division (CEMSE), King Abdullah University of Science, and Technology (KAUST), Thuwal 23955- 6900, Makkah Province, Saudi Arabia
| |
Collapse
|
12
|
Saxena A, Ng EYK, Canchi T, Lim JL, Beruvar AS. A method to produce high contrast vein visualization in active dynamic thermography (ADT). Comput Biol Med 2021; 132:104309. [PMID: 33735761 DOI: 10.1016/j.compbiomed.2021.104309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
In this study, a method that will aid in the visualization of vein topology on a target area on the body of a human subject is demonstrated. An external cooling means is configured to cool the left forearm of fourteen study participants, effecting an active thermal change or recovery in the target area upon removal of cooling. An infrared (IR) thermal camera was used to capture a series of transient thermal images. These images were then processed to extract Dynamic synthetic images (SI) throughout the active thermal change or recovery process. Dynamic SI was calculated using a quantitative parameter called tissue activity ratio (TAR), which is defined by the rate of rewarming to the rate of cooling at each pixel of interest. A fixed step size of rewarming temperature (0.5 °C) was used to progressively extract multiple synthetic images throughout the whole recovery process. Compared to a Static SI extraction method, where only a single SI results from the whole active dynamic thermography (ADT) sequence, this study demonstrates a live feed of high contrast vein visualizations by using the Dynamic SI method. Furthermore, the dependency of Dynamic SI contrast on the temperature of the external cooling stimulation was investigated. Three cooling stimulation temperatures (5 °C, 8 °C, and 11 °C) were tested, where no statistically significant difference in the resulting SI contrast was found. Lastly, a discussion is put forth on assisting venipuncture or cannulation-based clinical applications, through the incorporation of the proposed method with a projection system.
Collapse
Affiliation(s)
- Ashish Saxena
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Eddie Yin Kwee Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Tejas Canchi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia Ler Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Ayush Singh Beruvar
- Department of Mechanical Engineering, National Institute of Technology, Silchar, 788010, India
| |
Collapse
|
13
|
Modeling radio-frequency energy-induced heating due to the presence of transcranial electric stimulation setup at 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:793-807. [PMID: 32462558 PMCID: PMC7669803 DOI: 10.1007/s10334-020-00853-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/22/2020] [Accepted: 05/12/2020] [Indexed: 11/02/2022]
Abstract
PURPOSE The purpose of the present study was to develop a numerical workflow for simulating temperature increase in a high-resolution human head and torso model positioned in a whole-body magnetic resonance imaging (MRI) radio-frequency (RF) coil in the presence of a transcranial electric stimulation (tES) setup. METHODS A customized human head and torso model was developed from medical image data. Power deposition and temperature rise (ΔT) were evaluated with the model positioned in a whole-body birdcage RF coil in the presence of a tES setup. Multiphysics modeling at 3T (123.2 MHz) on unstructured meshes was based on RF circuit, 3D electromagnetic, and thermal co-simulations. ΔT was obtained for (1) a set of electrical and thermal properties assigned to the scalp region, (2) a set of electrical properties of the gel used to ensure proper electrical contact between the tES electrodes and the scalp, (3) a set of electrical conductivity values of skin tissue, (4) four gel patch shapes, and (5) three electrode shapes. RESULTS Significant dependence of power deposition and ΔT on the skin's electrical properties and electrode and gel patch geometries was observed. Differences in maximum ΔT (> 100%) and its location were observed when comparing the results from a model using realistic human tissue properties and one with an external container made of acrylic material. The electrical and thermal properties of the phantom container material also significantly (> 250%) impacted the ΔT results. CONCLUSION Simulation results predicted that the electrode and gel geometries, skin electrical conductivity, and position of the temperature sensors have a significant impact on the estimated temperature rise. Therefore, these factors must be considered for reliable assessment of ΔT in subjects undergoing an MRI examination in the presence of a tES setup.
Collapse
|
14
|
Charlton PH, Mariscal Harana J, Vennin S, Li Y, Chowienczyk P, Alastruey J. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am J Physiol Heart Circ Physiol 2019; 317:H1062-H1085. [PMID: 31442381 PMCID: PMC6879924 DOI: 10.1152/ajpheart.00218.2019] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022]
Abstract
The arterial pulse wave (PW) is a rich source of information on cardiovascular (CV) health. It is widely measured by both consumer and clinical devices. However, the physical determinants of the PW are not yet fully understood, and the development of PW analysis algorithms is limited by a lack of PW data sets containing reference CV measurements. Our aim was to create a database of PWs simulated by a computer to span a range of CV conditions, representative of a sample of healthy adults. The typical CV properties of 25-75 yr olds were identified through a literature review. These were used as inputs to a computational model to simulate PWs for subjects of each age decade. Pressure, flow velocity, luminal area, and photoplethysmographic PWs were simulated at common measurement sites, and PW indexes were extracted. The database, containing PWs from 4,374 virtual subjects, was verified by comparing the simulated PWs and derived indexes with corresponding in vivo data. Good agreement was observed, with well-reproduced age-related changes in hemodynamic parameters and PW morphology. The utility of the database was demonstrated through case studies providing novel hemodynamic insights, in silico assessment of PW algorithms, and pilot data to inform the design of clinical PW algorithm assessments. In conclusion, the publicly available PW database is a valuable resource for understanding CV determinants of PWs and for the development and preclinical assessment of PW analysis algorithms. It is particularly useful because the exact CV properties that generated each PW are known.NEW & NOTEWORTHY First, a comprehensive literature review of changes in cardiovascular properties with age was performed. Second, an approach for simulating pulse waves (PWs) at different ages was designed and verified against in vivo data. Third, a PW database was created, and its utility was illustrated through three case studies investigating the determinants of PW indexes. Fourth, the database and tools for creating the database, analyzing PWs, and replicating the case studies are freely available.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
| | - Jorge Mariscal Harana
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
| | - Samuel Vennin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Ye Li
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Phil Chowienczyk
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
15
|
Coccarelli A, Prakash A, Nithiarasu P. A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models. Biomech Model Mechanobiol 2019; 18:939-951. [PMID: 30900050 PMCID: PMC6647433 DOI: 10.1007/s10237-019-01122-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Arul Prakash
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- VAJRA, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|