1
|
Jyothy A, Hussain J, S SC, Chandraprabha VR, Nair MG, Vasudevan S, Sreedharan H, Abraham B, Maliekal TT, Natarajan K, Sengupta S. α-Fodrin-CENP-E interaction is critical for pancreatic cancer progression and drug response. Cell Cycle 2025:1-25. [PMID: 40211684 DOI: 10.1080/15384101.2025.2485837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/15/2025] Open
Abstract
α-Fodrin, a known scaffolding protein for cytoskeleton stabilization, performs various functions including cell adhesion, cell motility, DNA repair and apoptosis. Based on our previous results revealing its role in mitosis in glioblastoma, we have examined its effect in pancreatic cancer, which is often linked to mitotic aberrations including aneuploidy and chromosome instability. Here, we show that the expression of α-Fodrin increases in pancreatic adenocarcinoma tissues compared to its normal counterpart, suggesting its tumor promoting role. shRNA-mediated knock-down of α-Fodrin significantly reduces the xenograft growth in immunocompromised mice underscoring the importance of α-Fodrin in tumor progression. CENP-E (centromere-associated protein E) is a motor protein essential for chromosomal alignment and segregation during mitosis. We have found that α-Fodrin interacts with CENP-E to recruit it to the kinetochore and depletion of α-Fodrin has a crucial role in controlling aneuploidy. As these mitotic defects can lead to apoptosis, we have further evaluated the activation of possible upstream pathways. Paclitaxel, a chemotherapeutic agent that stabilizes microtubules, disrupts mitosis and induces apoptosis. We found that Paclitaxel triggered stronger activation of JNK, ERK, and P38 MAPKs, altered BCL2/BAX ratios, cytochrome C release causing increased apoptosis in α-Fodrin knockdown cells compared to cells with wild-type α-Fodrin. This enhanced sensitivity to paclitaxel is consistent with improved survival in pancreatic cancer patients with low α-Fodrin (SPTAN1) and low CENP-E expression compared to poor prognosis with high expressions of both the genes. Taken together, this study provides the molecular mechanism by which α-Fodrin - CENP-E axis regulates pancreatic cancer progression and drug response.
Collapse
Affiliation(s)
- Athira Jyothy
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Julfequar Hussain
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sharanya C S
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Smreti Vasudevan
- Research Department, Rajiv Gandhi Cancer Institute and Research, Delhi, India
| | - Hariharan Sreedharan
- Laboratory of Cytogenetics and Molecular Diagnostics, Regional Cancer Centre, Thiruvananthapuram, India
| | - Betty Abraham
- Department of Pathology, DDRC SRL Diagnostics private limited, Thiruvananthapuram, India
| | - Tessy Thomas Maliekal
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Suparna Sengupta
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
2
|
Tajer BJ, Kalu G, Jay S, Wynn E, Decaux A, Gilbert P, Singer HD, Kidd MD, Nelson JA, Harake N, Lopez NJ, Souchet NR, Luong AG, Savage AM, Min S, Karabacak A, Böhm S, Kim RT, Froitzheim T, Sousounis K, Courtemanche K, Han J, Payzin-Dogru D, Blair SJ, Roy S, Fei JF, Tanaka EM, Whited JL. Optimized toolkit for the manipulation of immortalized axolotl fibroblasts. Methods 2025; 240:21-34. [PMID: 40187387 DOI: 10.1016/j.ymeth.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
The axolotl salamander model has broad utility for regeneration studies, but this model is limited by a lack of efficient cell-culture-based tools. The Axolotl Limb-1 (AL-1) fibroblast line, the only available immortalized axolotl cell line, was first published over 20 years ago, but many established molecular biology techniques, such as lipofectamine transfection, CRISPR-Cas9 mutagenesis, and antibiotic selection, work poorly or remain untested in AL-1 cells. Innovating technologies to manipulate AL-1 cells in culture and study their behavior following transplantation into the axolotl will complement in-vivo studies, decrease the number of animals used, and enable the faster, more streamlined investigation of regenerative biology questions. Here, we establish transfection, mutagenesis, antibiotic selection, and in-vivo transplantation techniques in axolotl AL-1 cells. These techniques will enable efficient culture with AL-1 cells and guide future tool development for the culture and manipulation of other salamander cell lines.
Collapse
Affiliation(s)
- Benjamin J Tajer
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Glory Kalu
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sarah Jay
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Eric Wynn
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Antoine Decaux
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Paul Gilbert
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Hani D Singer
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Maddeline D Kidd
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Jeffery A Nelson
- Bauer Core Facility, Harvard University, Northwest Building, Room B239, 52 Oxford St., Cambridge, MA 02138, USA
| | - Noora Harake
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Noah J Lopez
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Nathan R Souchet
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Anna G Luong
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Aaron M Savage
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sangwon Min
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Alparslan Karabacak
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sebastian Böhm
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Ryan T Kim
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Tim Froitzheim
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Konstantinos Sousounis
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Katherine Courtemanche
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Jihee Han
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Duygu Payzin-Dogru
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Steven J Blair
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Elly M Tanaka
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jessica L Whited
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Broad Institute, 415 Main St., Cambridge, MA 02142, USA; Department of Orthopedic Surgery, Brigham & Women's Hospital, Mass General Brigham, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
3
|
Büning A, Reckzeh E. Opportunities of patient-derived organoids in drug development. Br J Pharmacol 2025. [PMID: 39978784 DOI: 10.1111/bph.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025] Open
Abstract
Various model systems are utilised during drug development starting from basic research, moving to preclinical research and development for clinical applications in order to identify new drugs to improve human health. However, there are characteristics of humans that are not captured by established models. Such models include homogeneous two-dimensional (2D) cell lines, which lack cellular heterogeneity and physiological relevance, and species differences of animal models. Organoids can mitigate these differences by providing more physiologically relevant three-dimensional (3D) cell models that resemble the molecular state in healthy and pathological tissue. This review presents exemplary approaches using patient-derived organoids (PDOs) that have been developed and the new opportunities that are evolving in drug development with a focus on patient adult stem cell (ASC)-derived organoids. These demonstrate the potential of PDOs used alongside established cell and animal models to improve drug development from basic research to clinical applications such as personalised medicine.
Collapse
Affiliation(s)
- Antonia Büning
- Transdisciplinary Research Area 'Life and Health', LIMES Institute, University of Bonn, Bonn, Germany
| | - Elena Reckzeh
- Transdisciplinary Research Area 'Life and Health', LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Li Z, Zhang W, Zhang Z, Mao G, Qi L, Wang Y, Yang H, Ye H. PICH, A protein that maintains genomic stability, can promote tumor growth. Gene 2025; 935:149074. [PMID: 39491600 DOI: 10.1016/j.gene.2024.149074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genomic instability is regardedas a hallmark of cancer cells. It can be presented in many ways, among which chromosome instability has received attention. Ultrafine anaphase bridges are a typeof chromatin bridges, the untimely resolution of which can also lead to chromosome instability. PICH can play a role in maintaining chromosome stability by regulating chromosome morphologyand resolving ultrafine anaphase bridges. Recently, PICH has been found to be overexpressed in various cancers. Overexpression of PICH is related to the proliferation of tumors and poor prognosis. In this article, we consider that PICH can maintain genomic stability by regulating appropriate chromosome structure, ensuring proper chromosome segregation, and facilitating replication fork reversal. We summarize how PICH regulates chromosome stability, how PICH resolves Ultrafine anaphase bridges with other proteins, and how PICH promotes tumor progression.
Collapse
Affiliation(s)
- Zeyuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Wentao Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Zihan Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Guoming Mao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Linping Qi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Yubin Wang
- Laboratory Medicine Center Gansu Provincial Natural Science, Lanzhou University Second Hospital, People's Republic of China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Huili Ye
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
5
|
Powell DJ, Li D, Smith B, Chen WN. Cultivated meat microbiological safety considerations and practices. Compr Rev Food Sci Food Saf 2025; 24:e70077. [PMID: 39731713 DOI: 10.1111/1541-4337.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/30/2024]
Abstract
Cultivated meat, produced using cell culture technology, is an alternative to conventional meat production that avoids the risks from enteric pathogens associated with animal slaughter and processing. Cultivated meat therefore has significant theoretical microbiological safety advantages, though limited information is available to validate this. This review discusses sources and vectors of microbial contamination throughout cultivated meat production, introduces industry survey data to evaluate current industry practices for monitoring and mitigating these hazards, and highlights future research needs. Industry survey respondents reported an average microbiological contamination batch failure rate of 11.2%. The most common vectors were related to personnel, equipment, and the production environment, while the most commonly reported type of microbiological contaminant was bacteria. These will likely remain prominent vectors and source organisms in commercial-scale production but can be addressed by a modified combination of existing commercial food and biopharmaceutical production safety systems such as Hazard Analysis and Critical Control Points (HACCP), Good Manufacturing Practices (GMP), and Good Cell Culture Practice (GCCP). As the sector matures and embeds these and other safety management systems, microbiological contamination issues should be surmountable. Data are also included to investigate whether the limited microbiome of cultivated products poses a novel food safety risk. However, further studies are needed to assess the growth potential of microorganisms in different cultivated meat products, taking into account factors such as their composition, pH, water activity, and background microflora.
Collapse
Affiliation(s)
- Dean Joel Powell
- The Good Food Institute Asia Pacific (GFI APAC), Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Bezos Center for Sustainable Protein, National University of Singapore, Singapore, Singapore
| | - Ben Smith
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Wei Ning Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Future Ready Food Safety Hub (FRESH), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Liehr T, Kankel S, Buhl EM, Schröder-Lange SK, Weiskirchen R. Genetic Characteristics of the Rat Fibroblast Cell Line Rat-1. Cells 2024; 14:21. [PMID: 39791722 PMCID: PMC11719652 DOI: 10.3390/cells14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
The Rat-1 cell line was established as a subclone of the parental rat fibroblastoid line F2408, derived from Fisher 344 rat embryos. Rat-1 cells are widely used in various research fields, especially in cancer biology, to study the effects of oncogenes on cell proliferation. They are also crucial for investigating signal transduction pathways and play a key role in drug testing and pharmacological studies due to their rapid proliferation. Therefore, Rat-1 cells are an indispensable research tool. While some cytogenetic information on their basic chromosomal features is available, detailed genomic analyses, such as karyotype analysis, short tandem repeat (STR) profiling, and whole-genome sequencing, have not been thoroughly conducted. As a result, the genetic stability and potential variations in Rat-1 cells over extended culture periods are poorly understood. This lack of comprehensive genetic characterization can limit the interpretation of experimental results and requires caution when generalizing findings from studies using this cell line. In this study, we describe the genetic characterization of the Rat-1 cell line. We established a karyotype, performed multicolor fluorescence in situ hybridization (mFISH), identified chromosomal losses and gains, and defined an STR profile for Rat-1 with 31 species-specific markers. Interestingly, the chromosomal imbalances found in Rat-1 cells resemble those found in human epithelioid sarcoma or liposarcoma. Additionally, we analyzed the transcriptome of Rat-1 cells through mRNA sequencing (mRNA-Seq) using next-generation sequencing (NGS). Finally, typical features of these fibroblastic cells were determined using electron microscopy, Western blotting, and fluorescent phalloidin conjugates.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07747 Jena, Germany;
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07747 Jena, Germany;
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Sarah K. Schröder-Lange
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH, University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH, University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
7
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Mazzoleni A, Awuah WA, Sanker V, Bharadwaj HR, Aderinto N, Tan JK, Huang HYR, Poornaselvan J, Shah MH, Atallah O, Tawfik A, Elmanzalawi MEAE, Ghozlan SH, Abdul-Rahman T, Moyondafoluwa JA, Alexiou A, Papadakis M. Chromosomal instability: a key driver in glioma pathogenesis and progression. Eur J Med Res 2024; 29:451. [PMID: 39227895 PMCID: PMC11373396 DOI: 10.1186/s40001-024-02043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Chromosomal instability (CIN) is a pivotal factor in gliomas, contributing to their complexity, progression, and therapeutic challenges. CIN, characterized by frequent genomic alterations during mitosis, leads to genetic abnormalities and impacts cellular functions. This instability results from various factors, including replication errors and toxic compounds. While CIN's role is well documented in cancers like ovarian cancer, its implications for gliomas are increasingly recognized. CIN influences glioma progression by affecting key oncological pathways, such as tumor suppressor genes (e.g., TP53), oncogenes (e.g., EGFR), and DNA repair mechanisms. It drives tumor evolution, promotes inflammatory signaling, and affects immune interactions, potentially leading to poor clinical outcomes and treatment resistance. This review examines CIN's impact on gliomas through a narrative approach, analyzing data from PubMed/Medline, EMBASE, the Cochrane Library, and Scopus. It highlights CIN's role across glioma subtypes, from adult glioblastomas and astrocytomas to pediatric oligodendrogliomas and astrocytomas. Key findings include CIN's effect on tumor heterogeneity and its potential as a biomarker for early detection and monitoring. Emerging therapies targeting CIN, such as those modulating tumor mutation burden and DNA damage response pathways, show promise but face challenges. The review underscores the need for integrated therapeutic strategies and improved bioinformatics tools like CINdex to advance understanding and treatment of gliomas. Future research should focus on combining CIN-targeted therapies with immune modulation and personalized medicine to enhance patient outcomes.
Collapse
Affiliation(s)
- Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | | | - Vivek Sanker
- Department Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Helen Ye Rim Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Aya Tawfik
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | | | - Sama Hesham Ghozlan
- Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | | | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Funogen, Department of Research & Development, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
9
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
10
|
Haq I, Ngo JC, Roy N, Pan RL, Nawsheen N, Chiu R, Zhang Y, Fujita M, Soni RK, Wu X, Bennett DA, Menon V, Olah M, Sher F. An integrated toolkit for human microglia functional genomics. Stem Cell Res Ther 2024; 15:104. [PMID: 38600587 PMCID: PMC11005142 DOI: 10.1186/s13287-024-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Microglia, the brain's resident immune cells, play vital roles in brain development, and disorders like Alzheimer's disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However, existing iMG generation protocols face challenges, such as prolonged differentiation time, lack of detailed characterization, and limited gene function investigation via CRISPR-Cas9. METHODS Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step, 20-day process, producing iMG with a normal karyotype. We confirmed the iMG's authenticity and quality through single-cell RNA sequencing, chromatin accessibility profiles (ATAC-Seq), proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further, we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . RESULTS Our method generates iMG that closely align with human primary microglia in terms of transcriptomic, proteomic, and chromatin accessibility profiles. Functionally, these iMG exhibit Ca2 + transients, cytokine driven migration, immune responses to inflammatory signals, and active phagocytosis of CNS related substrates including synaptosomes, amyloid beta and myelin. Significantly, the toolkit facilitates repeated iMG harvesting, essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia, positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. CONCLUSIONS Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform, our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism, the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement.
Collapse
Affiliation(s)
- Imdadul Haq
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Richard L Pan
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Nadiya Nawsheen
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca Chiu
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neuroimmunology Core, Center for Translational & Computational Neuroimmunology, Division of Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neuroimmunology Core, Center for Translational & Computational Neuroimmunology, Division of Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rajesh K Soni
- Proteomics Core, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|