1
|
Tickner BJ, Platas-Iglesias C, Duckett SB, Angelovski G. In Situ Ternary Adduct Formation of Yttrium Polyaminocarboxylates Leads to Small Molecule Capture and Activation. Chemistry 2022; 28:e202201780. [PMID: 35853826 DOI: 10.1002/chem.202201780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/07/2023]
Abstract
In this work the chemistry of yttrium complexes is exploited for small molecule capture and activation. Nuclear magnetic resonance (NMR) and density functional theory (DFT) studies were used to investigate the in situ formation of solution state ternary yttrium-acetate, yttrium-bicarbonate, and yttrium-pyruvate adducts with a range of polyaminocarboxylate chelates. These studies reveal that [Y(DO3A)(H2 O)2 ] (H3 DO3A - 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid) and [Y(EDTA)(H2 O)q ]- (H4 EDTA - ethylenediaminetetraacetic acid, q = 2 and 3) are able to form ternary adducts with bicarbonate and pyruvate. In the latter, unusual decarboxylation of pyruvate to form acetic acid and CO2 was observed and further studied using SABRE-hyperpolarised 13 C NMR (SABRE - signal amplification by reversible exchange) to provide information about the reaction timescale and lifetime of intermediates involved in this conversion. The work presented demonstrates that yttrium complexes can capture and activate small molecules, which may lead to novel and useful applications of this metal in catalysis and medical imaging.
Collapse
Affiliation(s)
- Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, United Kingdom.,MR Neuroimaging agents, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15001, Spain
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, United Kingdom
| | - Goran Angelovski
- MR Neuroimaging agents, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, 200031, PR China
| |
Collapse
|
2
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
3
|
Sellies L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M. Parahydrogen Hyperpolarization Allows Direct NMR Detection of α-Amino Acids in Complex (Bio)mixtures. Angew Chem Int Ed Engl 2021; 60:26954-26959. [PMID: 34534406 PMCID: PMC9299667 DOI: 10.1002/anie.202109588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 12/12/2022]
Abstract
The scope of non-hydrogenative parahydrogen hyperpolarization (nhPHIP) techniques has been expanding over the last years, with the continuous addition of important classes of substrates. For example, pyruvate can now be hyperpolarized using the Signal Amplification By Reversible Exchange (SABRE) technique, offering a fast, efficient and low-cost PHIP alternative to Dynamic Nuclear Polarization for metabolic imaging studies. Still, important biomolecules such as amino acids have so far resisted PHIP, unless properly functionalized. Here, we report on an approach to nhPHIP for unmodified α-amino acids that allows their detection and quantification in complex mixtures at sub-micromolar concentrations. This method was tested on human urine, in which natural α-amino acids could be measured after dilution with methanol without any additional sample treatment.
Collapse
Affiliation(s)
- Lisanne Sellies
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Martin C. Feiters
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Marco Tessari
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
4
|
Sellies L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M. Parahydrogen Hyperpolarization Allows Direct NMR Detection of α‐Amino Acids in Complex (Bio)mixtures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lisanne Sellies
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| |
Collapse
|
5
|
Tickner BJ, Borozdina Y, Duckett SB, Angelovski G. Exploring the hyperpolarisation of EGTA-based ligands using SABRE. Dalton Trans 2021; 50:2448-2461. [PMID: 33507194 DOI: 10.1039/d0dt03839c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The design of molecules whose magnetic resonance (MR) signals report on their biological environment is receiving attention as a route to non-invasive functional MR. Hyperpolarisation techniques improve the sensitivity of MR and enable real time low concentration MR imaging, allowing for the development of novel functional imaging methodologies. In this work, we report on the synthesis of a series of EGTA-derived molecules (EGTA - ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid), whose core structures are known to bind biologically relevant metal ions in vivo, in addition to pyridyl rings that allow reversible ligation to an iridium dihydride complex. Consequently, they are amenable to hyperpolarisation through the parahydrogen-based signal amplification by reversible exchange (SABRE) process. We investigate how the proximity of EGTA and pyridine units, and the identity of the linker group, affect the SABRE hyperpolarisation attained for each agent. We also describe the effect of catalyst identity and co-ligand presence on these measurements and can achieve 1H NMR signal enhancements of up to 160-fold. We rationalise these results to suggest the design elements needed for probes amenable to SABRE hyperpolarisation whose MR signals might in the future report on the presence of metal ions.
Collapse
Affiliation(s)
- Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, UK.
| | | | | | | |
Collapse
|
6
|
Ratajczyk T, Buntkowsky G, Gutmann T, Fedorczyk B, Mames A, Pietrzak M, Puzio Z, Szkudlarek PG. Magnetic Resonance Signal Amplification by Reversible Exchange of Selective PyFALGEA Oligopeptide Ligands Towards Epidermal Growth Factor Receptors. Chembiochem 2020; 22:855-860. [PMID: 33063920 DOI: 10.1002/cbic.202000711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/13/2022]
Abstract
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1 H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1 H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.
Collapse
Affiliation(s)
- Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Bartłomiej Fedorczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Zuzanna Puzio
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | | |
Collapse
|
7
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parawasserstoff‐induzierte Hyperpolarisation von Gasen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Igor V. Koptyug
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
| |
Collapse
|
8
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parahydrogen-Induced Hyperpolarization of Gases. Angew Chem Int Ed Engl 2020; 59:17788-17797. [PMID: 31972061 PMCID: PMC7453723 DOI: 10.1002/anie.201915306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/16/2022]
Abstract
Imaging of gases is a major challenge for any modality including MRI. NMR and MRI signals are directly proportional to the nuclear spin density and the degree of alignment of nuclear spins with applied static magnetic field, which is called nuclear spin polarization. The level of nuclear spin polarization is typically very low, i.e., one hundred thousandth of the potential maximum at 1.5 T and a physiologically relevant temperature. As a result, MRI typically focusses on imaging highly concentrated tissue water. Hyperpolarization methods transiently increase nuclear spin polarizations up to unity, yielding corresponding gains in MRI signal level of several orders of magnitude that enable the 3D imaging of dilute biomolecules including gases. Parahydrogen-induced polarization is a fast, highly scalable, and low-cost hyperpolarization technique. The focus of this Minireview is to highlight selected advances in the field of parahydrogen-induced polarization for the production of hyperpolarized compounds, which can be potentially employed as inhalable contrast agents.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- International Tomography Center, SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York, YO10 5NY, UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York, YO10 5NY, UK
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
9
|
Wei D, Xin J, Hu K, Yao Y. Preparation of Long-Lived States in a Multi-Spin System by Using an Optimal Control Method. Chemphyschem 2020; 21:1326-1330. [PMID: 32249498 DOI: 10.1002/cphc.202000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Indexed: 01/19/2023]
Abstract
The lifetime Ts of a long-lived nuclear spin state (LLS) could be much longer than the longitudinal order T1 . Many spin systems were used to produce long-lived states, including two or more homonuclear spins that couple to each other. For multiple homonuclear spins with rather small chemical shift difference, normally it is difficult to selectively control the spins and then to prepare a LLS. Herein, we present a scheme that prepares different spin orders in a multi-spin system by using optimal control and numerical calculation. By experimentally measuring the lifetime of the states, we find that for a three-spin physical system, although there are many forms of state combinations with different spin orders, each component has its own lifetime.
Collapse
Affiliation(s)
- Daxiu Wei
- Shanghai Key Laboratory of Magnetic Resonance College of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Jiaxiang Xin
- Shanghai Key Laboratory of Magnetic Resonance College of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Kairui Hu
- Shanghai Key Laboratory of Magnetic Resonance College of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Yefeng Yao
- Shanghai Key Laboratory of Magnetic Resonance College of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| |
Collapse
|
10
|
Tickner BJ, Rayner PJ, Duckett SB. Using SABRE Hyperpolarized 13C NMR Spectroscopy to Interrogate Organic Transformations of Pyruvate. Anal Chem 2020; 92:9095-9103. [DOI: 10.1021/acs.analchem.0c01334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ben. J. Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Peter J. Rayner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| |
Collapse
|
11
|
Tickner BJ, Semenova O, Iali W, Rayner PJ, Whitwood AC, Duckett SB. Optimisation of pyruvate hyperpolarisation using SABRE by tuning the active magnetisation transfer catalyst. Catal Sci Technol 2020; 10:1343-1355. [PMID: 32647563 PMCID: PMC7315823 DOI: 10.1039/c9cy02498k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
Hyperpolarisation techniques such as signal amplification by reversible exchange (SABRE) can deliver NMR signals several orders of magnitude larger than those derived under Boltzmann conditions. SABRE is able to catalytically transfer latent magnetisation from para-hydrogen to a substrate in reversible exchange via temporary associations with an iridium complex. SABRE has recently been applied to the hyperpolarisation of pyruvate, a substrate often used in many in vivo MRI studies. In this work, we seek to optimise the pyruvate-13C2 signal gains delivered through SABRE by fine tuning the properties of the active polarisation transfer catalyst. We present a detailed study of the effects of varying the carbene and sulfoxide ligands on the formation and behaviour of the active [Ir(H)2(η2-pyruvate)(sulfoxide)(NHC)] catalyst to produce a rationale for achieving high pyruvate signal gains in a cheap and refreshable manner. This optimisation approach allows us to achieve signal enhancements of 2140 and 2125-fold for the 1-13C and 2-13C sites respectively of sodium pyruvate-1,2-[13C2].
Collapse
Affiliation(s)
- Ben J Tickner
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Olga Semenova
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Wissam Iali
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Peter J Rayner
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , YO10 5DD , UK
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| |
Collapse
|
12
|
Roy SS, Rayner PJ, Burns MJ, Duckett SB. A simple and cost-efficient technique to generate hyperpolarized long-lived 15N- 15N nuclear spin order in a diazine by signal amplification by reversible exchange. J Chem Phys 2020; 152:014201. [PMID: 31914733 PMCID: PMC7351221 DOI: 10.1063/1.5132308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) is an inexpensive and simple hyperpolarization technique that is capable of boosting nuclear magnetic resonance sensitivity by several orders of magnitude. It utilizes the reversible binding of para-hydrogen, as hydride ligands, and a substrate of interest to a metal catalyst to allow for polarization transfer from para-hydrogen into substrate nuclear spins. While the resulting nuclear spin populations can be dramatically larger than those normally created, their lifetime sets a strict upper limit on the experimental timeframe. Consequently, short nuclear spin lifetimes are a challenge for hyperpolarized metabolic imaging. In this report, we demonstrate how both hyperpolarization and long nuclear spin lifetime can be simultaneously achieved in nitrogen-15 containing derivatives of pyridazine and phthalazine by SABRE. These substrates were chosen to reflect two distinct classes of 15N2-coupled species that differ according to their chemical symmetry and thereby achieve different nuclear spin lifetimes. The pyridazine derivative proves to exhibit a signal lifetime of ∼2.5 min and can be produced with a signal enhancement of ∼2700. In contrast, while the phthalazine derivative yields a superior 15 000-fold 15N signal enhancement at 11.7 T, it has a much shorter signal lifetime.
Collapse
Affiliation(s)
- Soumya S Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Michael J Burns
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
13
|
Palermo AP, Schöttle C, Zhang S, Grosso-Giordano NA, Okrut A, Dixon DA, Frei H, Gates BC, Katz A. Spectroscopic Characterization of μ-η1:η1-Peroxo Ligands Formed by Reaction of Dioxygen with Electron-Rich Iridium Clusters. Inorg Chem 2019; 58:14338-14348. [DOI: 10.1021/acs.inorgchem.9b01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew P. Palermo
- Department of Chemical Engineering, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christian Schöttle
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Shengjie Zhang
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Nicolás A. Grosso-Giordano
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Alexander Okrut
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - David A. Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California 94720, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720-1462, United States
| |
Collapse
|
14
|
Tickner BJ, Lewis JS, John RO, Whitwood AC, Duckett SB. Mechanistic insight into novel sulfoxide containing SABRE polarisation transfer catalysts. Dalton Trans 2019; 48:15198-15206. [PMID: 31576870 DOI: 10.1039/c9dt02951f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that commonly uses [Ir(H)2(carbene)(substrate)3]Cl complexes to catalytically transfer magnetisation from para-hydrogen derived hydride ligands to coordinated substrates. Here, we explore the reactivity of a novel class of such catalysts based on sulfoxide containing [IrCl(H)2(carbene)(DMSO)2], which are involved in the hyperpolarisation of pyruvate using SABRE. We probe the reactivity of this species by NMR and DFT and upon reaction with sodium pyruvate establish the formation of two isomers of [Ir(H)2(η2-pyruvate)(DMSO)(IMes)]. Studies with related disodium oxalate yield [Ir2(H)4(IMes)2(DMSO)2(η2-κ2-Oxalate)] that is characterised by NMR and X-ray diffraction.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York YO10 5NY, UK.
| | | | | | | | | |
Collapse
|
15
|
Tickner BJ, John RO, Roy SS, Hart SJ, Whitwood AC, Duckett SB. Using coligands to gain mechanistic insight into iridium complexes hyperpolarized with para-hydrogen. Chem Sci 2019; 10:5235-5245. [PMID: 31191878 PMCID: PMC6540910 DOI: 10.1039/c9sc00444k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
We report the formation of a series of novel [Ir(H)2(IMes)(α-13C2-carboxyimine)L] complexes in which the identity of the coligand L is varied. When examined with para-hydrogen, complexes in which L is benzylamine or phenethylamine show significant 1H hydride and 13C2 imine enhancements and may exist in 13C2 singlet spin order. Isotopic labeling techniques are used to double 13C2 enhancements (up to 750-fold) and singlet state lifetimes (up to 20 seconds) compared to those previously reported. Exchange spectroscopy and Density Functional Theory are used to investigate the stability and mechanism of rapid hydrogen exchange in these complexes, a process driven by dissociative coligand loss to form a key five coordinate intermediate. When L is pyridine or imidazole, competitive binding to such intermediates leads to novel complexes whose formation, kinetics, behaviour, structure, and hyperpolarization is investigated. The ratio of the observed PHIP enhancements were found to be affected not only by the hydrogen exchange rates but the identity of the coligands. This ligand reactivity is accompanied by decoherence of any 13C2 singlet order which can be preserved by isotopic labeling. Addition of a thiol coligand proved to yield a thiol oxidative addition product which is characterized by NMR and MS techniques. Significant 870-fold 13C enhancements of pyridine can be achieved using the Signal Amplification By Reversible Exchange (SABRE) process when α-carboxyimines are used to block active coordination sites. [Ir(H)2(IMes)(α-13C2-carboxyimine)L] therefore acts as unique sensors whose 1H hydride chemical shifts and corresponding hyperpolarization levels are indicative of the identity of a coligand and its binding strength.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Richard O John
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Soumya S Roy
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Sam J Hart
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| |
Collapse
|
16
|
Semenova O, Richardson PM, Parrott AJ, Nordon A, Halse ME, Duckett SB. Reaction Monitoring Using SABRE-Hyperpolarized Benchtop (1 T) NMR Spectroscopy. Anal Chem 2019; 91:6695-6701. [PMID: 30985110 PMCID: PMC6892580 DOI: 10.1021/acs.analchem.9b00729] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
The
conversion of [IrCl(COD)(IMes)] (COD = cis,cis-1,5-cyclooctadiene, IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazole-2-ylidene)
in the presence of an excess of para-hydrogen (p-H2) and a substrate (4-aminopyridine (4-AP) or 4-methylpyridine (4-MP)) into [Ir(H)2(IMes)(substrate)3]Cl is monitored by 1H NMR spectroscopy using a benchtop (1 T) spectrometer in conjunction
with the p-H2-based hyperpolarization
technique signal amplification by reversible exchange (SABRE). A series
of single-shot 1H NMR measurements are used to monitor
the chemical changes that take place in solution through the lifetime
of the hyperpolarized response. Non-hyperpolarized high-field 1H NMR control measurements were also undertaken to confirm
that the observed time-dependent changes relate directly to the underlying
chemical evolution. The formation of [Ir(H)2(IMes)(substrate)3]Cl is further linked to the hydrogen isotope exchange (HIE)
reaction, which leads to the incorporation of deuterium into the ortho positions of 4-AP, where the source of
deuterium is the solvent, methanol-d4.
Comparable reaction monitoring results are achieved at both high-field
(9.4 T) and low-field (1 T). It is notable that the low sensitivity
of the benchtop (1 T) NMR enables the use of protio solvents, which when used here allows the effects of catalyst formation
and substrate deuteration to be separated. Collectively, these methods illustrate how low-cost low-field NMR
measurements provide unique insight into a complex catalytic process
through a combination of hyperpolarization and relaxation data.
Collapse
Affiliation(s)
- Olga Semenova
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Peter M Richardson
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Andrew J Parrott
- WestCHEM, Department of Pure and Applied Chemistry and CPACT , University of Strathclyde , Glasgow G11XQ , U.K
| | - Alison Nordon
- WestCHEM, Department of Pure and Applied Chemistry and CPACT , University of Strathclyde , Glasgow G11XQ , U.K
| | - Meghan E Halse
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| |
Collapse
|