1
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
2
|
Pironet A, Vandewiele F, Vennekens R. Exploring the role of TRPM4 in calcium-dependent triggered activity and cardiac arrhythmias. J Physiol 2024; 602:1605-1621. [PMID: 37128952 DOI: 10.1113/jp283831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie GD, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism. eLife 2024; 12:RP90648. [PMID: 38345841 PMCID: PMC10942593 DOI: 10.7554/elife.90648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Alexander S Powers
- Department of Chemistry, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
| | - Steven D Miller
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Grigore D Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - J Du Bois
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
Persistent Hypochloremia Is Associated with Adverse Prognosis in Patients Repeatedly Hospitalized for Heart Failure. J Clin Med 2023; 12:jcm12041257. [PMID: 36835793 PMCID: PMC9962161 DOI: 10.3390/jcm12041257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Hypochloremia reflects neuro-hormonal activation in patients with heart failure (HF). However, the prognostic impact of persistent hypochloremia in those patients remains unclear. METHODS We collected the data of patients who were hospitalized for HF at least twice between 2010 and 2021 (n = 348). Dialysis patients (n = 26) were excluded. The patients were divided into four groups based on the absence/presence of hypochloremia (<98 mmol/L) at discharge from their first and second hospitalizations: Group A (patients without hypochloremia at their first and second hospitalizations, n = 243); Group B (those with hypochloremia at their first hospitalization and without hypochloremia at their second hospitalization, n = 29); Group C (those without hypochloremia at their first hospitalization and with hypochloremia at their second hospitalization, n = 34); and Group D (those with hypochloremia at their first and second hospitalizations, n = 16). RESULTS a Kaplan-Meier analysis revealed that all-cause mortality and cardiac mortality were the highest in Group D compared to the other groups. A multivariable Cox proportional hazard analysis revealed that persistent hypochloremia was independently associated with both all-cause death (hazard ratio 3.490, p < 0.001) and cardiac death (hazard ratio 3.919, p < 0.001). CONCLUSIONS In patients with HF, prolonged hypochloremia over two hospitalizations is associated with an adverse prognosis.
Collapse
|
5
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
6
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
7
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
8
|
Gondalia R, Baldassari A, Holliday KM, Justice AE, Stewart JD, Liao D, Yanosky JD, Engel SM, Sheps D, Jordahl KM, Bhatti P, Horvath S, Assimes TL, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study. ENVIRONMENTAL RESEARCH 2021; 198:111211. [PMID: 33895111 PMCID: PMC8179344 DOI: 10.1016/j.envres.2021.111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. MATERIALS AND METHODS We estimated associations between monthly mean concentrations of PM < 10 μm and 2.5-10 μm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. RESULTS We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. CONCLUSIONS The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn M Holliday
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Geisinger Health System, Danville, PA, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - David Sheps
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Cao X, Zhou Z, Tian Y, Liu Z, Cheng KO, Chen X, Hu W, Wong YM, Li X, Zhang H, Hu R, Huang P. Opposing roles of E3 ligases TRIM23 and TRIM21 in regulation of ion channel ANO1 protein levels. J Biol Chem 2021; 296:100738. [PMID: 33957127 PMCID: PMC8191318 DOI: 10.1016/j.jbc.2021.100738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Anoctamin-1 (ANO1) (TMEM16A) is a calcium-activated chloride channel that plays critical roles in diverse physiological processes, such as sensory transduction and epithelial secretion. ANO1 levels have been shown to be altered under physiological and pathological conditions, although the molecular mechanisms that control ANO1 protein levels remain unclear. The ubiquitin–proteasome system is known to regulate the levels of numerous ion channels, but little information is available regarding whether and how ubiquitination regulates levels of ANO1. Here, we showed that two E3 ligases, TRIM23 and TRIM21, physically interact with the C terminus of ANO1. In vitro and in vivo assays demonstrated that whereas TRIM23 ubiquitinated ANO1 leading to its stabilization, TRIM21 ubiquitinated ANO1 and induced its degradation. Notably, ANO1 regulation by TRIM23 and TRIM21 is involved in chemical-induced pain sensation, salivary secretion, and heart-rate control in mice, and TRIM23 also mediates ANO1 upregulation induced by epidermal growth factor treatment. Our results suggest that these two antagonistic E3 ligases act together to control ANO1 expression and function. Our findings reveal a previously unrecognized mechanism for regulating ANO1 protein levels and identify a potential molecular link between ANO1 regulation, epidermal growth factor, and other signaling pathways.
Collapse
Affiliation(s)
- Xu Cao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Zijing Zhou
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ye Tian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Zhengzhao Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Xiangya Hospital, Central South University, Changsha, China
| | - Kar On Cheng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xibing Chen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Wenbao Hu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yuk Ming Wong
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xiaofen Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; School of Life Science, Hangzhou Institute for Advance Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China; HKUST Shenzhen Research Institute, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China; Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, People's Republic of China.
| |
Collapse
|
10
|
Zhang YP, Ye LL, Yuan H, Duan DD. CFTR plays an important role in the regulation of vascular resistance and high-fructose/salt-diet induced hypertension in mice. J Cyst Fibros 2020; 20:516-524. [PMID: 33279469 DOI: 10.1016/j.jcf.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The pathophysiological roles of cystic fibrosis transmembrane-conductance regulator (CFTR) Cl- channels in the regulation of blood pressure (BP) remain controversial. Here we studied the function of CFTR Cl- channels in regulation of BP and in the high-fructose-salt-diet (HFSD) induced hypertension in mice. METHODS The systolic, diastolic and mean BP (SBP, DBP and MBP, respectively) were continuously monitored from unrestricted conscious wild-type (cftr+/+) FVB and CFTR-knockout (cftr-/-) mice (8-week old, male). HFSD (64.7% fructose, 2% NaCl water) or control normal starch diet (CNSD, 58.9% corn starch, 0 NaCl water) was given for 8 weeks and vascular Doppler were performed. Real-time PCR and Western blot were used to examine mRNA and protein expression, respectively. RESULTS The aortic stiffness, daytime and nighttime SBP, DBP, and MBP of the cftr-/- mice were significantly higher than those in the age- and gender-matched cftr+/+ mice, which is consistent with the findings of increased vascular resistance in cystic fibrosis patients. The aortic stiffness, daytime and nighttime SBP, DBP, and MBP of cftr+/+ mice fed with HFSD were all significantly higher than those fed with CNSD. Importantly, HFSD caused a significant decrease in mRNA and protein expression of WINK1, WINK4 and CFTR in aorta and mesenteric arteries, but not in the kidney, corroborating that HSFD-induced downregulation of WINKs and loss of CFTR function specifically in the arteries may mediate the increased BP. CONCLUSIONS CFTR regulates peripheral arterial resistance and BP in vivo. HFSD-induced CFTR downregulation specifically in the arteries may be a novel mechanism for hypertension.
Collapse
Affiliation(s)
- Ya-Ping Zhang
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lingyu Linda Ye
- Center for Phenomics of Traditional Chinese Medicine, The Affiliated Hospital (Traditional Chinese Medicine) to Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Education Ministry Key Laboratory of Electrophysiology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hong Yuan
- Center of Clinical Pharmacology, the Third Xiang-Ya Hospital, Central South University, Changsha 410013, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, The Affiliated Hospital (Traditional Chinese Medicine) to Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Education Ministry Key Laboratory of Electrophysiology, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
11
|
Kamili C, Kandoti HS, Radhakrishnan S, Konde A, Vattikutti UMR. Anti-angiogenic activity of chloride and potassium channel modulators: repurposing ion channel modulators. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Excessive angiogenesis can be the root cause of many pathological conditions. Various types of ion channels are found on the endothelial cells. These ion channels play a vital role in the multi-stepped process of angiogenesis. The study aims to investigate the anti-angiogenic effects of specific ion channel modulators mefloquine (volume-regulated chloride channel blocker), lubiprostone (ClC-2 channel agonist), and 4-aminopyridine (voltage-gated potassium channel blocker).
Results
The anti-angiogenic activity of ion channel modulators was screened by measuring its effects on the area of neovascularization and histopathological studies by in vivo (corneal neovascularization) method and by in vitro assays, endothelial cell proliferation assay, cell migration assay, and matrigel cord-like morphogenesis assay. The test and standard drug (bevacizumab) groups were compared with the control group using one-way ANOVA, followed by post hoc test, and Dunnett’s test to compare the mean of all the groups with the control mean. The results revealed that mefloquine at the dose of 0.6% w/v and 1.0% w/v, lubiprostone at the dose of 0.5% w/v and 1.0% w/v, and 4-aminopyridine at the dose of 2% w/v and 4% w/v showed significant anti-angiogenic property. In the studies on human umbilical vein endothelial cells, the test drugs (100 nM) showed significant inhibition of proliferation, migration, and decrease in network length of cord-like tubes.
Conclusion
The scientific findings indicate that the test drugs have potent anti-angiogenic activity by inhibiting the cell proliferation, inhibiting the cell volume increase, arresting the cell cycle progression and by causing membrane hyperpolarization. The potent anti-angiogenic drugs obtained by repurposing these ion channel modulators, in the further studies, will be able to treat the diseases due to excess angiogenesis from the root cause.
Graphical abstract
Collapse
|
12
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Gondalia R, Baldassari A, Holliday KM, Justice AE, Méndez-Giráldez R, Stewart JD, Liao D, Yanosky JD, Brennan KJM, Engel SM, Jordahl KM, Kennedy E, Ward-Caviness CK, Wolf K, Waldenberger M, Cyrys J, Peters A, Bhatti P, Horvath S, Assimes TL, Pankow JS, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation. ENVIRONMENT INTERNATIONAL 2019; 132:104723. [PMID: 31208937 PMCID: PMC6754789 DOI: 10.1016/j.envint.2019.03.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm in diameter (PM2.5; PM10; PM2.5-10). METHODS We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10-7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. RESULTS Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10-8). One-month mean PM10 and PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. CONCLUSIONS Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn M Holliday
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Geisinger Health System, Danville, PA, USA
| | - Raúl Méndez-Giráldez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kasey J M Brennan
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Elizabeth Kennedy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Cavin K Ward-Caviness
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, 104 Mason Farm Rd, Chapel Hill, NC, USA
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany; Environmental Science Center, University of Augsburg, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Ponnalagu D, Hussain AT, Thanawala R, Meka J, Bednarczyk P, Feng Y, Szewczyk A, GururajaRao S, Bopassa JC, Khan M, Singh H. Chloride channel blocker IAA-94 increases myocardial infarction by reducing calcium retention capacity of the cardiac mitochondria. Life Sci 2019; 235:116841. [PMID: 31494173 PMCID: PMC7664129 DOI: 10.1016/j.lfs.2019.116841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 01/14/2023]
Abstract
Indanyloxyacetic acid-94 (IAA-94), an intracellular chloride channel blocker, is shown to ablate cardioprotection rendered by ischemic preconditioning (IPC), N (6)-2-(4-aminophenyl) ethyladenosine or the PKC activator phorbol 12-myristate 13-acetate and cyclosporin A (CsA) in both ex-vivo and in-vivo ischemia-reperfusion (IR) injury. Thus signifying the role of the IAA-94 sensitive chloride channels in mediating cardio-protection upon IR injury. Although IAA-94 sensitive chloride currents are recorded in cardiac mitoplast, there is still a lack of understanding of the mechanism by which IAA-94 increases myocardial infarction (MI) by IR injury. Mitochondria are the key arbitrators of cell life and death pathways. Both oxidative stress and calcium overload in the mitochondria, elicit pathways resulting in the opening of mitochondrial permeability transition pore (mPTP) leading to cell death. Therefore, in this study we explored the role of IAA-94 in MI and in maintaining calcium retention capacity (CRC) of cardiac mitochondria after IR. IAA-94 inhibited the CRC of the isolated cardiac mitochondria in a concentration-dependent manner as measured spectrofluorimetrically using calcium green-5 N. Interestingly, IAA-94 did not change the mitochondrial membrane potential. Further, CsA a blocker of mPTP opening could not override the effect of IAA-94. We also showed for the first time that IAA-94 perfusion after ischemic event augments MI by reducing the CRC of mitochondria. To conclude, our results demonstrate that the mechanism of IAA-94 mediated cardio-deleterious effects is via modulating the mitochondria CRC, thereby playing a role in mPTP opening. These findings highlight new pharmacological targets, which can mediate cardioprotection from IR injury.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Ahmed Tafsirul Hussain
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Rushi Thanawala
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Jahnavi Meka
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences - SGGW, Poland
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, United States of America
| | - Adam Szewczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Poland
| | - Shubha GururajaRao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, United States of America
| | - Mahmood Khan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America; Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
15
|
Kopton RA, Baillie JS, Rafferty SA, Moss R, Zgierski-Johnston CM, Prykhozhij SV, Stoyek MR, Smith FM, Kohl P, Quinn TA, Schneider-Warme F. Cardiac Electrophysiological Effects of Light-Activated Chloride Channels. Front Physiol 2018; 9:1806. [PMID: 30618818 PMCID: PMC6304430 DOI: 10.3389/fphys.2018.01806] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl--driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization.
Collapse
Affiliation(s)
- Ramona A Kopton
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany.,Faculty of Biology University of Freiburg, Freiburg, Germany
| | - Jonathan S Baillie
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Sara A Rafferty
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| | | | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University Halifax, NS, Canada
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Leonard CE, Hennessy S, Han X, Siscovick DS, Flory JH, Deo R. Pro- and Antiarrhythmic Actions of Sulfonylureas: Mechanistic and Clinical Evidence. Trends Endocrinol Metab 2017; 28:561-586. [PMID: 28545784 PMCID: PMC5522643 DOI: 10.1016/j.tem.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
Sulfonylureas are the most commonly used second-line drug class for treating type 2 diabetes mellitus (T2DM). While the cardiovascular safety of sulfonylureas has been examined in several trials and nonrandomized studies, little is known of their specific effects on sudden cardiac arrest (SCA) and related serious arrhythmic outcomes. This knowledge gap is striking, because persons with DM are at increased risk of SCA. In this review, we explore the influence of sulfonylureas on the risk of serious arrhythmias, with specific foci on ischemic preconditioning, cardiac excitability, and serious hypoglycemia as putative mechanisms. Elucidating the relationship between individual sulfonylureas and serious arrhythmias is critical, especially as the diabetes epidemic intensifies and SCA incidence increases in persons with diabetes.
Collapse
Affiliation(s)
- Charles E Leonard
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David S Siscovick
- The New York Academy of Medicine, New York, NY 10029, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - James H Flory
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Healthcare Policy and Research, Division of Comparative Effectiveness, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - Rajat Deo
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
M De la Fuente I, Malaina I, Pérez-Samartín A, Boyano MD, Pérez-Yarza G, Bringas C, Villarroel Á, Fedetz M, Arellano R, Cortes JM, Martínez L. Dynamic properties of calcium-activated chloride currents in Xenopus laevis oocytes. Sci Rep 2017; 7:41791. [PMID: 28198817 PMCID: PMC5304176 DOI: 10.1038/srep41791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Abstract
Chloride is the most abundant permeable anion in the cell, and numerous studies in the last two decades highlight the great importance and broad physiological role of chloride currents mediated anion transport. They participate in a multiplicity of key processes, as for instance, the regulation of electrical excitability, apoptosis, cell cycle, epithelial secretion and neuronal excitability. In addition, dysfunction of Cl− channels is involved in a variety of human diseases such as epilepsy, osteoporosis and different cancer types. Historically, chloride channels have been of less interest than the cation channels. In fact, there seems to be practically no quantitative studies of the dynamics of chloride currents. Here, for the first time, we have quantitatively studied experimental calcium-activated chloride fluxes belonging to Xenopus laevis oocytes, and the main results show that the experimental Cl− currents present an informational structure characterized by highly organized data sequences, long-term memory properties and inherent “crossover” dynamics in which persistent correlations arise at short time intervals, while anti-persistent behaviors become dominant in long time intervals. Our work sheds some light on the understanding of the informational properties of ion currents, a key element to elucidate the physiological functional coupling with the integrative dynamics of metabolic processes.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, Spain.,Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Álvaro Villarroel
- Biophysics Unit, CSIC, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Fedetz
- Department of Biochemistry and Pharmacology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Rogelio Arellano
- Laboratory of Cellular Neurophysiology, Neurobiology Institute, UNAM, Querétaro, México
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain.,BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
18
|
Abstract
Mitochondria are the "power house" of a cell continuously generating ATP to ensure its proper functioning. The constant production of ATP via oxidative phosphorylation demands a large electrochemical force that drives protons across the highly selective and low-permeable mitochondrial inner membrane. Besides the conventional role of generating ATP, mitochondria also play an active role in calcium signaling, generation of reactive oxygen species (ROS), stress responses, and regulation of cell-death pathways. Deficiencies in these functions result in several pathological disorders like aging, cancer, diabetes, neurodegenerative and cardiovascular diseases. A plethora of ion channels and transporters are present in the mitochondrial inner and outer membranes which work in concert to preserve the ionic equilibrium of a cell for the maintenance of cell integrity, in physiological as well as pathophysiological conditions. For, e.g., mitochondrial cation channels KATP and BKCa play a significant role in cardioprotection from ischemia-reperfusion injury. In addition to the cation channels, mitochondrial anion channels are equally essential, as they aid in maintaining electro-neutrality by regulating the cell volume and pH. This chapter focusses on the information on molecular identity, structure, function, and physiological relevance of mitochondrial chloride channels such as voltage dependent anion channels (VDACs), uncharacterized mitochondrial inner membrane anion channels (IMACs), chloride intracellular channels (CLIC) and the aspects of forthcoming chloride channels.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Room 8154, Mail Stop 488, Philadelphia, PA, 19102-1192, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Room 8154, Mail Stop 488, Philadelphia, PA, 19102-1192, USA.
| |
Collapse
|
19
|
Yu Y, Ye L, Li YG, Burkin DJ, Duan DD. Heart-specific overexpression of the human short CLC-3 chloride channel isoform limits myocardial ischemia-induced ERP and QT prolongation. Int J Cardiol 2016; 214:218-24. [PMID: 27064645 PMCID: PMC4862918 DOI: 10.1016/j.ijcard.2016.03.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/16/2016] [Accepted: 03/26/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Ischemia causes myocardial infarction and arrhythmias. Up-regulation of cardiac CLC-3 chloride channels is important for ischemic preconditioning-induced second-window protection against myocardial infarction. But its consequences in ischemia-induced electrical remodeling are still unknown. METHODS The recently-characterized heart-specific overexpression of human short CLC-3 isoform (hsCLC-3(OE)) mice was used to study the effects of CLC-3 up-regulation on cardiac electrophysiology under ischemia/reperfusion conditions. In vivo surface electrocardiography (ECG) and intracardiac electrophysiology (ICEP) were used to compare the electrophysiological properties of age-matched wild-type (Clcn3(+/+)) and hsCLC-3(OE) mice under control and myocardial ischemia-reperfusion conditions. RESULTS QT and QTc intervals of hsCLC-3(OE) mice were significantly shorter than those of Clcn3(+/+) mice under control, ischemia and reperfusion conditions. In the ICEP, ventricular effective refractory period (VERP) of hsCLC-3(OE) mice (26.7±1.7ms, n=6) was significantly shorter than that of Clcn3(+/+) mice (36.9±2.8ms, n=8, P<0.05). Under ischemia condition, both VERP (19.8±1.3ms) and atrial effective refractory period (AERP, 34.8±2.5ms) of hsCLC-3(OE) mice were significantly shorter than those of Clcn3(+/+) mice (35.2±3.0ms and 45.8±1.6ms, P<0.01, respectively). Wenckebach atrioventricular nodal block point (AVBP, 91.13±4.08ms) and 2:1 AVBP (71.3±3.8ms) of hsCLC-3(OE) mice were significantly shorter than those of Clcn3(+/+) mice (102.0±2.0ms and 84.1±2.8ms, P<0.05, respectively). However, no differences of ICEP parameters between hsCLC-3(OE) and Clcn3(+/+) mice were observed under reperfusion conditions. CONCLUSION Heart-specific overexpression of hsCLC-3 limited the ischemia-induced QT and ERP prolongation and postponed the advancements of Wenckebach and 2:1 AVBP. CLC-3 up-regulation may serve as an important adaptive mechanism against myocardial ischemia.
Collapse
Affiliation(s)
- Ying Yu
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Laboratory of Cardiovascular Phenomics, University of Nevada School of Medicine, Reno, NV 89557-0318, USA; Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA
| | - Linda Ye
- Laboratory of Cardiovascular Phenomics, University of Nevada School of Medicine, Reno, NV 89557-0318, USA; Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA
| | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, University of Nevada School of Medicine, Reno, NV 89557-0318, USA; Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
20
|
Kanaporis G, Blatter LA. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes. Channels (Austin) 2016; 10:507-17. [PMID: 27356267 DOI: 10.1080/19336950.2016.1207020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca(2+)-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl(-) channel blocker DIDS or lowering external Cl(-) concentration identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- a Department of Molecular Biophysics and Physiology , Rush University Medical Center , Chicago , IL , USA
| | - Lothar A Blatter
- a Department of Molecular Biophysics and Physiology , Rush University Medical Center , Chicago , IL , USA
| |
Collapse
|
21
|
Han Y, Li L, Zhang Y, Yuan H, Ye L, Zhao J, Duan DD. Phenomics of Vascular Disease: The Systematic Approach to the Combination Therapy. Curr Vasc Pharmacol 2016; 13:433-40. [PMID: 25313004 PMCID: PMC4397150 DOI: 10.2174/1570161112666141014144829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/15/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Vascular diseases are usually caused by multifactorial pathogeneses involving genetic and environmental factors. Our current understanding of vascular disease is, however, based on the focused genotype/phenotype studies driven by the “one-gene/one-phenotype” hypothesis. Drugs with “pure target” at individual molecules involved in the pathophysiological pathways are the mainstream of current clinical treatments and the basis of combination therapy of vascular diseases. Recently, the combination of genomics, proteomics, and metabolomics has unraveled the etiology and pathophysiology of vascular disease in a big-data fashion and also revealed unmatched relationships between the omic variability and the much narrower definition of various clinical phenotypes of vascular disease in individual patients. Here, we introduce the phenomics strategy that will change the conventional focused phenotype/genotype/genome study to a new systematic phenome/genome/proteome approach to the understanding of pathophysiology and combination therapy of vascular disease. A phenome is the sum total of an organism’s phenotypic traits that signify the expression of genome and specific environmental influence. Phenomics is the study of phenome to quantitatively correlate complex traits to variability not only in genome, but also in transcriptome, proteome, metabolome, interactome, and environmental factors by exploring the systems biology that links the genomic and phenomic spaces. The application of phenomics and the phenome-wide associated study (PheWAS) will not only identify a systemically-integrated set of biomarkers for diagnosis and prognosis of vascular disease but also provide novel treatment targets for combination therapy and thus make a revolutionary paradigm shift in the clinical treatment of these devastating diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine 303F, 1664 N Virginia Street/MS 318, Reno, Nevada 89557-0318, USA.
| |
Collapse
|
22
|
Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact.
Collapse
Affiliation(s)
- Y-P Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y-Y Zhang
- Department of Cardiology, Changzhou Second People's Hospital, Changzhou, Jiangsu, China
| | - D D Duan
- Laboratory of Cardiovascular Phenomics, Center for Cardiovascular Research, Department of Pharmacology, and Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|
23
|
Kanaporis G, Blatter LA. Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes. J Physiol 2016; 594:699-714. [PMID: 26662365 DOI: 10.1113/jp271887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/05/2015] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Cardiac alternans--periodic beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic calcium transient (CaT) amplitude--is a high risk indicator for cardiac arrhythmias and sudden cardiac death. However, it remains an unresolved issue whether beat-to-beat alternations in intracellular Ca(2+) ([Ca(2+)]i ) or AP morphology are the primary cause of pro-arrhythmic alternans. Here we show that in atria AP alternans occurs secondary to CaT alternans. CaT alternans leads to complex beat-to-beat changes in Ca(2+)-regulated ion currents that determine alternans of AP morphology. We report the novel finding that alternans of AP morphology is largely sustained by the activity of Ca(2+)-activated Cl(-) channels (CaCCs). Suppression of the CaCCs significantly reduces AP alternans, while CaT alternans remains unaffected. The demonstration of a major role of CaCCs in the development of AP alternans opens new possibilities for atrial alternans and arrhythmia prevention. Cardiac alternans, described as periodic beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias and sudden cardiac death. We investigated mechanisms of cardiac alternans in single rabbit atrial myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. Beat-to-beat alternations of AP morphology and CaT amplitude revealed a strong quantitative correlation. Application of voltage clamp protocols in the form of pre-recorded APs (AP-clamp) during pacing-induced CaT alternans revealed a Ca(2+)-dependent current consisting of a large outward component (4.78 ± 0.58 pA pF(-1) in amplitude) coinciding with AP phases 1 and 2 that was followed by an inward current (-0.42 ± 0.03 pA pF(-1); n = 21) during AP repolarization. Approximately 90% of the initial outward current was blocked by substitution of Cl(-) ions or application of the Cl(-) channel blocker DIDS identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The prominent AP prolongation at action potential duration at 30% repolarization level during the small alternans CaT was due to reduced ICaCC. Inhibition of Cl(-) currents abolished AP alternans, but failed to affect CaT alternans, indicating that disturbances in Ca(2+) signalling were the primary event leading to alternans, and ICaCC played a decisive role in shaping the beat-to-beat alternations in AP morphology observed during alternans.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
24
|
Jiang K, Jiao S, Vitko M, Darrah R, Flask CA, Hodges CA, Yu X. The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response. J Cyst Fibros 2016; 15:34-42. [PMID: 26119592 PMCID: PMC4691219 DOI: 10.1016/j.jcf.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Altered cardiac function has been observed in cystic fibrosis transmembrane regulator (CFTR) knockout mice. However, whether this alteration is a direct effect of CFTR disruption in the heart, or is secondary due to systemic loss of CFTR, remains to be elucidated. METHODS Cardiac function of mice with muscle-specific or global knockout of CFTR was evaluated at baseline and under β-stimulation by MRI in vivo. Myocyte contractility and Ca2+ transients were measured in vitro. RESULTS Both CFTR knockout models showed increased twist and torsion at baseline. Response to β-stimulation was unaltered in muscle-specific CFTR knockout mice and was slightly decreased in global CFTR knockout mice. Aortic diameter was also decreased in both mouse models. No difference was observed in myocyte contractility and Ca2+ transients. CONCLUSIONS CFTR disruption leads to increased myocardial contractility at baseline, which may trigger untoward myocardial remodeling in CF patients that is independent of lung diseases.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| | - Sen Jiao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| | - Megan Vitko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rebecca Darrah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
25
|
Ye Z, Wu MM, Wang CY, Li YC, Yu CJ, Gong YF, Zhang J, Wang QS, Song BL, Yu K, Hartzell HC, Duan DD, Zhao D, Zhang ZR. Characterization of Cardiac Anoctamin1 Ca²⁺-Activated Chloride Channels and Functional Role in Ischemia-Induced Arrhythmias. J Cell Physiol 2015; 230:337-46. [PMID: 24962810 DOI: 10.1002/jcp.24709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Anoctamin1 (ANO1) encodes a Ca(2+)-activated chloride (Cl(-)) channel (CaCC) in variety tissues of many species. Whether ANO1 expresses and functions as a CaCC in cardiomyocytes remain unknown. The objective of this study is to characterize the molecular and functional expression of ANO1 in cardiac myocytes and the role of ANO1-encoded CaCCs in ischemia-induced arrhythmias in the heart. Quantitative real-time RT-PCR, immunofluorescence staining assays, and immunohistochemistry identified the molecular expression, location, and distribution of ANO1 in mouse ventricular myocytes (mVMs). Patch-clamp recordings combined with pharmacological analyses found that ANO1 was responsible for a Ca(2+)-activated Cl(-) current (I(Cl.Ca)) in cardiomyocytes. Myocardial ischemia led to a significant increase in the current density of I(Cl.Ca), which was inhibited by a specific ANO1 inhibitor, T16A(inh)-A01, and an antibody targeting at the pore area of ANO1. Moreover, cardiomyocytes isolated from mice with ischemia-induced arrhythmias had an accelerated early phase 1 repolarization of action potentials (APs) and a deeper "spike and dome" compared to control cardiomyocytes from non-ischemia mice. Application of the antibody targeting at ANO1 pore prevented the ischemia-induced early phase 1 repolarization acceleration and caused a much shallower "spike and dome". We conclude that ANO1 encodes CaCC and plays a significant role in the phase 1 repolarization of APs in mVMs. The ischemia-induced increase in ANO1 expression may be responsible for the increased density of I(Cl.Ca) in the ischemic heart and may contribute, at least in part, to ischemia-induced arrhythmias.
Collapse
Affiliation(s)
- Zhen Ye
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Ming-Ming Wu
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Chun-Yu Wang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Yan-Chao Li
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Chang-Jiang Yu
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Yuan-Feng Gong
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Jun Zhang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Qiu-Shi Wang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Bin-Lin Song
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, Center for Molecular Medicine, School of Medicine University of Nevada, Reno, Nevada
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| |
Collapse
|
26
|
Wang B, Li C, Huai R, Qu Z. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension. J Mol Cell Cardiol 2015; 82:22-32. [PMID: 25739000 DOI: 10.1016/j.yjmcc.2015.02.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
Calcium-activated chloride channels (CaCCs) have been implicated in hypertension; however, the mechanism underlying their involvement is unknown. The aim of this study was to determine whether the CaCC ANO1 is involved in the pathogenesis of spontaneous hypertension. Arterial ANO1 expression and the effects on blood pressure (BP) of inhibiting ANO1 with an ANO1 inhibitor, T16(Ainh)-A01, and in vivo RNAi, were examined in spontaneously hypertensive rats (SHRs). Knockdown of ANO1 by siRNA prevented hypertensive development, and attenuation of ANO1 channel activity reduced BP in SHRs. Angiotensin II upregulated ANO1 expression in primary cultures of vascular smooth muscle cells (VSMCs). The protein level and activity of cellular ANO1 positively correlated with VSMC proliferation. Our data indicate an important role of increased ANO1 expression and activity in inducing hypertension in SHRs. It may mediate angiotensin II-dependent vascular remodeling. Our results increase the mechanistic understanding of hypertension and suggest ANO1 as a possible therapeutic target for hypertension.
Collapse
Affiliation(s)
- Bingxiang Wang
- Department of Physiology, Center for Medical Research, the First Affiliated Hospital, Medical College of Qingdao University, Qingdao 266071, China; Department of Physiology, Taishan Medical College, Taian 271000, China.
| | - Chunlin Li
- Department of Physiology, Center for Medical Research, the First Affiliated Hospital, Medical College of Qingdao University, Qingdao 266071, China.
| | - Ruituo Huai
- Robot Research Center, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Zhiqiang Qu
- Department of Physiology, Center for Medical Research, the First Affiliated Hospital, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
27
|
Tomasova L, Pavlovicova M, Malekova L, Misak A, Kristek F, Grman M, Cacanyiova S, Tomasek M, Tomaskova Z, Perry A, Wood ME, Lacinova L, Ondrias K, Whiteman M. Effects of AP39, a novel triphenylphosphonium derivatised anethole dithiolethione hydrogen sulfide donor, on rat haemodynamic parameters and chloride and calcium Cav3 and RyR2 channels. Nitric Oxide 2014; 46:131-44. [PMID: 25555533 DOI: 10.1016/j.niox.2014.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/04/2014] [Accepted: 12/25/2014] [Indexed: 12/18/2022]
Abstract
H2S donor molecules have the potential to be viable therapeutic agents. The aim of this current study was (i) to investigate the effects of a novel triphenylphosphonium derivatised dithiolethione (AP39), in the presence and absence of reduced nitric oxide bioavailability and (ii) to determine the effects of AP39 on myocardial membrane channels; CaV3, RyR2 and Cl(-). Normotensive, L-NAME- or phenylephrine-treated rats were administered Na2S, AP39 or control compounds (AP219 and ADT-OH) (0.25-1 µmol kg(-1)i.v.) and haemodynamic parameters measured. The involvement of membrane channels T-type Ca(2+) channels CaV3.1, CaV3.2 and CaV3.3 as well as Ca(2+) ryanodine (RyR2) and Cl(-) single channels derived from rat heart sarcoplasmic reticulum were also investigated. In anaesthetised Wistar rats, AP39 (0.25-1 µmol kg(-1) i.v) transiently decreased blood pressure, heart rate and pulse wave velocity, whereas AP219 and ADT-OH and Na2S had no significant effect. In L-NAME treated rats, AP39 significantly lowered systolic blood pressure for a prolonged period, decreased heart rate and arterial stiffness. In electrophysiological studies, AP39 significantly inhibited Ca(2+) current through all three CaV3 channels. AP39 decreased RyR2 channels activity and increased conductance and mean open time of Cl(-) channels. This study suggests that AP39 may offer a novel therapeutic opportunity in conditions whereby (•)NO and H2S bioavailability are deficient such as hypertension, and that CaV3, RyR2 and Cl(-) cardiac membrane channels might be involved in its biological actions.
Collapse
Affiliation(s)
- Lenka Tomasova
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia; Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Lubica Malekova
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia
| | - Anton Misak
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia
| | - Frantisek Kristek
- Institute of Normal and Pathological Physiology, SAS, Bratislava, Slovakia
| | - Marian Grman
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia; Center for Molecular Medicine, SAS, Bratislava, Slovakia
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, SAS, Bratislava, Slovakia
| | | | - Zuzana Tomaskova
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia
| | - Alexis Perry
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Mark E Wood
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Lubica Lacinova
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia
| | - Karol Ondrias
- Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia
| | | |
Collapse
|
28
|
Cuppoletti J, Chakrabarti J, Tewari KP, Malinowska DH. Differentiation between human ClC-2 and CFTR Cl− channels with pharmacological agents. Am J Physiol Cell Physiol 2014; 307:C479-92. [DOI: 10.1152/ajpcell.00077.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been difficult to separate/identify the roles of ClC-2 and CFTR in Cl− transport studies. Using pharmacological agents, we aimed to differentiate functionally between ClC-2 and CFTR Cl− channel currents. Effects of CFTR inhibitor 172 (CFTRinh172), N-(4-methylphenylsulfonyl)- N′-(4-trifluoromethylphenyl)urea (DASU-02), and methadone were examined by whole cell patch clamp on Cl− currents in recombinant human ClC-2/human embryonic kidney 293 (ClC-2/HEK293) cells stably transformed with Epstein-Barr nuclear antigen 1 (hClC-2/293EBNA) and human CFTR/HEK293 (hCFTR/HEK293) cells and by short-circuit current ( Isc) measurements in T84 cells. Lubiprostone and forskolin-IBMX were used as activators. CFTRinh172 inhibited forskolin-IBMX-stimulated recombinant human CFTR (hCFTR) and lubiprostone-stimulated recombinant human ClC-2 (hClC-2) Cl− currents in a concentration-dependent manner equipotently. DASU-02 inhibited forskolin-IBMX-stimulated Cl− currents in hCFTR/HEK293 cells, but not lubiprostone-stimulated Cl− currents in hClC-2/293EBNA cells. In T84 cells with basolateral nystatin or 1-ethyl-2-benzimidazolinone (1-EBIO), lubiprostone-stimulated and forskolin-IBMX-cyclosporin A (FICA)-stimulated Isc components were observed. CFTRinh172 inhibited major portions of both components. DASU-02 had no effect on lubiprostone-stimulated Isc but partially inhibited FICA-stimulated Isc. T84 cells in which ClC-2 or CFTR was knocked down using siRNAs were constructed. T84 ClC-2 knockdown cells did not respond to lubiprostone but did respond to forskolin-IBMX in a methadone-insensitive, DASU-02-sensitive manner, indicating CFTR function. T84 CFTR knockdown cells responded separately to lubiprostone and forskolin-IBMX in a methadone-sensitive and DASU-02-insensitive manner, indicating ClC-2 function. Low lubiprostone concentrations activated ClC-2, but not CFTR, and both channels were activated by forskolin-IBMX but have different inhibitor sensitivities. Methadone, but not DASU-02, inhibited ClC-2. DASU-02, but not methadone, inhibited CFTR. In T84 cells, both ClC-2 and CFTR are present and likely play roles in Cl− secretion.
Collapse
Affiliation(s)
- John Cuppoletti
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jayati Chakrabarti
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kirti P. Tewari
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Danuta H. Malinowska
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
29
|
Thinnes FP. Opening up of plasmalemma type-1 VDAC to form apoptotic "find me signal" pathways is essential in early apoptosis - evidence from the pathogenesis of cystic fibrosis resulting from failure of apoptotic cell clearance followed by sterile inflammation. Mol Genet Metab 2014; 111:439-44. [PMID: 24613483 DOI: 10.1016/j.ymgme.2014.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Cell membrane-standing type-1 VDAC is involved in cell volume regulation and thus apoptosis. The channel has been shown to figure as a pathway for osmolytes of varying classes, ATP included. An early event in apoptotic cell death is the release of "find me signals" by cells that enter the apoptotic process. ATP is one of those signals. Apoptotic cells this way attract phagocytes for an immunologically silent cell clearance. Thus, whenever apoptosis fails by a blockade of plasmalemma type-1 VDAC processes of sterile inflammation must be assumed for cell elimination. This is evident from a close look on the pathogenetic process of cystic fibrosis (CF). However, in normal airway epithelia two different anion channels cooperate to guarantee an appropriate volume of airway surface liquid (ASL) necessary for surface clearing: the cystic fibrosis conductance regulator (CFTR) and the outwardly rectifying chloride channel (ORCC) complex also called "alternate chloride channel" and under the control of the CFTR. There are arguments, that type-1 VDAC forms the channel part of the ORCC complex, and it has been shown that CFTR and type-1 VDAC co-localize in the apical membranes of human surface respiratory epithelium. In cystic fibrosis, the central cAMP-dependent regulation of ion and water transport via functional CFTR is lost. Here, CFTR molecules do not reach the apical membranes of airway epithelia anymore or work in an insufficient way, respectively. In addition, type-1 VDAC is no longer available to work as a "find me signal" pathway. In consequence, clearing away of apoptotic cells is blocked. There are experimental data on the channel characteristics of type-1 VDAC under the anion channel blocker DIDS (4,4-diisothiocyanato-stilbenedisulphonic acid) that argue in favor of this hypothesis. Together, type-1 VDAC should be kept as a "find me signal" pathway, which may give way to several classes of such signals.
Collapse
|