1
|
Protacio RU, Davidson MK, Malone EG, Helmlinger D, Smith JR, Gibney PA, Wahls WP. Agar lot-specific inhibition in the plating efficiency of yeast spores and cells. G3 (BETHESDA, MD.) 2024; 14:jkae229. [PMID: 39312221 PMCID: PMC11631513 DOI: 10.1093/g3journal/jkae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 12/11/2024]
Abstract
The fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are highly diverged (530 mya), single-celled, model eukaryotic organisms. Scientists employ mating, meiosis, and the plating of ascospores and cells to generate strains with novel genotypes and to discover biological processes. Our three laboratories encountered independently sudden-onset, major impediments to such research. Spore suspensions and vegetative cells no longer plated effectively on minimal media. By systematically analyzing multiple different media components from multiple different suppliers, we identified the source of the problem. Specific lots of agar were toxic. We report that this sporadic toxicity affects independently the agar stocks of multiple vendors, has occurred repeatedly over at least three decades, and extends to species in highly diverged taxa. Interestingly, the inhibitory effects displayed variable penetrance and were attenuated on rich media. Consequently, quality control checks that use only rich media can provide false assurances on the quality of the agar. Lastly, we describe likely sources of the toxicity and we provide specific guidance for quality control measures that should be applied by all vendors as preconditions for their sale of agar.
Collapse
Affiliation(s)
- Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Dominique Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, University of Montpellier, 34293 Montpellier Cedex 05, France
| | - Jeremy R Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| |
Collapse
|
2
|
Fernández Blanco A, Moreno Y, García-Hernández J, Hernández M. A Photonic Immunosensor Detection Method for Viable and Non-Viable E. coli in Water Samples. Microorganisms 2024; 12:1328. [PMID: 39065096 PMCID: PMC11278787 DOI: 10.3390/microorganisms12071328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Detection and enumeration of coliform bacteria using traditional methods and current molecular techniques against E. coli usually involve long processes with less sensitivity and specificity to distinguish between viable and non-viable bacteria for microbiological water analysis. This approach involves developing and validating an immunosensor comprising ring resonators functionalized with specific antibodies surrounded by a network of microchannels as an alternative method for detecting and indirectly enumerating Escherichia coli in samples of water for consumption. Different ELISA assays were conducted to characterize monoclonal and polyclonal antibodies selected as detection probes for specific B-galactosidase enzymes and membrane LPS antigens of E. coli. An immobilization control study was performed on silicon nitride surfaces used in the immunosensor, immobilized with the selected antibodies from the ELISA assays. The specificity of this method was confirmed by detecting as few as 10 CFU/mL of E. coli from viable and non-viable target bacteria after applying various disinfection methods to water samples intended for human consumption. The 100% detection rate and a 100 CFU/mL Limit of Quantification of the proposed method were validated through a comprehensive assessment of the immunosensor-coupled microfluidic system, involving at least 50 replicates with a concentration range of 10 to 106 CFU/mL of the target bacteria and 50 real samples contaminated with and without disinfection treatment. The correlation coefficient of around one calculated for each calibration curve obtained from the results demonstrated sensitive and rapid detection capabilities suitable for application in water resources intended for human consumption within the food industry. The biosensor was shown to provide results in less than 4 h, allowing for rapid identification of microbial contamination crucial for ensuring water monitoring related to food safety or environmental diagnosis and allowing for timely interventions to mitigate contamination risks. Indeed, the achieved setup facilitates the in situ execution of laboratory processes, allowing for the detection of both viable and non-viable bacteria, and it implies future developments of simultaneous detection of pathogens in the same contaminated sample.
Collapse
Affiliation(s)
| | - Yolanda Moreno
- Institute of Water and Environmental Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jorge García-Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (J.G.-H.); (M.H.)
| | - Manuel Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (J.G.-H.); (M.H.)
| |
Collapse
|
3
|
Davidson MK, Protacio RU, Helmlinger D, Wahls WP. Laboratory horror stories: Poison in the agars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597796. [PMID: 38895319 PMCID: PMC11185651 DOI: 10.1101/2024.06.06.597796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The fission yeast Schizosaccharomyces pombe is a single-celled eukaryote that can be cultured as a haploid or as a diploid. Scientists employ mating, meiosis, and the plating of ascospores and cells to generate strains with novel genotypes and to discover biological processes. Our two laboratories encountered independently sudden-onset, major impediments to such research. Spore suspensions and vegetative cells no longer plated effectively on minimal media. By systematically analyzing multiple different media components from multiple different suppliers, we identified the source of the problem. Specific lots of agar, from different suppliers, were toxic. Interestingly, the inhibitory effect was attenuated on rich media. Consequently, quality control checks that use only rich media can provide false assurances on the quality of the agar. Lastly, we describe likely sources of the toxicity and we provide specific guidance for quality control measures that should be applied by all vendors as preconditions for their sale of agar.
Collapse
Affiliation(s)
- Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Reine U. Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Dominique Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| |
Collapse
|
4
|
Pone EJ, Hernandez-Davies JE, Jan S, Silzel E, Felgner PL, Davies DH. Multimericity Amplifies the Synergy of BCR and TLR4 for B Cell Activation and Antibody Class Switching. Front Immunol 2022; 13:882502. [PMID: 35663959 PMCID: PMC9161726 DOI: 10.3389/fimmu.2022.882502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Sustained signaling through the B cell antigen receptor (BCR) is thought to occur only when antigen(s) crosslink or disperse multiple BCR units, such as by multimeric antigens found on the surfaces of viruses or bacteria. B cell-intrinsic Toll-like receptor (TLR) signaling synergizes with the BCR to induce and shape antibody production, hallmarked by immunoglobulin (Ig) class switch recombination (CSR) of constant heavy chains from IgM/IgD to IgG, IgA or IgE isotypes, and somatic hypermutation (SHM) of variable heavy and light chains. Full B cell differentiation is essential for protective immunity, where class switched high affinity antibodies neutralize present pathogens, memory B cells are held in reserve for future encounters, and activated B cells also serve as semi-professional APCs for T cells. But the rules that fine-tune B cell differentiation remain partially understood, despite their being essential for naturally acquired immunity and for guiding vaccine development. To address this in part, we have developed a cell culture system using splenic B cells from naive mice stimulated with several biotinylated ligands and antibodies crosslinked by streptavidin reagents. In particular, biotinylated lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, and biotinylated anti-IgM were pre-assembled (multimerized) using streptavidin, or immobilized on nanoparticles coated with streptavidin, and used to active B cells in this precisely controlled, high throughput assay. Using B cell proliferation and Ig class switching as metrics for successful B cell activation, we show that the stimuli are both synergistic and dose-dependent. Crucially, the multimerized immunoconjugates are most active over a narrow concentration range. These data suggest that multimericity is an essential requirement for B cell BCR/TLRs ligands, and clarify basic rules for B cell activation. Such studies highlight the importance in determining the choice of single vs multimeric formats of antigen and PAMP agonists during vaccine design and development.
Collapse
|
5
|
Hamada Y, Fukutomi Y, Nakatani E, Saito A, Watai K, Kamide Y, Sekiya K, Nagai T, Harada K, Shiraishi Y, Oguma T, Asano K, Taniguchi M. Optimal Aspergillus fumigatus and Asp f 1 serum IgG cut-offs for the diagnosis of allergic bronchopulmonary aspergillosis. Allergol Int 2021; 70:74-80. [PMID: 32814668 DOI: 10.1016/j.alit.2020.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The presence of IgG antibodies (Abs) to Aspergillus fumigatus (Af) is a crucial diagnostic criterion for allergic bronchopulmonary aspergillosis (ABPA). Although precipitation is traditionally used to document IgG Abs, anti-Af serum IgG levels can also be measured by enzyme immunoassay (EIA). However, there are insufficient data on the optimal cut-offs to assess diagnostic performance of the EIA method. This study aimed to determine cut-off levels of IgG binding crude Af extracts or recombinant Asp f 1 (by ImmunoCAP®) and to compare their efficacy for ABPA diagnosis with Af-precipitating Abs. METHODS The age distribution of levels of IgG to crude extracts of Af (Af-IgG) and recombinant Asp f 1 (Asp f 1-IgG) was established using sera from 694 healthy controls (HC). Receiver operating characteristic analysis for Af-IgG and Asp f 1-IgG levels for the purpose of ABPA diagnosis was performed in 306 Af-sensitized asthma patients (including 49 ABPA), and cut-offs were determined. RESULTS An age-dependent decline in the levels of Af-IgG was observed in HC. Thus, cut-offs for Af-IgG levels were determined separately by age as 60 mg/L for patients aged <55 years, and 45 mg/L for those aged ≥55 years. For Asp f 1-IgG, 6.6 mg/L was set as the cut-off regardless of age. Although such IgG testing by EIA allowed a sufficiently good diagnostic performance, Af-precipitating Abs had better diagnostic applicability for ABPA. CONCLUSIONS We determined cut-offs for Af-IgG and Asp f 1-IgG measured by EIA, which can be useful in clinical settings where precipitating Abs are unavailable.
Collapse
Affiliation(s)
- Yuto Hamada
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Course of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuma Fukutomi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Course of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Eiji Nakatani
- Division of Statistical Analysis, Research Support Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Akemi Saito
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kentaro Watai
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Yosuke Kamide
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kiyoshi Sekiya
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Tadashi Nagai
- Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Kazuki Harada
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiki Shiraishi
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Course of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Center for Immunology and Allergology, Shonan Kamakura General Hospital, Kanagawa, Japan
| |
Collapse
|
6
|
Sun W, Sun J, Zhang H, Meng Y, Li L, Li G, Zhang X, Meng Y. Chemosynthesis and characterization of site-specific N-terminally PEGylated Alpha-momorcharin as apotential agent. Sci Rep 2018; 8:17729. [PMID: 30531997 PMCID: PMC6286350 DOI: 10.1038/s41598-018-35969-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Alpha-momorcharin (α-MC), a type I ribosome-inactivating protein (RIP) isolated from Momordica charantia seeds, has been extensively studied for its antitumor, antiviral and antifungal activities. However, as an exogenous protein, problems associated with short half-life and strong immunogenicity have limited its clinical application. Poly (ethylene glycol) (PEG), as a polyether compound, is a well established and efficient modifier to develop it as a potential agent. Nevertheless, conventional PEGylation is not site-controlled and the conjugates are often not homogenous due to the generation of multi-PEGylated derivatives. To obtain a homogenous mono-PEGylated α-MC, the PEGylation was carried out by coupling a 20 kDa mPEG-butyraldehyde (mPEG-ALD) with α-MC. The product was separated and purified by MacroCap SP chromatography. Results from SDS-PAGE and MALDI-TOF MS revealed that the PEGylated α-MC consisted of one molecule mPEG and α-MC. Edman degradation confirmed that the N-terminal residue of α-MC was successfully coupled with mPEG-ALD. The mono-PEGylated α-MC possessed an extremely similar secondary structure to native α-MC through spectral analyses. In addition, it also showed low immunogenicity by double immunodiffusion and preserved moderate antitumor activity to three kinds of tumor cell lines in vitro. Finally, trypsin resistance was also considerably improved.
Collapse
Affiliation(s)
- Wenkui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jinghui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Haowen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York, 14260, United States
| | - Yanfa Meng
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Linli Li
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Gangrui Li
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xu Zhang
- Department of Pharmaceutics, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yao Meng
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York, 14260, United States.
| |
Collapse
|
7
|
Hornbeck P, Fleisher TA, Papadopoulos NM. Isotype Determination of Antibodies. ACTA ACUST UNITED AC 2017; 116:2.2.1-2.2.7. [PMID: 28150862 DOI: 10.1002/cpim.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
On identifying a new monoclonal antibody, or in characterizing antibodies in sera evoked by disease or immunization, it is particularly informative to determine the serological class of the antibodies. The serological class of the protein is determined by the structure of the antibody constant region. Several methods of class or isotype determination are outlined in this unit: sandwich ELISA, electrophoresis, and immunofixation, or use of a variety of commercially available kits. Different purification schemes and approaches for enzymatic fragmentation of the antibodies depend on the class or isotype of the antibody, so this information streamlines these processes. © 2017 by John Wiley & Sons, Inc.
Collapse
|