1
|
Wang Y, Hu Y, Meng J, Peng X, Zhao Q. Modulation of terahertz absorption by a single mutation of rhodopsin mimics. Phys Chem Chem Phys 2025; 27:8510-8520. [PMID: 40196919 DOI: 10.1039/d4cp04411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The collective vibration of many biomolecules such as the skeletal vibration, dipole rotation and conformational bending falls in the terahertz (THz) frequency domain. Terahertz time-domain spectroscopy (THz-TDS), which is very sensitive to the conformational changes, can be used to characterize the collective vibration of biomolecules. In this study, we investigated the low-frequency THz absorption spectra of two rhodopsin mimics using transmission THz-TDS. Using the normal model analysis (NMA) and molecular dynamics (MD), we successfully modelled the experimental THz absorption spectral curve. Furthermore, we attributed a unique collective motion pattern to each distinctive THz absorption frequency. By comparing the THz absorption spectra between without and with retinal, we show that the retinal binding can significantly alter the THz absorption spectra as well as the vibration modes. Furthermore, by comparing the THz absorption spectra between the two mutants, we observed that a single mutation can significantly change the influence of retinal binding on the THz absorption spectrum.
Collapse
Affiliation(s)
- Yunyu Wang
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yongnan Hu
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jiajia Meng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Qing Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Li G, Meng J, Yu S, Bai X, Dai J, Song Y, Peng X, Zhao Q. Excited-State Dynamics of a CRABPII-Based Microbial Rhodopsin Mimic. J Phys Chem B 2024; 128:7712-7721. [PMID: 38940335 DOI: 10.1021/acs.jpcb.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Microbial rhodopsin, a pivotal photoreceptor protein, has garnered widespread application in diverse fields such as optogenetics, biotechnology, biodevices, etc. However, current microbial rhodopsins are all transmembrane proteins, which both complicates the investigation on the photoreaction mechanism and limits their further applications. Therefore, a specific mimic for microbial rhodopsin can not only provide a better model for understanding the mechanism but also can extend the applications. The human protein CRABPII turns out to be a good template for design mimics on rhodopsin due to the convenience in synthesis and the stability after mutations. Recently, Geiger et al. designed a new CRABPII-based mimic M1-L121E on microbial rhodopsin with the 13-cis, syn (13C) isomerization after irradiation. However, it still remains a question as to how similar it is compared with the natural microbial rhodopsin, in particular, in the aspect of the photoreaction dynamics. In this article, we investigate the excited-state dynamics of this mimic by measuring its transient absorption spectra. Our results reveal that there are two components in the solution of mimic M1-L121E at pH 8, known as protonated Schiff base (PSB) and unprotonated Schiff base (USB) states. In both states, the photoreaction process from 13-cis, syn(13C) to all-trans,anti (AT) is faster than that from the inverse direction. In addition, the photoreaction process in the PSB state is faster than that in the USB state. We compared the isomerization time of the PSB state to that of microbial rhodopsin. Our findings indicate that M1-L121E exhibits behaviors similar to those of microbial rhodopsins in the general pattern of PSB isomerization, where the isomerization from 13C to AT is much faster than its inverse direction. However, our results also reveal significant differences in the excited-state dynamics of the mimic relative to the native microbial rhodopsin, including the slower PSB isomerization rates as well as the unusual USB photoreaction dynamics at pH = 8. By elucidating the distinctive characteristics of mimics M1-L121E, this study enhances our understanding of microbial rhodopsin mimics and their potential applications.
Collapse
Affiliation(s)
- Gaoshang Li
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiajia Meng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuang Yu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Bai
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Dai
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yin Song
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100081, China
| | - Qing Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Demoulin B, Maiuri M, Berbasova T, Geiger JH, Borhan B, Garavelli M, Cerullo G, Rivalta I. Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores. Chemistry 2021; 27:16389-16400. [PMID: 34653286 DOI: 10.1002/chem.202102383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/07/2022]
Abstract
Artificial biomimetic chromophore-protein complexes inspired by natural visual pigments can feature color tunability across the full visible spectrum. However, control of excited state dynamics of the retinal chromophore, which is of paramount importance for technological applications, is lacking due to its complex and subtle photophysics/photochemistry. Here, ultrafast transient absorption spectroscopy and quantum mechanics/molecular mechanics simulations are combined for the study of highly tunable rhodopsin mimics, as compared to retinal chromophores in solution. Conical intersections and transient fluorescent intermediates are identified with atomistic resolution, providing unambiguous assignment of their ultrafast excited state absorption features. The results point out that the electrostatic environment of the chromophore, modified by protein point mutations, affects its excited state properties allowing control of its photophysics with same power of chemical modifications of the chromophore. The complex nature of such fine control is a fundamental knowledge for the design of bio-mimetic opto-electronic and photonic devices.
Collapse
Affiliation(s)
- Baptiste Demoulin
- Laboratoire de Chimie, Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342, Lyon, France
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Ivan Rivalta
- Laboratoire de Chimie, Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342, Lyon, France.,Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
4
|
Santos EM, Sheng W, Esmatpour Salmani R, Tahmasebi Nick S, Ghanbarpour A, Gholami H, Vasileiou C, Geiger JH, Borhan B. Design of Large Stokes Shift Fluorescent Proteins Based on Excited State Proton Transfer of an Engineered Photobase. J Am Chem Soc 2021; 143:15091-15102. [PMID: 34516091 DOI: 10.1021/jacs.1c05039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.
Collapse
Affiliation(s)
- Elizabeth M Santos
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Wei Sheng
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | | | - Setare Tahmasebi Nick
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Alireza Ghanbarpour
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Hadi Gholami
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - James H Geiger
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Santos EM, Berbasova T, Wang W, Salmani RE, Sheng W, Vasileiou C, Geiger JH, Borhan B. Engineering of a Red Fluorogenic Protein/Merocyanine Complex for Live-Cell Imaging. Chembiochem 2020; 21:723-729. [PMID: 31482666 PMCID: PMC7379159 DOI: 10.1002/cbic.201900428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 12/25/2022]
Abstract
A reengineered human cellular retinol binding protein II (hCRBPII), a 15-kDa protein belonging to the intracellular lipid binding protein (iLBP) family, generates a highly fluorescent red pigment through the covalent linkage of a merocyanine aldehyde to an active site lysine residue. The complex exhibits "turn-on" fluorescence, due to a weakly fluorescent aldehyde that "lights up" with subsequent formation of a strongly fluorescent merocyanine dye within the binding pocket of the protein. Cellular penetration of merocyanine is rapid, and fluorophore maturation is nearly instantaneous. The hCRBPII/merocyanine complex displays high quantum yield, low cytotoxicity, specificity in labeling organelles, and compatibility in both cancer cell lines and yeast cells. The hCRBPII/merocyanine tag is brighter than most common red fluorescent proteins.
Collapse
Affiliation(s)
- Elizabeth M. Santos
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| | - Wenjing Wang
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| | | | - Wei Sheng
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| | - James H. Geiger
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824 USA
| |
Collapse
|
6
|
Ghanbarpour A, Nairat M, Nosrati M, Santos EM, Vasileiou C, Dantus M, Borhan B, Geiger JH. Mimicking Microbial Rhodopsin Isomerization in a Single Crystal. J Am Chem Soc 2019; 141:1735-1741. [PMID: 30580520 DOI: 10.1021/jacs.8b12493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriorhodopsin represents the simplest, and possibly most abundant, phototropic system requiring only a retinal-bound transmembrane protein to convert photons of light to an energy-generating proton gradient. The creation and interrogation of a microbial rhodopsin mimic, based on an orthogonal protein system, would illuminate the design elements required to generate new photoactive proteins with novel function. We describe a microbial rhodopsin mimic, created using a small soluble protein as a template, that specifically photoisomerizes all- trans to 13- cis retinal followed by thermal relaxation to the all- trans isomer, mimicking the bacteriorhodopsin photocycle, in a single crystal. The key element for selective isomerization is a tuned steric interaction between the chromophore and protein, similar to that seen in the microbial rhodopsins. It is further demonstrated that a single mutation converts the system to a protein photoswitch without chromophore photoisomerization or conformational change.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - Muath Nairat
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - Meisam Nosrati
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - Elizabeth M Santos
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - Chrysoula Vasileiou
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - Marcos Dantus
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - Babak Borhan
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| | - James H Geiger
- Michigan State University , Department of Chemistry , East Lansing , Michigan 48824 , United States
| |
Collapse
|
7
|
Berbasova T, Tahmasebi Nick S, Nosrati M, Nossoni Z, Santos EM, Vasileiou C, Geiger JH, Borhan B. A Genetically Encoded Ratiometric pH Probe: Wavelength Regulation-Inspired Design of pH Indicators. Chembiochem 2018; 19:1288-1295. [PMID: 29645331 DOI: 10.1002/cbic.201800050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/11/2022]
Abstract
Mutants of human cellular retinol-binding protein II (hCRBPII) were engineered to bind a julolidine retinal analogue for the purpose of developing a ratiometric pH sensor. The design relied on the electrostatic influence of a titratable amino acid side chain, which affects the absorption and, thus, the emission of the protein/fluorophore complex. The ratio of emissions obtained at two excitation wavelengths that correspond to the absorption of the two forms of the protein/fluorophore complex, leads to a concentration-independent measure of pH.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Nossoni
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Assar Z, Nossoni Z, Wang W, Santos EM, Kramer K, McCornack C, Vasileiou C, Borhan B, Geiger JH. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates. Structure 2016; 24:1590-8. [PMID: 27524203 PMCID: PMC5330279 DOI: 10.1016/j.str.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022]
Abstract
Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form.
Collapse
Affiliation(s)
- Zahra Assar
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Zahra Nossoni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wenjing Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kevin Kramer
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Colin McCornack
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Nosrati M, Berbasova T, Vasileiou C, Borhan B, Geiger JH. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution. J Am Chem Soc 2016; 138:8802-8. [PMID: 27310917 DOI: 10.1021/jacs.6b03681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization.
Collapse
Affiliation(s)
- Meisam Nosrati
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - James H Geiger
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Berbasova T, Santos EM, Nosrati M, Vasileiou C, Geiger JH, Borhan B. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch. Chembiochem 2016; 17:407-14. [PMID: 26684483 PMCID: PMC4835339 DOI: 10.1002/cbic.201500613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa , leading to protonation of the imine and subsequent "turn-on" of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa , leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
11
|
Yapici I, Lee KSS, Berbasova T, Nosrati M, Jia X, Vasileiou C, Wang W, Santos EM, Geiger JH, Borhan B. "Turn-on" protein fluorescence: in situ formation of cyanine dyes. J Am Chem Soc 2015; 137:1073-80. [PMID: 25534273 PMCID: PMC4311949 DOI: 10.1021/ja506376j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2-11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues.
Collapse
Affiliation(s)
- Ipek Yapici
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Berbasova T, Nosrati M, Vasileiou C, Wang W, Lee KSS, Yapici I, Geiger JH, Borhan B. Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone. J Am Chem Soc 2013; 135:16111-9. [PMID: 24059243 PMCID: PMC4104655 DOI: 10.1021/ja404900k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Wenjing Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ipek Yapici
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Wang W, Geiger JH, Borhan B. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength. Bioessays 2013; 36:65-74. [PMID: 24323922 DOI: 10.1002/bies.201300094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
14
|
Huntress MM, Gozem S, Malley KR, Jailaubekov AE, Vasileiou C, Vengris M, Geiger JH, Borhan B, Schapiro I, Larsen DS, Olivucci M. Toward an Understanding of the Retinal Chromophore in Rhodopsin Mimics. J Phys Chem B 2013; 117:10053-70. [DOI: 10.1021/jp305935t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark M. Huntress
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio
43402, United States
| | - Samer Gozem
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio
43402, United States
| | - Konstantin R. Malley
- Department
of Chemistry, University of California Davis, One Shields Avenure,
Davis, California 95616, United States
| | - Askat E. Jailaubekov
- Department
of Chemistry, University of California Davis, One Shields Avenure,
Davis, California 95616, United States
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, Lansing, Michigan 48824,
United States
| | - Mikas Vengris
- Department
of Chemistry, University of California Davis, One Shields Avenure,
Davis, California 95616, United States
- Faculty of
Physics, Vilnius University, Sauletekio
10 LT10223 Vilnius,
Lithuania
| | - James H. Geiger
- Department of Chemistry, Michigan State University, Lansing, Michigan 48824,
United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, Lansing, Michigan 48824,
United States
| | - Igor Schapiro
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio
43402, United States
| | - Delmar S. Larsen
- Department
of Chemistry, University of California Davis, One Shields Avenure,
Davis, California 95616, United States
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio
43402, United States
| |
Collapse
|
15
|
Wang W, Nossoni Z, Berbasova T, Watson CT, Yapici I, Lee KSS, Vasileiou C, Geiger JH, Borhan B. Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 2012; 338:1340-3. [PMID: 23224553 DOI: 10.1126/science.1226135] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein-chromophore interactions are a central component of a wide variety of critical biological processes such as color vision and photosynthesis. To understand the fundamental elements that contribute to spectral tuning of a chromophore inside the protein cavity, we redesigned human cellular retinol binding protein II (hCRBPII) to fully encapsulate all-trans-retinal and form a covalent bond as a protonated Schiff base. This system, using rational mutagenesis designed to alter the electrostatic environment within the binding pocket of the host protein, enabled regulation of the absorption maximum of the pigment in the range of 425 to 644 nanometers. With only nine point mutations, the hCRBPII mutants induced a systematic shift in the absorption profile of all-trans-retinal of more than 200 nanometers across the visible spectrum.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee KSS, Morisseau C, Yang J, Wang P, Hwang SH, Hammock BD. Förster resonance energy transfer competitive displacement assay for human soluble epoxide hydrolase. Anal Biochem 2012; 434:259-68. [PMID: 23219719 DOI: 10.1016/j.ab.2012.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/15/2012] [Accepted: 11/25/2012] [Indexed: 01/10/2023]
Abstract
The soluble epoxide hydrolase (sEH), responsible for the hydrolysis of various fatty acid epoxides to their corresponding 1,2-diols, is becoming an attractive pharmaceutical target. These fatty acid epoxides, particularly epoxyeicosatrienoic acids (EETs), play an important role in human homeostatic and inflammation processes. Therefore, inhibition of human sEH, which stabilizes EETs in vivo, brings several beneficial effects to human health. Although there are several catalytic assays available to determine the potency of sEH inhibitors, measuring the in vitro inhibition constant (K(i)) for these inhibitors using catalytic assay is laborious. In addition, k(off), which has been recently suggested to correlate better with the in vivo potency of inhibitors, has never been measured for sEH inhibitors. To better measure the potency of sEH inhibitors, a reporting ligand, 1-(adamantan-1-yl)-3-(1-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl) piperidin-4-yl)urea (ACPU), was designed and synthesized. With ACPU, we have developed a Förster resonance energy transfer (FRET)-based competitive displacement assay using intrinsic tryptophan fluorescence from sEH. In addition, the resulting assay allows us to measure the K(i) values of very potent compounds to the picomolar level and to obtain relative k(off) values of the inhibitors. This assay provides additional data to evaluate the potency of sEH inhibitors.
Collapse
Affiliation(s)
- Kin Sing Stephen Lee
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|