1
|
Martinelli J, Martorana E, Marcotrigiano A, Tei L. Investigations into the N-dealkylation reaction of protected chelating agents. Org Biomol Chem 2025; 23:4090-4099. [PMID: 40171583 DOI: 10.1039/d5ob00114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
To comply with the specific requirements for the coordination of a certain metal ion, it is often necessary to decrease the substitution degree on the nitrogen atoms of well-known poly(aminocarboxylate) ligands used as chelators for the preparation of diagnostic or therapeutic probes. The procedures used so far to prepare such partially-alkylated compounds involve steps that suffer from product loss or the need to introduce protection/deprotection reactions, consequently lowering the final yield. The application of an N-dealkylation reaction to an exhaustively-substituted precursor could in principle allow to achieve the same result in fewer steps and therefore with higher yields. Dealkylation reactions have been known since the early 1900s, but they have never been exploited for such a purpose. We investigated the applicability of the simple iron-Polonovski N-dealkylation reaction to obtain a library of useful ligands starting from the tert-butyl-protected derivatives of chelators widely used in the biomedical fields such as CDTA, EDTA, NOTA, AAZTA and PCTA. The preparation of partially-alkylated ligands has already been reported in the literature but with several drawbacks and possible improvements. In most of the examples reported, it was found that the reaction occurred in an easy and straightforward way by only using an excess of oxidizing agent that was sufficient to convert the N-oxide into the N-dealkylated product without the need for a reducing agent.
Collapse
Affiliation(s)
- Jonathan Martinelli
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale, Alessandria, Italy.
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrico Martorana
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale, Alessandria, Italy.
| | - Angelo Marcotrigiano
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale, Alessandria, Italy.
| | - Lorenzo Tei
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale, Alessandria, Italy.
| |
Collapse
|
2
|
Marlin A, Le Pape F, Troadec T, Le Goff J, Tripier R, Berthou C, Patinec V. Zn 2+ triazamacrocyclic chelators with methylpyridine pendant arms for B-cell apoptosis: a structure-activity study. Dalton Trans 2025; 54:3939-3951. [PMID: 39895421 DOI: 10.1039/d4dt02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Three macrocyclic tacn (1,4,7-triazacyclononane) derivatives containing one, two and three 2-methylpyridine pendant arms (no1py, no2py and no3py), compared to the linear diamine analogue tpen (N,N,N',N'-tetrakis(2-methylpyridinyl)-ethylenediamine) known for its capacity to induce cell apoptosis by Zn2+ chelation and/or ROS production, have shown cytotoxic activity on the Daudi B-cell line and CLL (chronic lymphoid leukemia) primary B cell model. These properties have been evidenced using an Incucyte® Live-Cell Analysis System. Evaluation of caspase 3/7 activation by incubation with the four studied chelators has exhibited caspase-dependent apoptotic death. Investigation of the chelator action mechanism has shown no ROS (reactive oxygen species) production for the macrocyclic chelators no1py, no2py and no3py, unlike the linear counterpart tpen for which ROS production was revealed. A significant inhibition effect of macrocyclic chelator cytotoxicity has been established by extracellular addition of cationic salts (Zn2+ and Cu2+) and the Zinquin emission fluorescence method has evidenced intracellular labile zinc chelation for no2py and no3py, while no1py acts differently. The acid-base properties of the chelators and their Zn2+ complexation constants have been obtained, discussed and correlated with the demonstrated biological properties.
Collapse
Affiliation(s)
- Axia Marlin
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Fiona Le Pape
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Thibault Troadec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Jocelyn Le Goff
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Christian Berthou
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| |
Collapse
|
3
|
Hoerres R, Kamboj R, Pryor N, Kelley SP, Hennkens HM. [ 186Re]Re- and [ 99mTc]Tc-Tricarbonyl Metal Complexes with 1,4,7-Triazacyclononane-Based Chelators Bearing Amide, Alcohol, or Ketone Pendent Groups. ACS OMEGA 2024; 9:39925-39935. [PMID: 39346849 PMCID: PMC11425660 DOI: 10.1021/acsomega.4c05699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
1,4,7-Triazacyclononane (TACN)-based chelators, such as NOTA and NODAGA, have shown great promise as bifunctional chelators for [M(CO)3]+ cores (M = 99mTc and 186Re) in radiopharmaceutical development. Previous investigations of TACN-based chelators bearing pendent acid and ester arms demonstrated the important role the pendent arms have in successful coordination of the [M(CO)3]+ core with the TACN backbone nitrogens. In this work, we introduce three TACN-based bifunctional chelators bearing amide, alcohol, and ketone pendent arms and evaluate their (radio)labeling efficiency with the [M(CO)3]+ core as well as the in vitro stability and hydrophilicity of the resulting radiometal complexes. Following their synthesis and characterization, the amide (2) and alcohol (3) chelators were successfully labeled with the [M(CO)3]+ cores (M = natRe, 99mTc, and 186Re), while the ketone (4) was not successfully labeled. Radiometal complexes M-2 and M-3 demonstrated hydrophilic character in logD7.4 studies as well as excellent stability in phosphate-buffered saline (pH 7.4), l-histidine, l-cysteine, and rat serum at 37 °C through 24 h. While the hydrophilicity and stability of these radiocomplexes are attractive, future TACN chelator design modifications to increase radiolabeling yields under milder reaction conditions would improve their potential for use in development of [M(CO)3]+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Rebecca Hoerres
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Ritin Kamboj
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Nora Pryor
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Heather M Hennkens
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
- Research Reactor Center, University of Missouri, 1513 Research Park Drive, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Hierlmeier I, Guillou A, Earley DF, Linden A, Holland JP, Bartholomä MD. HNODThia: A Promising Chelator for the Development of 64Cu Radiopharmaceuticals. Inorg Chem 2023; 62:20677-20687. [PMID: 37487036 DOI: 10.1021/acs.inorgchem.3c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Herein, we present the synthesis and coordination chemistry of copper(II) and zinc(II) complexes of two novel heterocyclic triazacyclononane (tacn)-based chelators (HNODThia and NODThia-AcNHEt). The chelator HNODThia was further derivatized to obtain a novel PSMA-based bioconjugate (NODThia-PSMA) and a bifunctional photoactivatable azamacrocyclic analogue, NODThia-PEG3-ArN3, for the development of copper-64 radiopharmaceuticals. 64Cu radiolabeling experiments were performed on the different metal-binding chelates, whereby quantitative radiochemical conversion (RCC) was obtained in less than 10 min at room temperature. The in vitro stability of NODThia-PSMA in human plasma was assessed by ligand-challenge and copper-exchange experiments. Next, we investigated the viability of the photoactivatable analog (NODThia-PEG3-ArN3) for the light-induced photoradiosynthesis of radiolabeled proteins. One-pot photoconjugation reactions to human serum albumin (HSA) as a model protein and the clinically relevant monoclonal antibody formulation MetMAb were performed. [64Cu]Cu-7-azepin-HSA and [64Cu]Cu-7-azepin-onartuzumab were prepared in less than 15 min by irradiation at 395 nm, with radiochemical purities (RCP) of >95% and radiochemical yields (RCYs) of 42.7 ± 5.3 and 49.6%, respectively. Together, the results obtained here open the way for the development of highly stable 64Cu-radiopharmaceuticals by using aza-heterocyclic tacn-based chelators, and the method can easily be extended to the development of 67Cu radiopharmaceuticals for future applications in molecularly targeted radio(immuno)therapy.
Collapse
Affiliation(s)
- Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrberger Str. 100, Building 50, 66421 Homburg, Germany
| | - Amaury Guillou
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- University of Caen, Cyceron, Bd Henri Becquerel, 14000 Caen, France
| | - Daniel F Earley
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrberger Str. 100, Building 50, 66421 Homburg, Germany
| |
Collapse
|
5
|
Hoerres R, Hennkens HM. 1,4,7-Triazacyclononane-Based Chelators for the Complexation of [ 186Re]Re- and [ 99mTc]Tc-Tricarbonyl Cores. Inorg Chem 2023; 62:20688-20698. [PMID: 37683190 PMCID: PMC10732151 DOI: 10.1021/acs.inorgchem.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/10/2023]
Abstract
Metal complexes with the general formula [MI(CO)3(k3-L)]+, where M = Re, 186Re, or 99mTc and L = 1,4,7-triazacyclononane (TACN), NOTA, or NODAGA chelators, have previously been conjugated to peptide-based biological targeting vectors and investigated as potential theranostic radiopharmaceuticals. The promising results demonstrated by these bioconjugate complexes prompted our exploration of other TACN-based chelators for suitability for (radio)labeling with the [M(CO)3]+ core. In this work, we investigated the role of the TACN pendant arms in complexation of the [M(CO)3]+ core through (radio)labeling of TACN chelators bearing acid, ester, mixed acid-ester, or no pendant functional groups. The chelators were synthesized from TACN, characterized, and (radio)labeled with nonradioactive Re-, [186Re]Re-, and [99mTc]Tc-tricarbonyl cores. The nonfunctionalized (3), diacid (4), and monoacid monoester (7 and 8) chelators underwent direct labeling, while the diester (M-5 and M-6) complexes required indirect synthesis from M-4. All six chelators demonstrated stable radiometal coordination. The ester-bearing derivatives, which exhibited more lipophilic character than their acid-bearing counterparts, were prone to ester hydrolysis over time, making them less suitable for radiopharmaceutical development. These studies confirmed that the TACN pendant functional groups were key to efficient labeling with the [M(CO)3]+ core, with ionizable pendant arms favored over nonionizable pendant arms.
Collapse
Affiliation(s)
- Rebecca Hoerres
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Heather M. Hennkens
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Research
Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Ossadnik D, Voss J, Godt A. Equipping 1,4,7-Triazacyclononane with Substituents via Solid-Phase Synthesis. J Org Chem 2023. [PMID: 38016917 DOI: 10.1021/acs.joc.3c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Metal ion complexes frequently show substituted 1,4,7-triazacyclononane (tacn) as the ligand. Besides providing donor atoms for complex formation, tacn serves as a scaffold for equipping the complex with further functional units that are needed for the complementation and electronic tuning of the metal ion coordination sphere and/or add other features, e.g., light-absorbing antennas and groups for bioconjugation. To exploit the full potential of substituted tacn, strategies for directed syntheses of NO(R1,R1,R2) and NO(R1,R2,R3), i.e., tacn with two and even three different substituents R, are needed. Herein, we report a strategy that takes advantage of solid-phase synthesis in the assembly of the precursors NO(R1,R1,H) and NO(R1,R2,H). The assembly of NO(R1,R2,H) is based on a highly selective formation of NO(Cbz,tfAc,H), with Cbz being the link between tacn and solid phase. For this, tacn was loaded onto (4-nitrophenyl carbonate)-resin, thereby forming resin-bound (rb)-tacn, which corresponds to NO(Cbz,H,H) bound to the solid phase. Treatment of rb-tacn with ethyl trifluoroacetate gave rb-NO(tfAc,H), which corresponds to NO(Cbz,tfAc,H). With rb-tacn and rb-NO(tfAc,H) in hand, a variety of NO(R1,R1,H) and NO(R1,R2,H) were prepared, showing the broad applicability of the strategy with respect to the type of substituents and of reactions (nucleophilic substitution, reductive amination, aza-Michael addition, addition to epoxides, acylation). The study also identified limitations and points for improvement.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jona Voss
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Modern Developments in Bifunctional Chelator Design for Gallium Radiopharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010203. [PMID: 36615397 PMCID: PMC9822085 DOI: 10.3390/molecules28010203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The positron-emitting radionuclide gallium-68 has become increasingly utilised in both preclinical and clinical settings with positron emission tomography (PET). The synthesis of radiochemically pure gallium-68 radiopharmaceuticals relies on careful consideration of the coordination chemistry. The short half-life of 68 min necessitates rapid quantitative radiolabelling (≤10 min). Desirable radiolabelling conditions include near-neutral pH, ambient temperatures, and low chelator concentrations to achieve the desired apparent molar activity. This review presents a broad overview of the requirements of an efficient bifunctional chelator in relation to the aqueous coordination chemistry of gallium. Developments in bifunctional chelator design and application are then presented and grouped according to eight categories of bifunctional chelator: the macrocyclic chelators DOTA and TACN; the acyclic HBED, pyridinecarboxylates, siderophores, tris(hydroxypyridinones), and DTPA; and the mesocyclic diazepines.
Collapse
|
8
|
Li SZ, Li WD, Yan YB, Zhang Y, Dong WK. Investigations of stable penta- and hexa-coordinate polynuclear Zn(II) and Cd(II) complexes derived from a single-armed salamo-based ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shi-Zhen Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Da Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Yi-Bin Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
9
|
Terpstra K, Wang Y, Huynh TT, Bandara N, Cho HJ, Rogers BE, Mirica LM. Divalent 2-(4-Hydroxyphenyl)benzothiazole Bifunctional Chelators for 64Cu Positron Emission Tomography Imaging in Alzheimer's Disease. Inorg Chem 2022; 61:20326-20336. [PMID: 36463521 PMCID: PMC9887732 DOI: 10.1021/acs.inorgchem.2c02740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Herein, we report a new series of divalent 2-(4-hydroxyphenyl)benzothiazole bifunctional chelators (BFCs) with high affinity for amyloid β aggregates and favorable lipophilicity for blood-brain barrier penetration. The addition of an alkyl carboxylate ester pendant arm offers high binding affinity toward Cu(II). The novel BFCs form stable 64Cu-radiolabeled complexes and exhibit promising partition coefficient (logD) values of 1.05-1.85. Among the five compounds tested, the 64Cu-YW-15 complex exhibits significant staining of amyloid β plaques in ex vivo autoradiography studies. In addition, biodistribution studies show that 64Cu-YW-15-Me exhibits moderate brain uptake (0.69 ± 0.08 %ID/g) in wild type mice.
Collapse
Affiliation(s)
- Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yujue Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Li SZ, Tong L, Li X, Dong WK. New insight into two penta-coordinated multinuclear copper(II) single-armed salamo-based complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Norwine EE, Kiernicki JJ, Zeller M, Szymczak NK. Distinct Reactivity Modes of a Copper Hydride Enabled by an Intramolecular Lewis Acid. J Am Chem Soc 2022; 144:15038-15046. [PMID: 35960993 PMCID: PMC10291504 DOI: 10.1021/jacs.2c02937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We disclose a 1,4,7-triazacyclononane (TACN) ligand featuring an appended boron Lewis acid. Metalation with Cu(I) affords a series of tetrahedral complexes including a boron-capped cuprous hydride. We demonstrate distinct reactivity modes as a function of chemical oxidation: hydride transfer to CO2 in the copper(I) state and oxidant-induced H2 evolution as well as alkyne reduction.
Collapse
Affiliation(s)
- Emily E. Norwine
- University of Michigan, 930 N. University, Ann Arbor, MI 48109 (USA)
| | - John J. Kiernicki
- University of Michigan, 930 N. University, Ann Arbor, MI 48109 (USA)
| | - Matthias Zeller
- H. C. Brown Laboratory, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | | |
Collapse
|
12
|
Kubinec J, Širůčková V, Havlíčková J, Kotek J, Kubicek V, Lubal P, Hermann P. Complexes of NOTA‐monoamides with CuII ion: Structural, equilibrium and kinetic study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jan Kubinec
- Univerzita Karlova Přírodovědecká fakulta: Univerzita Karlova Prirodovedecka fakulta Department of Inorganic Chemistry CZECH REPUBLIC
| | - Viktorie Širůčková
- Masarykova univerzita Přírodovědecká fakulta: Masarykova univerzita Prirodovedecka Fakulta Department of Chemistry CZECH REPUBLIC
| | - Jana Havlíčková
- PřF UK: Univerzita Karlova Prirodovedecka fakulta Department of Inorganic Chemistry CZECH REPUBLIC
| | - Jan Kotek
- Univerzita Karlova Prirodovedecka fakulta Department of Inorganic Chemistry CZECH REPUBLIC
| | - Vojtech Kubicek
- Charles University in Prague, Faculty of Science Department of Inorganic Chemistry Hlavova 2030 128 40 Prague 2 CZECH REPUBLIC
| | - Přemysl Lubal
- Masarykova univerzita Přírodovědecká fakulta: Masarykova univerzita Prirodovedecka Fakulta Department of Chemistry CZECH REPUBLIC
| | - Petr Hermann
- Univerzita Karlova Přírodovědecká fakulta: Univerzita Karlova Prirodovedecka fakulta Departmnet of Inorganic Chemistry CZECH REPUBLIC
| |
Collapse
|
13
|
Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040432. [PMID: 35455430 PMCID: PMC9028399 DOI: 10.3390/ph15040432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance. In this review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of such probes, especially for fluorescence-guided surgery, is assessed.
Collapse
|
14
|
Davey PRWJ, Forsyth CM, Paterson BM. Crystallographic and Computational Characterisation of the Potential PET Tracer 1,4,7‐Triazacyclononane‐1,4,7‐tri(methylenephosphonato)gallium(III). ChemistrySelect 2022. [DOI: 10.1002/slct.202103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Craig M. Forsyth
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Brett M. Paterson
- School of Chemistry Monash University Clayton Victoria 3800 Australia
- Monash Biomedical Imaging Monash University Clayton Victoria 3800 Australia
- Current address: Centre for Advanced Imaging University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
15
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
16
|
Wang Y, Huynh TT, Cho HJ, Wang YC, Rogers BE, Mirica LM. Amyloid β-Binding Bifunctional Chelators with Favorable Lipophilicity for 64Cu Positron Emission Tomography Imaging in Alzheimer's Disease. Inorg Chem 2021; 60:12610-12620. [PMID: 34351146 DOI: 10.1021/acs.inorgchem.1c02079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a new series of bifunctional chelators (BFCs) with a high affinity for amyloid aggregates, a strong binding affinity toward Cu(II), and favorable lipophilicity for potential blood-brain barrier penetration. The alkyl carboxylate ester pendant arms offer up to 3 orders of magnitude higher binding affinity toward Cu(II) and enable the BFCs to form stable 64Cu-radiolabeled complexes. Among the five compounds tested, the 64Cu-YW-7 and 64Cu-YW-10 complexes exhibit strong and specific staining of amyloid plaques in ex vivo autoradiography studies. Importantly, these BFCs have promising partition coefficient (log Doct) values of 0.91-1.26 and show some brain uptake in biodistribution studies using CD-1 mice. Overall, these BFCs could serve as lead compounds for the development of positron emission tomography imaging agents for AD diagnosis.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States.,Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yung-Ching Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
17
|
Pazderová L, Kubíček V, Kotek J, Hermann P. 1,4,7‐Triazacyclononane (tacn) with
N,N
′‐bridging methylene‐bis(phosphinic acid) group and its complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| |
Collapse
|
18
|
Anwar MU, Al-Harrasi A, Rawson JM. Structures, properties and applications of Cu(II) complexes with tridentate donor ligands. Dalton Trans 2021; 50:5099-5108. [PMID: 33881088 DOI: 10.1039/d1dt00483b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tridentate ligands offer theree donor atoms to coordinate to metal ions. The remaining vacant coordination sites on the metal ions provided opportunities to implement additional co-ligands to generate complexes with desired properties. Herein we discuss selected examples of Cu(ii) complexes with tridentate ligands utilizing combinations of N, O, S, and Se donors, focusing on effects of ligand flexibility/rigidity on their coordination modes, properties and applications.
Collapse
Affiliation(s)
- Muhammad Usman Anwar
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz 616, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz 616, Oman.
| | - Jeremy M Rawson
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON N9B3P4, Canada.
| |
Collapse
|
19
|
Vaughn BA, Brown AM, Ahn SH, Robinson JR, Boros E. Is Less More? Influence of the Coordination Geometry of Copper(II) Picolinate Chelate Complexes on Metabolic Stability. Inorg Chem 2020; 59:16095-16108. [DOI: 10.1021/acs.inorgchem.0c02314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett A. Vaughn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Alexander M. Brown
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shin Hye Ahn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions. Molecules 2020; 25:molecules25092030. [PMID: 32349309 PMCID: PMC7248963 DOI: 10.3390/molecules25092030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
A new tetradentate mixed aza-thioether macrocyclic ligand 2,6-dithia[7](2,9)-1,10-phenanthrolinophane ([13]ane(phenN2)S2) was successfully synthesized. Reacting metal precursors [Fe(CH3CN)2(OTf)2], Ni(ClO4)2·6H2O, and Cu(ClO4)2·6H2O with one equivalent of [13]ane(phenN2)S2 afforded [Fe([13]ane(phenN2)S2)(OTf)2] (1), [Ni([13]ane(phenN2)S2)](ClO4)2 (2(ClO4)2), and [Cu([13]ane(phenN2)S2)(OH2)](ClO4)2 (3(ClO4)2), respectively. The structures of [13]ane(phenN2)S2 and all of its metal complexes were investigated by X-ray crystallography. The [13]ane(phenN2)S2 was found to behave as a tetradentate ligand via its donor atoms N and S.
Collapse
|
21
|
|
22
|
Pant K, Neuber C, Zarschler K, Wodtke J, Meister S, Haag R, Pietzsch J, Stephan H. Active Targeting of Dendritic Polyglycerols for Diagnostic Cancer Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905013. [PMID: 31880080 DOI: 10.1002/smll.201905013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Active tumor targeting involves the decoration of nanomaterials (NMs) with oncotropic vector biomolecules that selectively recognize certain antigens on malignant cells or in the tumor microenvironment. This strategy can facilitate intracellular uptake of NM through specific interactions such as receptor-mediated endocytosis and can lead to prolonged retention in the malignant tissues by preventing rapid efflux from the tumor. Here, the design of actively targeting, renally excretible bimodal dendritic polyglycerols (dPGs) for diagnostic cancer imaging is described. Single-domain antibodies (sdAbs) specifically binding to the epidermal growth factor receptor (EGFR) are employed herein as targeting warheads owing to their small size and high affinity for their corresponding antigen. The dPGs equipped with EGFR-targeting feature are compared head-to-head with their nontargeting counterparts in terms of interaction with EGFR-overexpressing cells in vitro as well as accumulation at receptor-positive tumors in vivo. Experimental results reveal a higher specificity and preferential tumor accumulation for the α-EGFR dPGs, resulting from the introduction of active targeting capabilities on their backbone. These results highlight the potential for improving the tumor uptake properties of dPGs by strategic use of sdAb functionalization, which can ultimately prove useful to the development of ultrasmall NM with highly specific tumor accumulation.
Collapse
Affiliation(s)
- Kritee Pant
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Sebastian Meister
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Rainer Haag
- Organische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195, Berlin, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| |
Collapse
|
23
|
Guillou A, Galland M, Roux A, Váradi B, Gogolák RA, Le Saëc P, Faivre-Chauvet A, Beyler M, Bucher C, Tircsó G, Patinec V, Maury O, Tripier R. Picolinate-appended tacn complexes for bimodal imaging: Radiolabeling, relaxivity, photophysical and electrochemical studies. J Inorg Biochem 2020; 205:110978. [PMID: 31951911 DOI: 10.1016/j.jinorgbio.2019.110978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 10/25/2022]
Abstract
Based on our previous works involving two 1,4,7-triazacyclononane (tacn)-based ligands Hno2py1pa (1-Picolinic acid-4,7-bis(pyridin-2-ylmethyl)-1,4,7-triazacyclononane) and Hno1pa (1-Picolinic acid-1,4,7-triazacyclononane), we report here the synthesis of analogues bearing picolinate-based π-conjugated ILCT (Intra-Ligand Charge Transfer) transition antenna (HL1, HL2), using regiospecific N-functionalization of the tacn skeleton and their related transition metal complexes (e.g. Cu2+, Zn2+ and Mn2+). Coordination properties as well as their photophysical and electrochemical properties were investigated in order to quantify the impact of such antenna on the luminescent or relaxometric properties of the complexes. The spectroscopic properties of the targeted ligands and metal complexes have been studied using UV-Vis absorption and fluorescence spectrocopies. While the zinc complex formed with HL1 possesses a moderate quantum yield of 5%, complexation of Cu2+ led to an extinction of the luminescence putatively attributed to a photo-induced electron transfer, as supported by spectroscopic and electrochemical evidences. The [Mn(L2)]+ complex is characterized by a fluorescence quantum yield close to 8% in CH2Cl2. The potential interest of such systems as bimodal probes has been assessed from radiolabeling experiments conducted on HL1 and 64Cu2+ as well as confocal microscopy analyses and from relaxometric studies carried out on the cationic [Mn(L2)]+ complex. These results showed that HL1 can be used for radiolabeling, with a radiochemical conversion of 40% in 15 min at 100 °C. Finally, the relaxivity values obtained for [Mn(L2)]+, r1p = 4.80 mM-1·s-1 and r2p = 8.72 mM-1·s-1, make the Mn(II) complex an ideal candidate as a probe for Magnetic Resonance Imaging.
Collapse
Affiliation(s)
- Amaury Guillou
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29200 Brest, France
| | - Margaux Galland
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Amandine Roux
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Balázs Váradi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Réka Anna Gogolák
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Patricia Le Saëc
- Université de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232 - CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Alain Faivre-Chauvet
- Université de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232 - CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29200 Brest, France
| | - Christophe Bucher
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29200 Brest, France.
| | - Olivier Maury
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée d'Italie, 69364 Lyon, France.
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29200 Brest, France.
| |
Collapse
|
24
|
Prasanth PA, Nantheeswaran P, Anbazhagan V, Senthilnathan R, Jothi A, Bhuvanesh NSP, Sannegowda LK, Mariappan M. The metal centre in salen-acridine dyad N2O2 ligand–metal complexes modulates DNA binding and photocleavage efficiency. NEW J CHEM 2020. [DOI: 10.1039/d0nj02035d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal centre in a coordination complex modulates DNA binding.
Collapse
Affiliation(s)
| | | | - Veerappan Anbazhagan
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thirumalaisamudaram
- Thanjavur
- India
| | - Rajendran Senthilnathan
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thirumalaisamudaram
- Thanjavur
- India
| | - Arunachalam Jothi
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thirumalaisamudaram
- Thanjavur
- India
| | | | | | | |
Collapse
|
25
|
Garau A, Bencini A, Blake AJ, Caltagirone C, Conti L, Isaia F, Lippolis V, Montis R, Mariani P, Scorciapino MA. [9]aneN3-based fluorescent receptors for metal ion sensing, featuring urea and amide functional groups. Dalton Trans 2019; 48:4949-4960. [DOI: 10.1039/c9dt00288j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sensing and recognition properties of three new [9]aneN3-based chemosensors have been studied both in solution and in the solid state.
Collapse
Affiliation(s)
- Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Andrea Bencini
- Dipartimento di Chimica ‘Ugo Shiff’
- Università degli Studi di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Alexander J. Blake
- School of Chemistry
- The University of Nottingham
- University Park
- Nottingham
- UK
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Luca Conti
- Dipartimento di Chimica ‘Ugo Shiff’
- Università degli Studi di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Riccardo Montis
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Palma Mariani
- Dipartimento di Chimica ‘Ugo Shiff’
- Università degli Studi di Firenze
- 50019 Sesto Fiorentino
- Italy
| | | |
Collapse
|