1
|
Chen R. New Redox Chemistries of Halogens in Aqueous Batteries. CHEMSUSCHEM 2025; 18:e202401678. [PMID: 39435849 DOI: 10.1002/cssc.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Halogen-based redox-active materials represent an important class of materials in aqueous electrochemistry. The existence of versatile halogen species and their rich bonding coordination create great flexibility in designing new redox couples. Novel redox reaction mechanisms and electrochemical reversibility can be unlocked in specifically configurated electrolyte environments and electrodes. In this review, the halogen-based redox couples and their appealing redox chemistries in aqueous batteries, including redox flow batteries and traditional static batteries that have been studied in recent years, are discussed. New aqueous electrochemistry provides hope to outperform the state-of-the-art materials and systems that are facing resources and performance limitation, and to enrich the existing battery chemistries.
Collapse
Affiliation(s)
- Ruiyong Chen
- Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, United Kingdom
- Korea Institute of Science and Technology (KIST) Europe, Campus E7 1, 66123, Saarbrücken, Germany
| |
Collapse
|
2
|
Li X, Wang Y, Lu J, Li P, Huang Z, Liang G, He H, Zhi C. Constructing static two-electron lithium-bromide battery. SCIENCE ADVANCES 2024; 10:eadl0587. [PMID: 38875345 PMCID: PMC11177945 DOI: 10.1126/sciadv.adl0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Despite their potential as conversion-type energy storage technologies, the performance of static lithium-bromide (SLB) batteries has remained stagnant for decades. Progress has been hindered by the intrinsic liquid-liquid redox mode and single-electron transfer of these batteries. Here, we developed a high-performance SLB battery based on the active bromine salt cathode and the two-electron transfer chemistry with a Br-/Br+ redox couple by electrolyte tailoring. The introduction of NO3- improved the reversible single-electron transition of Br-, and more impressively, the coordinated Cl- anions activated the Br+ conversion to provide an additional electron transfer. A voltage plateau was observed at 3.8 V, and the discharge capacity and energy density were increased by 142 and 159% compared to the one-electron reaction benchmark. This two-step conversion mechanism exhibited excellent stability, with the battery functioning for 1000 cycles. These performances already approach the state of the art of currently established Li-halogen batteries. We consider the established two-electron redox mechanism highly exemplary for diversified halogen batteries.
Collapse
Affiliation(s)
- Xinliang Li
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yanlei Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Lu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hongyan He
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
3
|
Liu H, Yin Y, Cao X, Cheng H, Xie Y, Wu C. A Redox Flow Battery-Integrated Rechargeable H 2/O 2 Fuel Cell. J Am Chem Soc 2024; 146:5274-5282. [PMID: 38363827 DOI: 10.1021/jacs.3c11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The practical application of the H2/O2 proton-exchange membrane fuel cell (PEMFC) is being greatly limited by the use of high-cost Pt as electrode catalysts. Furthermore, the H2/O2 PEMFC is nonrechargeable and thus precludes kinetics energy recovery when equipped on electric vehicles and peak power regulation when combined to power grids. Here, we demonstrate a rechargeable H2/O2 PEMFC through embedding a redox flow battery into a conventional H2/O2 PEMFC. This flow battery employs H2/O2 reactive redox pairs such as NO3-/NO-Br2/Br- and H4SiW12O40/H5SiW12O40 whose redox potentials are as close as possible to those of O2/H2O and H2/H2O, respectively, so that the chemical potential losses during their reactions with O2 at the cathode and H2 at the anode were minimized. More importantly, the electrochemical reversibility allows the H2/O2 reacted redox pairs to be easily regenerated through fuel cell discharging on catalyst-free carbon electrodes at a low overpotential and brings in the fuel cell both chemical and electrical rechargeability, thereby realizing integrated functions of electricity generation- storage as well as efficient operation (achieving an open-circuit potential of 0.96 V and a peak power density of 0.57 W/cm2, which are comparable to a conventional H2/air PEMFC) with catalyst-free carbon electrodes.
Collapse
Affiliation(s)
- Hongfei Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Yifan Yin
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Xuemin Cao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
4
|
She L, Cheng H, Yuan Z, Shen Z, Wu Q, Zhong W, Zhang S, Zhang B, Liu C, Zhang M, Pan H, Lu Y. Rechargeable Aqueous Zinc-Halogen Batteries: Fundamental Mechanisms, Research Issues, and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305061. [PMID: 37939285 PMCID: PMC10953720 DOI: 10.1002/advs.202305061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Indexed: 11/10/2023]
Abstract
Aqueous zinc-halogen batteries (AZHBs) have emerged as promising candidates for energy storage applications due to their high security features and low cost. However, several challenges including natural subliming, sluggish reaction kinetics, and shuttle effect of halogens, as well as dendrite growth of the zinc (Zn) anode, have hindered their large-scale commercialization. In this review, first the fundamental mechanisms and scientific issues associated with AZHBs are summarized. Then the research issues and progresses related to the cathode, separator, anode, and electrolyte are discussed. Additionally, emerging research opportunities in this field is explored. Finally, ideas and prospects for the future development of AZHBs are presented. The objective of this review is to stimulate further exploration, foster the advancement of AZHBs, and contribute to the diversified development of electrochemical energy storage.
Collapse
Affiliation(s)
- Liaona She
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
| | - Hao Cheng
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| | - Ziyan Yuan
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| | - Zeyu Shen
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Qian Wu
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Wei Zhong
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| | - Shichao Zhang
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Bing Zhang
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Chengwu Liu
- Department of Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Mingchang Zhang
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
| | - Yingying Lu
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| |
Collapse
|
5
|
Rana M, Alghamdi N, Peng X, Huang Y, Wang B, Wang L, Gentle IR, Hickey S, Luo B. Scientific issues of zinc-bromine flow batteries and mitigation strategies. EXPLORATION (BEIJING, CHINA) 2023; 3:20220073. [PMID: 38264684 PMCID: PMC10742200 DOI: 10.1002/exp.20220073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 01/25/2024]
Abstract
Zinc-bromine flow batteries (ZBFBs) are promising candidates for the large-scale stationary energy storage application due to their inherent scalability and flexibility, low cost, green, and environmentally friendly characteristics. ZBFBs have been commercially available for several years in both grid scale and residential energy storage applications. Nevertheless, their continued development still presents challenges associated with electrodes, separators, electrolyte, as well as their operational chemistry. Therefore, rational design of these components in ZBFBs is of utmost importance to further improve the overall device performance. In this review, the focus is on the scientific understanding of the fundamental electrochemistry and functional components of ZBFBs, with an emphasis on the technical challenges of reaction chemistry, development of functional materials, and their application in ZBFBs. Current limitations of ZBFBs with future research directions in the development of high performance ZBFBs are suggested.
Collapse
Affiliation(s)
- Masud Rana
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| | - Norah Alghamdi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
- School of Chemistry and Molecular BiosciencesFaculty of ScienceThe University of QueenslandBrisbaneQueenslandAustralia
- Department of Chemistry, Faculty of ScienceImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| | - Yongxin Huang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingP. R. China
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ian R. Gentle
- School of Chemistry and Molecular BiosciencesFaculty of ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Alghamdi NS, Rana M, Peng X, Huang Y, Lee J, Hou J, Gentle IR, Wang L, Luo B. Zinc-Bromine Rechargeable Batteries: From Device Configuration, Electrochemistry, Material to Performance Evaluation. NANO-MICRO LETTERS 2023; 15:209. [PMID: 37650939 PMCID: PMC10471567 DOI: 10.1007/s40820-023-01174-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Zinc-bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs.
Collapse
Affiliation(s)
- Norah S Alghamdi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11564, Riyadh, Saudi Arabia
| | - Masud Rana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yongxin Huang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jaeho Lee
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Jung H, Lee J, Park J, Shin K, Kim HT, Cho E. A Mesoporous Tungsten Oxynitride Nanofibers/Graphite Felt Composite Electrode with High Catalytic Activity for the Cathode in Zn-Br Flow Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208280. [PMID: 36965037 DOI: 10.1002/smll.202208280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
High electrochemical polarization during a redox reaction in the electrode of aqueous zinc-bromine flow batteries largely limits its practical implementation as an effective energy storage system. This study demonstrates a rationally-designed composite electrode that exhibits a lower electrochemical polarization by providing a higher number of catalytically-active sites for faster bromine reaction, compared to a conventional graphite felt cathode. The composite electrode is composed of electrically-conductive graphite felt (GF) and highly active mesoporous tungsten oxynitride nanofibers (mWONNFs) that are prepared by electrospinning and simple heat treatments. Addition of the 1D mWONNFs to porous GF produces a web-like structure that significantly facilitates the reaction kinetics and ion diffusion. The cell performance achieves in this study demonstrated high energy efficiencies of 89% and 80% at current densities of 20 and 80 mA cm-2 , respectively. Furthermore, the cell can also be operated at a very high current density of 160 mA cm-2 , demonstrating an energy efficiency of 62%. These results demonstrate the effectiveness of the mWONNF/GF composite as the electrode material in zinc-bromine flow batteries.
Collapse
Affiliation(s)
- HyunJin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
- Lotte Chemical Innovation Center, Seoul, 157210, Republic of Korea
| | - JaeHyuk Lee
- Lotte Chemical Innovation Center, Seoul, 157210, Republic of Korea
| | - JaeYun Park
- Lotte Chemical Innovation Center, Seoul, 157210, Republic of Korea
| | - Kyungjae Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Role of Nitrogen Doping and Pore Volume for CO2 Capture in Metal-Organic Framework Derived Ultramicroporous Carbon Material. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
9
|
Heo J, Shin K, Kim H. A Zinc-Bromine Battery with Deep Eutectic Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204908. [PMID: 36310120 PMCID: PMC9798974 DOI: 10.1002/advs.202204908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
A deep eutectic solvent (DES) is an ionic liquid-analog electrolyte, newly emerging due to its low cost, easy preparation, and tunable properties. Herein, a zinc-bromine battery (ZBB) with a Zn-halide-based DES electrolyte prepared by mixing ZnBr2 , ZnCl2 , and a bromine-capturing agent is reported. The water-free DES electrolyte allows a closed-cell configuration for the ZBB owing to the prevention of Br2 evaporation and H2 evolution. It is found that the Cl- anion changes the structure of the zinc-halide complex anions and demonstrated that it improves the ion mobility and electrode reaction kinetics. The DES electrolyte with the optimized ZnCl2 composition shows much higher rate capability and a cycle life 90 times longer than that of a ZnCl2 -free DES electrolyte. A pouch-type flexible ZBB battery based on the DES electrolyte exhibits swelling-free operation for more than 120 cycles and stable operation under a folding test, suggesting its potential in consumer applications such as wearable electronics.
Collapse
Affiliation(s)
- Jiyun Heo
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Kyungjae Shin
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Hee‐Tak Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Battery CenterKAIST Institute for the NanoCenturyKAIST291, Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|