1
|
Rajaei B, Garcia AM, Juksar J, Doppenberg JB, Paz-Barba M, Boot F, de Vos W, Mulder AA, Lambregtse F, Daleman L, de Leeuw AE, Nieveen MC, Engelse MA, Rabelink T, de Koning EJP, Carlotti F. Clinically compliant enrichment of human pluripotent stem cell-derived islets. Sci Transl Med 2025; 17:eadl4390. [PMID: 40173261 DOI: 10.1126/scitranslmed.adl4390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
Human pluripotent stem cell-derived islet (SC-islet) transplantation is a promising β cell replacement therapy for patients with type 1 diabetes, offering a potential unlimited cell supply. Yet, the heterogeneity of the final cell product containing non-target cell types has relevant implications for SC-islet function, transplant volume, and cell product safety. Here, we present a clinically compliant, full three-dimensional differentiation protocol that includes a purification step of endocrine cell-rich clusters, relying on the principle of isopycnic centrifugation (density gradient separation). Enriched SC-islets displayed signs of functionality in vitro and in vivo. In contrast with antibody-based single-cell sorting approaches, this method does not destroy the islet cytoarchitecture associated with alterations of islet function and cell loss. Furthermore, it is fast, is easily scalable to large cell volumes, and can be applied during cell manufacturing. This method may also contribute to the generation of improved cell-based therapies for regenerative medicine purposes beyond the SC-islet field.
Collapse
Affiliation(s)
- Bahareh Rajaei
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Juri Juksar
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Jason B Doppenberg
- LUMC Transplant Center, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Miriam Paz-Barba
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Fransje Boot
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Willemijn de Vos
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Aat A Mulder
- Department of Cell and Chemistry Biology, Electron Microscopy Facility, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Ferdy Lambregtse
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Lizanne Daleman
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Anne E de Leeuw
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Maaike C Nieveen
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Ton Rabelink
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| |
Collapse
|
2
|
Jeyagaran A, Urbanczyk M, Layland SL, Weise F, Schenke-Layland K. Forward programming of hiPSCs towards beta-like cells using Ngn3, Pdx1, and MafA. Sci Rep 2024; 14:13608. [PMID: 38871849 PMCID: PMC11176171 DOI: 10.1038/s41598-024-64346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Transplantation of stem cell-derived β-cells is a promising therapeutic advancement in the treatment of type 1 diabetes mellitus. A current limitation of this approach is the long differentiation timeline that generates a heterogeneous population of pancreatic endocrine cells. To address this limitation, an inducible lentiviral overexpression system of mature β-cell markers was introduced into human induced-pluripotent stem cells (hiPSCs). Following the selection of the successfully transduced hiPSCs, the cells were treated with doxycycline in the pancreatic progenitor induction medium to support their transition toward the pancreatic lineage. Cells cultured with doxycycline presented the markers of interest, NGN3, PDX1, and MAFA, after five days of culture, and glucose-stimulated insulin secretion assays demonstrated that the cells were glucose-responsive in a monolayer culture. When cultured as a spheroid, the markers of interest and insulin secretion in a static glucose-stimulated insulin secretion assay were maintained; however, insulin secretion upon consecutive glucose challenges was limited. Comparison to human fetal and adult donor tissues identified that although the hiPSC-derived spheroids present similar markers to adult insulin-producing cells, they are functionally representative of fetal development. Together, these results suggest that with optimization of the temporal expression of these markers, forward programming of hiPSCs towards insulin-producing cells could be a possible alternative for islet transplantation.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department of Women's Health, Eberhard Karls University, 72076, Tübingen, Germany
| | - Frank Weise
- NMI Natural and Medical Sciences Institute at the University Tübingen, 72770, Reutlingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University Tübingen, 72770, Reutlingen, Germany.
| |
Collapse
|
3
|
Davis JC, Ryaboshapkina M, Kenty JH, Eser PÖ, Menon S, Tyrberg B, Melton DA. IAPP Marks Mono-hormonal Stem-cell Derived β Cells that Maintain Stable Insulin Production in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.587726. [PMID: 38645166 PMCID: PMC11030367 DOI: 10.1101/2024.04.10.587726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Islet transplantation for treatment of diabetes is limited by availability of donor islets and requirements for immunosuppression. Stem cell-derived islets might circumvent these issues. SC-islets effectively control glucose metabolism post transplantation, but do not yet achieve full function in vitro with current published differentiation protocols. We aimed to identify markers of mature subpopulations of SC-β cells by studying transcriptional changes associated with in vivo maturation of SC-β cells using RNA-seq and co-expression network analysis. The β cell-specific hormone islet amyloid polypeptide (IAPP) emerged as the top candidate to be such a marker. IAPP+ cells had more mature β cell gene expression and higher cellular insulin content than IAPP- cells in vitro. IAPP+ INS+ cells were more stable in long-term culture than IAPP- INS+ cells and retained insulin expression after transplantation into mice. Finally, we conducted a small molecule screen to identify compounds that enhance IAPP expression. Aconitine up-regulated IAPP and could help to optimize differentiation protocols.
Collapse
Affiliation(s)
- Jeffrey C. Davis
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA 02138, United States of America
| | - Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer H. Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA 02138, United States of America
| | | | - Suraj Menon
- RDI Operations, Granta Park, AstraZeneca, Cambridge CB21 6GP, UK
| | - Björn Tyrberg
- Global Insights, Analytics & Commercial Excellence, BioPharmaceuticals Business Unit, AstraZeneca, Gothenburg, Sweden
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA 02138, United States of America
| |
Collapse
|
4
|
Pollock SD, Galicia-Silva IM, Liu M, Gruskin ZL, Alvarez-Dominguez JR. Scalable Generation of 3D Pancreatic Islet Organoids from Human Pluripotent Stem Cells in Suspension Bioreactors. Methods Mol Biol 2024; 2805:51-87. [PMID: 39008174 DOI: 10.1007/978-1-0716-3854-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and β-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.
Collapse
Affiliation(s)
- Samuel D Pollock
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Israeli M Galicia-Silva
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Pollock SD, Galicia-Silva IM, Liu M, Gruskin ZL, Alvarez-Dominguez JR. Scalable generation of 3D pancreatic islet organoids from human pluripotent stem cells in suspension bioreactors. STAR Protoc 2023; 4:102580. [PMID: 37738117 PMCID: PMC10519857 DOI: 10.1016/j.xpro.2023.102580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
Here, we present a protocol for producing 3D pancreatic-like organoids from human pluripotent stem cells in suspension bioreactors. We describe scalable techniques for generating 10,000-100,000 organoids that further mature in 4-5 weeks into α- and β-like cells with glucose-responsive insulin and glucagon release. We detail procedures for culturing, passaging, and cryopreserving stem cells as suspended clusters and specify growth media and differentiation factors for differentiation. Finally, we discuss functional assays for research applications. For complete details on the use and execution of this protocol, please refer to Alvarez-Dominguez et al.1.
Collapse
Affiliation(s)
- Samuel D Pollock
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Israeli M Galicia-Silva
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Leavens KF, Alvarez-Dominguez JR, Vo LT, Russ HA, Parent AV. Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol Metab 2022; 66:101610. [PMID: 36209784 PMCID: PMC9587366 DOI: 10.1016/j.molmet.2022.101610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic insulin-producing β cells are specifically destroyed by the immune system. Understanding the initiation and progression of human T1D has been hampered by the lack of appropriate models that can reproduce the complexity and heterogeneity of the disease. The development of platforms combining multiple human pluripotent stem cell (hPSC) derived tissues to model distinct aspects of T1D has the potential to provide critical novel insights into the etiology and pathogenesis of the human disease. SCOPE OF REVIEW In this review, we summarize the state of hPSC differentiation approaches to generate cell types and tissues relevant to T1D, with a particular focus on pancreatic islet cells, T cells, and thymic epithelium. We present current applications as well as limitations of using these hPSC-derived cells for disease modeling and discuss efforts to optimize platforms combining multiple cell types to model human T1D. Finally, we outline remaining challenges and emphasize future improvements needed to accelerate progress in this emerging field of research. MAJOR CONCLUSIONS Recent advances in reprogramming approaches to create patient-specific induced pluripotent stem cell lines (iPSCs), genome engineering technologies to efficiently modify DNA of hPSCs, and protocols to direct their differentiation into mature cell types have empowered the use of stem cell derivatives to accurately model human disease. While challenges remain before complex interactions occurring in human T1D can be modeled with these derivatives, experiments combining hPSC-derived β cells and immune cells are already providing exciting insight into how these cells interact in the context of T1D, supporting the viability of this approach.
Collapse
Affiliation(s)
- Karla F Leavens
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Linda T Vo
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Parent AV, Ashe S, Nair GG, Li ML, Chavez J, Liu JS, Zhong Y, Streeter PR, Hebrok M. Development of a scalable method to isolate subsets of stem cell-derived pancreatic islet cells. Stem Cell Reports 2022; 17:979-992. [PMID: 35245441 PMCID: PMC9023773 DOI: 10.1016/j.stemcr.2022.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cell replacement therapy using β cells derived from stem cells is a promising alternative to conventional diabetes treatment options. Although current differentiation methods produce glucose-responsive β cells, they can also yield populations of undesired endocrine progenitors and other proliferating cell types that might interfere with long-term islet function and safety of transplanted cells. Here, we describe the generation of an array of monoclonal antibodies against cell surface markers that selectively label stem cell-derived islet cells. A high-throughput screen identified promising candidates, including three clones that mark a high proportion of endocrine cells in differentiated cultures. A scalable magnetic sorting method was developed to enrich for human pluripotent stem cell (hPSC)-derived islet cells using these three antibodies, leading to the formation of islet-like clusters with improved glucose-stimulated insulin secretion and reduced growth upon transplantation. This strategy should facilitate large-scale production of functional islet clusters from stem cells for disease modeling and cell replacement therapy.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mei-Lan Li
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Chavez
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer S Liu
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongping Zhong
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip R Streeter
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Rasouli N, Melton DA, Alvarez-Dominguez JR. Purification of Live Stem-Cell-Derived Islet Lineage Intermediates. ACTA ACUST UNITED AC 2021; 53:e111. [PMID: 32521122 DOI: 10.1002/cpsc.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stem-cell-derived tissues offer platforms to study organ development, model physiology during health and disease, and test novel therapies. We describe methods to isolate cells at successive stages during in vitro differentiation of human stem cells into the pancreatic endocrine lineage. Using flow cytometry, we purify live lineage intermediates in numbers not available by fetal biopsy. These include pancreatic and endocrine progenitors, isolated based on known surface markers. We further report a strategy that leverages intracellular zinc content and DPP4/CD26 expression to separate monohormonal insulin+ β cells from polyhormonal counterparts. These methods enable comprehensive molecular profiling during human islet lineage progression. © 2020 Wiley Periodicals LLC. Basic Protocol: In vitro isolation of human islet developmental intermediates.
Collapse
Affiliation(s)
- Niloofar Rasouli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Juan R Alvarez-Dominguez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
10
|
Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, Liu DR, Kibbey RG, Melton DA. Glucose Response by Stem Cell-Derived β Cells In Vitro Is Inhibited by a Bottleneck in Glycolysis. Cell Rep 2021; 31:107623. [PMID: 32402282 PMCID: PMC7433758 DOI: 10.1016/j.celrep.2020.107623] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Stem cell-derived β (SC-β) cells could provide unlimited human β cells toward a curative diabetes treatment. Differentiation of SC-β cells yields transplantable islets that secrete insulin in response to glucose challenges. Following transplantation into mice, SC-β cell function is comparable to human islets, but the magnitude and consistency of response in vitro are less robust than observed in cadaveric islets. Here, we profile metabolism of SC-β cells and islets to quantify their capacity to sense glucose and identify reduced anaplerotic cycling in the mitochondria as the cause of reduced glucose-stimulated insulin secretion in SC-β cells. This activity can be rescued by challenging SC-β cells with intermediate metabolites from the TCA cycle and late but not early glycolysis, downstream of the enzymes glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase. Bypassing this metabolic bottleneck results in a robust, bi-phasic insulin release in vitro that is identical in magnitude to functionally mature human islets. Glucose-stimulated insulin secretion is deficient in stem cell-derived β (SC-β) cells in vitro. Davis et al. use metabolomic analysis to define a glycolytic bottleneck inhibiting glucose metabolism and sensing in SC-β cells. Cell-permeable intermediates bypass this bottleneck, as does transplantation in vivo, producing insulin secretion indistinguishable from human islets.
Collapse
Affiliation(s)
- Jeffrey C Davis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Tiago C Alves
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA; Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jonathan C Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jennifer H Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Schiesser JV, Loudovaris T, Thomas HE, Elefanty AG, Stanley EG. Integrin αvβ5 heterodimer is a specific marker of human pancreatic beta cells. Sci Rep 2021; 11:8315. [PMID: 33859325 PMCID: PMC8050092 DOI: 10.1038/s41598-021-87805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
The identification of cell surface markers specific to pancreatic beta cells is important for both the study of islet biology and for investigating the pathophysiology of diseases in which this cell type is lost or damaged. Following analysis of publicly available RNAseq data, we identified specific integrin subunits, integrin αv and integrin β5, that were expressed in beta cells. This finding was further elaborated using immunofluorescence analysis of histological sections derived from donor human pancreas. Despite the broad expression of specific integrin subunits, we found that expression of integrin αvβ5 heterodimers was restricted to beta cells and that this complex persisted in islet remnants of some type 1 diabetic individuals from which insulin expression had been lost. This study identifies αvβ5 heterodimers as a novel cell surface marker of human pancreatic beta cells, a finding that will aid in the identification and characterisation of this important cell type.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia. .,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3052, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
12
|
Kahraman S, Manna D, Dirice E, Maji B, Small J, Wagner BK, Choudhary A, Kulkarni RN. Harnessing reaction-based probes to preferentially target pancreatic β-cells and β-like cells. Life Sci Alliance 2021; 4:4/4/e202000840. [PMID: 33514654 PMCID: PMC7898467 DOI: 10.26508/lsa.202000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Highly sensitive approaches to target insulin-expressing cells would allow more effective imaging, sorting, and analysis of pancreatic β-cells. Here, we introduce the use of a reaction-based probe, diacetylated Zinpyr1 (DA-ZP1), to image pancreatic β-cells and β-like cells derived from human pluripotent stem cells. We harness the high intracellular zinc concentration of β-cells to induce a fluorescence signal in cells after administration of DA-ZP1. Given its specificity and rapid uptake by cells, we used DA-ZP1 to purify live stem cell-derived β-like cells as confirmed by immunostaining analysis. We tested the ability of DA-ZP1 to image transplanted human islet grafts and endogenous mouse pancreatic islets in vivo after its systemic administration into mice. Thus, DA-ZP1 enables purification of insulin-secreting β-like cells for downstream applications, such as functional studies, gene-expression, and cell-cell interaction analyses and can be used to label engrafted human islets and endogenous mouse islets in vivo.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Debasish Manna
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonnell Small
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA .,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Davis JC, Helman A, Rivera-Feliciano J, Langston CM, Engquist EN, Melton DA. Live Cell Monitoring and Enrichment of Stem Cell-Derived β Cells Using Intracellular Zinc Content as a Population Marker. ACTA ACUST UNITED AC 2020; 51:e99. [PMID: 31756031 PMCID: PMC6876704 DOI: 10.1002/cpsc.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our laboratory and others have developed protocols to generate glucose‐responsive stem cell–derived β cells in vitro. The cells resulting from these protocols could supplement or replace the use of human cadaveric islets for cell‐based therapy for diabetes. The combination of an unlimited supply of pluripotent stem cell–derived β cells and gene‐editing approaches will facilitate numerous in vitro studies not possible with cadaveric islets. Here, we describe a protocol for fluorescent labeling and isolation of stem cell–derived β cells. This purification of SC‐β cells is based on intracellular zinc content and is a simple method to complement other approaches for generating and assaying these cells. © 2019 The Authors. Basic Protocol: Fluorescent labeling and isolation of stem cell‐derived β cells
Collapse
Affiliation(s)
- Jeffrey C Davis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - José Rivera-Feliciano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Christine M Langston
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Elise N Engquist
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
14
|
Helman A, Cangelosi AL, Davis JC, Pham Q, Rothman A, Faust AL, Straubhaar JR, Sabatini DM, Melton DA. A Nutrient-Sensing Transition at Birth Triggers Glucose-Responsive Insulin Secretion. Cell Metab 2020; 31:1004-1016.e5. [PMID: 32375022 PMCID: PMC7480404 DOI: 10.1016/j.cmet.2020.04.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
A drastic transition at birth, from constant maternal nutrient supply in utero to intermittent postnatal feeding, requires changes in the metabolic system of the neonate. Despite their central role in metabolic homeostasis, little is known about how pancreatic β cells adjust to the new nutritional challenge. Here, we find that after birth β cell function shifts from amino acid- to glucose-stimulated insulin secretion in correlation with the change in the nutritional environment. This adaptation is mediated by a transition in nutrient sensitivity of the mTORC1 pathway, which leads to intermittent mTORC1 activity. Disrupting nutrient sensitivity of mTORC1 in mature β cells reverts insulin secretion to a functionally immature state. Finally, manipulating nutrient sensitivity of mTORC1 in stem cell-derived β cells in vitro strongly enhances their glucose-responsive insulin secretion. These results reveal a mechanism by which nutrients regulate β cell function, thereby enabling a metabolic adaptation for the newborn.
Collapse
Affiliation(s)
- Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew L Cangelosi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey C Davis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Quan Pham
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Arielle Rothman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aubrey L Faust
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Juerg R Straubhaar
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Rosado-Olivieri EA, Aigha II, Kenty JH, Melton DA. Identification of a LIF-Responsive, Replication-Competent Subpopulation of Human β Cells. Cell Metab 2020; 31:327-338.e6. [PMID: 31928884 DOI: 10.1016/j.cmet.2019.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The beta (β)-cell mass formed during embryogenesis is amplified by cell replication during fetal and early postnatal development. Thereafter, β cells become functionally mature, and their mass is maintained by a low rate of replication. For those few β cells that replicate in adult life, it is not known how replication is initiated nor whether this occurs in a specialized subset of β cells. We capitalized on a YAP overexpression system to induce replication of stem-cell-derived β cells and, by single-cell RNA sequencing, identified an upregulation of the leukemia inhibitory factor (LIF) pathway. Activation of the LIF pathway induces replication of human β cells in vitro and in vivo. The expression of the LIF receptor is restricted to a subset of transcriptionally distinct human β cells with increased proliferative capacity. This study delineates novel genetic networks that control the replication of LIF-responsive, replication-competent human β cells.
Collapse
Affiliation(s)
- Edwin A Rosado-Olivieri
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Idil I Aigha
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Jennifer H Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|