1
|
Long CY, Huang Y. Proactive pharmacogenomics in azathioprine-treated pediatric inflammatory bowel disease at a Chinese tertiary hospital. Front Pharmacol 2025; 16:1558897. [PMID: 40206080 PMCID: PMC11979209 DOI: 10.3389/fphar.2025.1558897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Background Despite the emergence of numerous innovative targeted therapies for the management of pediatric inflammatory bowel disease (IBD), azathioprine continues to be a pivotal first-line therapeutic agent. Nonetheless, the considerable frequency of myelosuppression associated with its use warrants careful consideration and further investigation. This study aims to investigate the application of pharmacogenomics in Chinese pediatric IBD treated with azathioprine, and to elucidate its association with the occurrence of myelosuppression. Methods We conducted a retrospective analysis to determine the prevalence of pharmacogenetic abnormalities and thiopurine-induced myelosuppression in Chinese pediatric patients with IBD. Results Among the 227 patients underwent pharmacogenetic testing, abnormal genetypes occurred in 66 patients, among which 7 patients exhibited aberrant TPMT and 59 had aberrant NUDT15. Of the 58 patients who were treated with azathioprine, 23 cases experienced myelosuppression. All three children with heterozygous mutations in NUDT15 developed leukopenia following azathioprine treatment. Among patients with normal pharmacogenetic results, 20 cases (36.4%) developed myelosuppression, while 35 cases (63.6%) did not. The dose of azathioprine was below the recommended level in guidelines. The mean dose of azathioprine (mg/kg/day) in the myelosuppression group was 1.22 ± 0.32, compared to 1.42 ± 0.42 in the non-myelosuppression group, which represented a statistically significant difference (p < 0.05). Age, gender, and the use of concomitant biologics, mesalazine, or glucocorticoids did not show significant differences between the groups (p > 0.05). Conclusion NUDT15 C415T is prevalent in China and is associated with an increased risk of azathioprine-induced myelosuppression. A reduced dose of azathioprine should be considered for Chinese pediatric patients with IBD, even in those with normal pharmacogenetic profiles.
Collapse
Affiliation(s)
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
2
|
Kennedy AM, Griffiths AM, Muise AM, Walters TD, Ricciuto A, Huynh HQ, Wine E, Jacobson K, Lawrence S, Carman N, Mack DR, deBruyn JC, Otley AR, Deslandres C, El-Matary W, Zachos M, Benchimol EI, Critch J, Schneider R, Crowley E, Li M, Warner N, McGovern DPB, Li D, Haritunians T, Rudin S, Cohn I. Landscape of TPMT and NUDT15 Pharmacogenetic Variation in a Cohort of Canadian Pediatric Inflammatory Bowel Disease Patients. Inflamm Bowel Dis 2024; 30:2418-2427. [PMID: 38788739 PMCID: PMC11630297 DOI: 10.1093/ibd/izae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) exhibit considerable interindividual variability in medication response, highlighting the need for precision medicine approaches to optimize and tailor treatment. Pharmacogenetics (PGx) offers the ability to individualize dosing by examining genetic factors underlying the metabolism of medications such as thiopurines. Pharmacogenetic testing can identify individuals who may be at risk for thiopurine dose-dependent adverse reactions including myelosuppression. We aimed to evaluate PGx variation in genes supported by clinical guidelines that inform dosing of thiopurines and characterize differences in the distribution of actionable PGx variation among diverse ancestral groups. METHODS Pharmacogenetic variation in TPMT and NUDT15 was captured by genome-wide genotyping of 1083 pediatric IBD patients from a diverse Canadian cohort. Genetic ancestry was inferred using principal component analysis. The proportion of PGx variation and associated metabolizer status phenotypes was compared across 5 genetic ancestral groups within the cohort (Admixed American, African, East Asian, European, and South Asian) and to prior global estimates from corresponding populations. RESULTS Collectively, 11% of the cohort was categorized as intermediate or poor metabolizers of thiopurines, which would warrant a significant dose reduction or selection of alternate therapy. Clinically actionable variation in TPMT was more prevalent in participants of European and Admixed American/Latino ancestry (8.7% and 7.5%, respectively), whereas variation in NUDT15 was more prevalent in participants of East Asian and Admixed American/Latino ancestry (16% and 15% respectively). CONCLUSIONS These findings demonstrate the considerable interpopulation variability in PGx variation underlying thiopurine metabolism, which should be factored into testing diverse patient populations.
Collapse
Affiliation(s)
- April M Kennedy
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne M Griffiths
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Aleixo M Muise
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Thomas D Walters
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda Ricciuto
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Hien Q Huynh
- Edmonton Pediatric IBD Clinic, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Edmonton Pediatric IBD Clinic, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Kevan Jacobson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Sally Lawrence
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas Carman
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David R Mack
- CHEO IBD Centre, Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children’s Hospital of Eastern Ontario, CHEO Research Institute and Department of Pediatrics, University of Ottawa, Ottawa, Canada
| | - Jennifer C deBruyn
- Department of Pediatrics, Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, Alberta, Canada
| | - Anthony R Otley
- Division of Pediatric Gastroenterology & Nutrition, Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Colette Deslandres
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Wael El-Matary
- Section of Pediatric Gastroenterology, Winnipeg Children’s Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Mary Zachos
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Eric I Benchimol
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Critch
- Faculty of Medicine, Memorial University, St John’s, Newfoundland & Labrador, Canada
| | - Rilla Schneider
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Eileen Crowley
- Department of Pediatrics, Division of Pediatric Gastroenterology & Hepatology, Children’s Hospital Western Ontario, Western University, London, Ontario, Canada
| | - Michael Li
- The Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neil Warner
- Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- SickKids IBD Centre, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sarah Rudin
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iris Cohn
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Deben DS, Winkens B, van Moorsel SAW, van Oijen BPC, Bus P, Pierik MJ, Simsek M, de Boer NKH, Leers MPG, Wong DR, van Bodegraven AA. Early therapeutic drug monitoring helps to identify inflammatory bowel disease patients with a high risk to fail thiopurine treatment. Br J Clin Pharmacol 2024; 90:3296-3307. [PMID: 39183492 DOI: 10.1111/bcp.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024] Open
Abstract
AIMS Conventional thiopurines (azathioprine and mercaptopurine) remain standard therapy to maintain steroid sparing remission in inflammatory bowel disease (IBD), but are regularly discontinued due to adverse drug reactions (ADRs). Measurement of the metabolites 6-thioguanine nucleotides (6-TGN), 6-methylmercaptopurine ribonucleotides (6-MMPR) and the 6-MMPR/6-TGN ratio, may predict the development of these ADRs. Our aim was to evaluate whether early thiopurine metabolite measurements were associated with clinical outcomes. METHODS A post-hoc analysis was conducted of a multicentre, prospective, observational study on thiopurine-induced hepatotoxicity. IBD patients who initiated thiopurine therapy were included and thiopurine metabolite concentrations were assessed after 7 days (±1) (T1). Patients were monitored for 12 weeks to document the occurrence of ADRs, early treatment discontinuation and effectiveness. RESULTS In total, 181 patients were evaluated. At T1, 6-MMPR concentrations and 6-TGN/6-MMPR ratios were independently related to treatment discontinuation within 12 weeks after correction for sex, age and body mass index (BMI) (P = .034 and .002, respectively). The largest effects were observed for 6-MMPR ≥3000 pmol/8 × 108 RBC and 6-TGN/6-MMPR ratio ≥17. Furthermore, 6-MMPR concentrations and 6-TGN/6-MMPR ratios at T1 were independently related to skewed metabolism at steady state (Week 8, 6-MMPR/-6TGN ratio ≥11 and ≥20) (both P < .001). The occurrence of ADRs and effectiveness were not independently related to T1 thiopurine metabolite concentrations. CONCLUSIONS Thiopurine metabolite concentrations at T1 were related to early treatment discontinuation and skewed metabolism at steady state, but not to effectiveness, helping to identify patients with a high risk of thiopurine treatment failure.
Collapse
Affiliation(s)
- Debbie S Deben
- Department of Clinical Pharmacy, Clinical Pharmacology and Toxicology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, Netherlands
| | - Bjorn Winkens
- Department of methodology and statistics, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sofia A W van Moorsel
- Department of Pharmacy, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
- Department of Clinical Pharmacy, Bernhoven Hospital, Uden, Netherlands
| | - Brigit P C van Oijen
- Department of Clinical Pharmacy, Clinical Pharmacology and Toxicology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, Netherlands
| | - Paul Bus
- Department of Gastroenterology and Hepatology, Laurentius Hospital, Roermond, Netherlands
| | - Marieke J Pierik
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Melek Simsek
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, Netherlands
- Faculty of Science, Open Universiteit, Heerlen, Netherlands
| | - Dennis R Wong
- Department of Clinical Pharmacy, Clinical Pharmacology and Toxicology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, Netherlands
| | - Adriaan A van Bodegraven
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Gastroenterology, Geriatrics, Internal and Intensive Care Medicine (Co-MIK), Zuyderland Medical Centre, Sittard-Geleen/Heerlen, Netherlands
| |
Collapse
|
4
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
5
|
Huh KY, Hwang S, Na JY, Yu K, Jang I, Chung J, Yoon S. Estimation of the benefit from pre-emptive genotyping based on the nationwide cohort data in South Korea. Clin Transl Sci 2024; 17:e13772. [PMID: 38501281 PMCID: PMC10949179 DOI: 10.1111/cts.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Genetic variants affect drug responses, making pre-emptive genotyping crucial for averting serious adverse events (SAEs) and treatment failure. However, assessing the benefits of pre-emptive genotyping based on genetic distribution, drug exposure, and demographics is challenging. This study aimed to estimate the population-level benefits of pre-emptive genotyping in the Korean population using nationwide cohort data. We reviewed actionable gene-drug combinations recommended by both the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) as of February 2022, identifying high-risk phenotypes. We collected reported risk reduction from genotyping and standardized it into population attributable risks. Healthcare reimbursement costs for SAEs and treatment failures were obtained from the Health Insurance Review and Assessment Service Statistics in 2021. The benefits of pre-emptive genotyping for a specific group were determined by multiplying drug exposure from nationwide cohort data by individual genotyping benefits. We identified 31 gene-drug-event pairs, with CYP2D6 and CYP2C19 demonstrating the greatest benefits for both male and female patients. Individuals aged 65-70 years had the highest individual benefit from pre-emptive genotyping, with $84.40 for men and $100.90 for women. Pre-emptive genotyping, particularly for CYP2D6 and CYP2C19, can provide substantial benefits.
Collapse
Affiliation(s)
- Ki Young Huh
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University HospitalSeoulSouth Korea
| | - Sejung Hwang
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University HospitalSeoulSouth Korea
| | - Joo Young Na
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University HospitalSeoulSouth Korea
| | - Kyung‐Sang Yu
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University HospitalSeoulSouth Korea
| | - In‐Jin Jang
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University HospitalSeoulSouth Korea
| | - Jae‐Yong Chung
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University Bundang HospitalGyeonggi‐doSouth Korea
| | - Seonghae Yoon
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of MedicineSeoulSouth Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University Bundang HospitalGyeonggi‐doSouth Korea
| |
Collapse
|
6
|
Leaviss J, Carroll C, Essat M, van der Windt D, Grainge MJ, Card T, Riley R, Abhishek A. Prognostic factors for liver, blood and kidney adverse events from glucocorticoid sparing immune-suppressing drugs in immune-mediated inflammatory diseases: a prognostic systematic review. RMD Open 2024; 10:e003588. [PMID: 38199851 PMCID: PMC10806492 DOI: 10.1136/rmdopen-2023-003588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Immune-suppressing drugs can cause liver, kidney or blood toxicity. Prognostic factors for these adverse-events are poorly understood. PURPOSE To ascertain prognostic factors associated with liver, blood or kidney adverse-events in people receiving immune-suppressing drugs. DATA SOURCES MEDLINE, Web of Science, EMBASE and the Cochrane library (01 January 1995 to 05 January 2023), and supplementary sources. DATA EXTRACTION AND SYNTHESIS Data were extracted by one reviewer using a modified CHARMS-PF checklist and validated by another. Two independent reviewers assessed risk of bias using Quality in Prognostic factor Studies tool and assessed the quality of evidence using a Grading of Recommendations Assessment, Development and Evaluation-informed framework. RESULTS Fifty-six studies from 58 papers were included. High-quality evidence of the following associations was identified: elevated liver enzymes (6 studies) and folate non-supplementation (3 studies) are prognostic factors for hepatotoxicity in those treated with methotrexate; that mercaptopurine (vs azathioprine) (3 studies) was a prognostic factor for hepatotoxicity in those treated with thiopurines; that mercaptopurine (vs azathioprine) (3 studies) and poor-metaboliser status (4 studies) were prognostic factors for cytopenia in those treated with thiopurines; and that baseline elevated liver enzymes (3 studies) are a prognostic factor for hepatotoxicity in those treated with anti-tumour necrosis factors. Moderate and low quality evidence for several other demographic, lifestyle, comorbidities, baseline bloods/serologic or treatment-related prognostic factors were also identified. LIMITATIONS Studies published before 1995, those with less than 200 participants and not published in English were excluded. Heterogeneity between studies included different cut-offs for prognostic factors, use of different outcome definitions and different adjustment factors. CONCLUSIONS Prognostic factors for target-organ damage were identified which may be further investigated for their potential role in targeted (risk-stratified) monitoring. PROSPERO REGISTRATION NUMBER CRD42020208049.
Collapse
Affiliation(s)
- Joanna Leaviss
- SCHARR, The University of Sheffield, Sheffield, Yorkshire, UK
| | | | - Munira Essat
- SCHARR, The University of Sheffield, Sheffield, Yorkshire, UK
| | | | - Matthew J Grainge
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tim Card
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Richard Riley
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK
| | | |
Collapse
|
7
|
El Hadad J, Schreiner P, Vavricka SR, Greuter T. The Genetics of Inflammatory Bowel Disease. Mol Diagn Ther 2024; 28:27-35. [PMID: 37847439 PMCID: PMC10787003 DOI: 10.1007/s40291-023-00678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
The genetic background of inflammatory bowel disease, both Crohn's disease and ulcerative colitis, has been known for more than 2 decades. In the last 20 years, genome-wide association studies have dramatically increased our knowledge on the genetics of inflammatory bowel disease with more than 200 risk genes having been identified. Paralleling this increasing knowledge, the armamentarium of inflammatory bowel disease medications has been growing constantly. With more available therapeutic options, treatment decisions become more complex, with still many patients experiencing a debilitating disease course and a loss of response to treatment over time. With a better understanding of the disease, more effective personalized treatment strategies are looming on the horizon. Genotyping has long been considered a strategy for treatment decisions, such as the detection of thiopurine S-methyltransferase and nudix hydrolase 15 polymorphisms before the initiation of azathioprine. However, although many risk genes have been identified in inflammatory bowel disease, a substantial impact of genetic risk assessment on therapeutic strategies and disease outcome is still missing. In this review, we discuss the genetic background of inflammatory bowel disease, with a particular focus on the latest advances in the field and their potential impact on management decisions.
Collapse
Affiliation(s)
- Jasmina El Hadad
- Department of Internal Medicine, Triemli Hospital, Zurich, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Center for Gastroenterology and Hepatology, Zurich, Switzerland
| | - Thomas Greuter
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
- Division of Gastroenterology and Hepatology, University Hospital Lausanne-CHUV, Lausanne, Switzerland.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, GZO Zurich Regional Health Center, Spitalstrasse 66, 8620, Wetzikon, Switzerland.
| |
Collapse
|
8
|
Díaz-Villamarín X, Fernández-Varón E, Rojas Romero MC, Callejas-Rubio JL, Cabeza-Barrera J, Rodríguez-Nogales A, Gálvez J, Morón R. Azathioprine dose tailoring based on pharmacogenetic information: Insights of clinical implementation. Biomed Pharmacother 2023; 168:115706. [PMID: 37857254 DOI: 10.1016/j.biopha.2023.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Azathioprine is commonly used as an immunosuppressive antimetabolite in the treatment of acute lymphoblastic leukemia, autoimmune disorders (such as Crohn's disease and rheumatoid arthritis), and in patients receiving organ transplants. Thiopurine-S-methyltransferase (TPMT) is a cytoplasmic trans-methylase catalyzing the S-methylation of thiopurines. The active metabolites obtained from thiopurines are hydrolyzed into inactive forms by the Nudix hydrolase 15 (NUDT15). The TPMT*2 (defined by rs1800462), *3A (defined by rs1800460 and rs1142345), *3B (defined by rs1800460), *3C (defined by rs1142345), *6 (defined by rs75543815), and NUDT15 rs116855232 genetic variant have been associated, with the highest level of evidence, with the response to azathioprine, and, the approved drug label for azathioprine and main pharmacogenetic dosing guidelines recommend starting with reduced initial doses in TPMT intermediate metabolizer (IM) patients and considering an alternative treatment in TPMT poor metabolizer (PM) patients. This study aims to assess the clinical impact of azathioprine dose tailoring based on TPMT genotyping studying the azathioprine toxicity and efficacy, treatment starts, and dose adjustments during follow-up, comparing TPMT IM/PM and normal metabolizer (NM) patients. It also studied the association of NUDT15 rs116855232 with response to azathioprine in patients receiving a tailored treatment based on TPMT and characterized the TMPT and NUDT15 studied variants in our population. Results show that azathioprine dose reduction in TPMT IM patients (TPMT*1/*2, *1/*3A, or *1/*3C genotypes) is related to lower toxicity events compared to TPMT NM (TPMT *1/*1 genotype), and lower azathioprine dose adjustments during follow-up without showing differences in the efficacy. The results support the hypothesis of existing other genetic variants affecting azathioprine toxicity.
Collapse
Affiliation(s)
| | - Emilio Fernández-Varón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | - José Luis Callejas-Rubio
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Internal Medicine Department, Hospital Universitario San Cecilio, Granada, Spain
| | - José Cabeza-Barrera
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Hospital Pharmacy Unit. Hospital Universitario San Cecilio, Granada, Spain
| | - Alba Rodríguez-Nogales
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Centro de Investigaciones Biomédicas en Red - Enfermedades Hepáticas y Digestivas (CIBER-ehd)
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Hospital Pharmacy Unit. Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
9
|
Deben DS, Derijks LJJ, van den Bosch BJC, Creemers RH, van Nunen A, van Bodegraven AA, Wong DR. Implications of Tioguanine Dosing in IBD Patients with a TPMT Deficiency. Metabolites 2023; 13:1054. [PMID: 37887379 PMCID: PMC10608562 DOI: 10.3390/metabo13101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Tioguanine is metabolised by fewer enzymatic steps compared to azathioprine and mercaptopurine, without generating 6-methylmercaptopurine ribonucleotides. However, thiopurine S-methyl transferase (TPMT) plays a role in early toxicity in all thiopurines. We aimed to describe the hazards and opportunities of tioguanine use in inflammatory bowel disease (IBD) patients with aberrant TPMT metabolism and propose preventative measures to safely prescribe tioguanine in these patients. In this retrospective cohort study, all determined TPMT genotypes (2016-2021) were evaluated for aberrant metabolism (i.e., intermediate and poor TPMT metabolisers). Subsequently, all IBD patients on tioguanine with aberrant TPMT genotypes were evaluated for tioguanine dosages, adverse drug events, lab abnormalities, treatment duration and effectiveness. TPMT genotypes were determined in 485 patients, of whom, 50 (10.3%) and 4 patients (0.8%) were intermediate and poor metabolisers, respectively. Of these patients, 12 intermediate and 4 poor TPMT metabolisers had been prescribed tioguanine in varying doses. In one poor TPMT metaboliser, tioguanine 10 mg/day induced delayed pancytopenia. In general, reduced tioguanine dosages of 5 mg/day for intermediate TPMT metabolisers, and 10 mg two-weekly for poor TPMT metabolisers, resulted in a safe, long-term treatment strategy. Diminished or absent TPMT enzyme activity was related with a pharmacokinetic shift of tioguanine metabolism which is associated with relatively late-occurring myelotoxicity in patients on standard tioguanine dose. However, in strongly reduced dose regimens with strict therapeutic drug and safety monitoring, tioguanine treatment remained a safe and effective option in IBD patients with dysfunctional TPMT.
Collapse
Affiliation(s)
- Debbie S. Deben
- Department of Clinical Pharmacy, Clinical Pharmacology and Toxicology, Zuyderland Medical Centre, 6162 BG Sittard, The Netherlands;
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
| | - Bianca J. C. van den Bosch
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Rob H. Creemers
- Department of Gastroenterology, Zuyderland Medical Centre, 6162 BG Sittard, The Netherlands
- Department of Gastro-Enterology, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Annick van Nunen
- Department of Gastroenterology, Zuyderland Medical Centre, 6162 BG Sittard, The Netherlands
| | - Adriaan A. van Bodegraven
- Department of Gastroenterology, Zuyderland Medical Centre, 6162 BG Sittard, The Netherlands
- Department of Gastro-Enterology, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Dennis R. Wong
- Department of Clinical Pharmacy, Clinical Pharmacology and Toxicology, Zuyderland Medical Centre, 6162 BG Sittard, The Netherlands;
| |
Collapse
|
10
|
Nakafero G, Card T, Grainge MJ, Williams HC, Taal MW, Aithal GP, Fox CP, Mallen CD, van der Windt DA, Stevenson MD, Riley RD, Abhishek A. Risk-stratified monitoring for thiopurine toxicity in immune-mediated inflammatory diseases: prognostic model development, validation, and, health economic evaluation. EClinicalMedicine 2023; 64:102213. [PMID: 37745026 PMCID: PMC10514402 DOI: 10.1016/j.eclinm.2023.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background Patients established on thiopurines (e.g., azathioprine) are recommended to undergo three-monthly blood tests for the early detection of blood, liver, or kidney toxicity. These side-effects are uncommon during long-term treatment. We developed a prognostic model that could be used to inform risk-stratified decisions on frequency of monitoring blood-tests during long-term thiopurine treatment, and, performed health-economic evaluation of alternate monitoring intervals. Methods This was a retrospective cohort study set in the UK primary-care. Data from the Clinical Practice Research Datalink Aurum and Gold formed development and validation cohorts, respectively. People age ≥18 years, diagnosed with an immune mediated inflammatory disease, prescribed thiopurine by their general practitioner for at-least six-months between January 1, 2007 and December 31, 2019 were eligible. The outcome was thiopurine discontinuation with abnormal blood-test results. Patients were followed up from six-months after first primary-care thiopurine prescription to up to five-years. Penalised Cox regression developed the risk equation. Multiple imputation handled missing predictor data. Calibration and discrimination assessed model performance. A mathematical model evaluated costs and quality-adjusted life years associated with lengthening the interval between blood-tests. Findings Data from 5982 (405 events over 16,117 person-years) and 3573 (269 events over 9075 person-years) participants were included in the development and validation cohorts, respectively. Fourteen candidate predictors (21 parameters) were included. The optimism adjusted R2 and Royston D statistic in development data were 0.11 and 0.76, respectively. The calibration slope and Royston D statistic (95% Confidence Interval) in the validation data were 1.10 (0.84-1.36) and 0.72 (0.52-0.92), respectively. A 2-year period between monitoring blood-test was most cost-effective in all deciles of predicted risk but the gain between monitoring annually or biennially reduced in higher risk deciles. Interpretation This prognostic model requires information that is readily available during routine clinical care and may be used to risk-stratify blood-test monitoring for thiopurine toxicity. These findings should be considered by specialist societies when recommending blood monitoring during thiopurine prescription to bring about sustainable and equitable change in clinical practice. Funding National Institute for Health and Care Research.
Collapse
Affiliation(s)
- Georgina Nakafero
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Tim Card
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Matthew J. Grainge
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Hywel C. Williams
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Maarten W. Taal
- Centre for Kidney Research and Innovation, School of Medicine, Translational Medical Sciences, University of Nottingham, Derby DE22 3NE, UK
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Christopher P. Fox
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Christian D. Mallen
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele ST5 5BJ, UK
| | | | - Matthew D. Stevenson
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | - Richard D. Riley
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Abhishek Abhishek
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| |
Collapse
|
11
|
Cook KJ, Grusauskas V, Gloe L, Duong BQ, Gresh RC, Kolb EA, Bansal M, Bechtel AS, Nagasubramanian R, Kirwin SM, Blake KV, Seligson ND. Comparison of variants in TPMT and NUDT15 between sequencing and genotyping methods in a multistate pediatric institution. Clin Transl Sci 2023; 16:1352-1358. [PMID: 37415296 PMCID: PMC10432880 DOI: 10.1111/cts.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
The risk of severe adverse events related to thiopurine therapy can be reduced by personalizing dosing based on TPMT and NUDT15 genetic polymorphisms. However, the optimal genetic testing platform has not yet been established. In this study, we report on the TPMT and NUDT15 genotypes and phenotypes generated from 320 patients from a multicenter pediatric healthcare system using both Sanger sequencing and polymerase chain reaction genotyping (hereafter: genotyping) methods to determine the appropriateness of genotyping in our patient population. Sanger sequencing identified variant TPMT alleles including *3A (8, 3.2% of alleles), *3C (4, 1.6%), and *2 (1, 0.4%), and NUDT15 alleles including *2 (5, 3.6%) and *3 (1, 0.7%). For genotyped patients, variants identified in TPMT included *3A (12, 3.1%), *3C (4, 1%), *2 (2, 0.5%), and *8 (1, 0.25%), whereas NUDT15 included *4 (2, 1.9%) and *2 or *3 (1, 1%). Between Sanger sequencing and genotyping, no significant difference in allele, genotype, or phenotype frequency was identified for either TPMT or NUDT15. All patients who were tested using Sanger sequencing would have been accurately phenotyped for either TPMT (124/124), NUDT15 (69/69), or both genes (68/68) if they were assayed using the genotyping method. Considering 193 total TPMT and NUDT15 Sanger Sequencing tests reviewed, all tests would have resulted in an appropriate clinical recommendation if the test had instead been conducted using the comparison genotyping platforms. These results suggest that, in this study population, genotyping would be sufficient to provide accurate phenotype calls and clinical recommendations.
Collapse
Affiliation(s)
- Kelsey J. Cook
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| | - Victoria Grusauskas
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| | - Lucy Gloe
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| | | | - Renee C. Gresh
- Department of Pediatric Hematology/OncologyNemours Children's HealthWilmingtonDelawareUSA
| | - E. Anders Kolb
- Department of Pediatric Hematology/OncologyNemours Children's HealthWilmingtonDelawareUSA
| | - Manisha Bansal
- Department of Pediatric Hematology/OncologyNemours Children's HealthJacksonvilleFloridaUSA
| | - Allison S. Bechtel
- Department of Pediatric Hematology/OncologyNemours Children's HealthJacksonvilleFloridaUSA
| | | | - Susan M. Kirwin
- Molecular Diagnostics LaboratoryNemours Children's HealthWilmingtonDelawareUSA
| | - Kathryn V. Blake
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
| | - Nathan D. Seligson
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| |
Collapse
|
12
|
Davis A, Dickson AL, Daniel LL, Nepal P, Zanussi J, Miller-Fleming TW, Straub PS, Wei WQ, Liu G, Cox NJ, Hung AM, Feng Q, Stein CM, Chung CP. Association Between Genetically Predicted Expression of TPMT and Azathioprine Adverse Events. RESEARCH SQUARE 2023:rs.3.rs-2444787. [PMID: 36711487 PMCID: PMC9882694 DOI: 10.21203/rs.3.rs-2444787/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polymorphisms thiopurine-S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) can increase the risk of azathioprine myelotoxicity, but little is known about other genetic factors that increase risk for azathioprine-associated side effects. PrediXcan is a gene-based association method that estimates the expression of individuals' genes and examines their correlation to specified phenotypes. As proof of concept for using PrediXcan as a tool to define the association between genetic factors and azathioprine side effects, we aimed to determine whether the genetically predicted expression of TPMT or NUDT15 was associated with leukopenia or other known side effects. In a retrospective cohort of 1364 new users of azathioprine with EHR-reported White race, we used PrediXcan to impute expression in liver tissue, tested its association with pre-specified phecodes representing known side effects (e.g., skin cancer), and completed chart review to confirm cases. Among confirmed cases, patients in the lowest tertile (i.e., lowest predicted) of TPMT expression had significantly higher odds of developing leukopenia (OR=3.30, 95%CI: 1.07-10.20, p=0.04) versus those in the highest tertile; no other side effects were significant. The results suggest that this methodology could be deployed on a larger scale to uncover associations between genetic factors and drug side effects for more personalized care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ge Liu
- Vanderbilt University Medical Center
| | | | | | | | | | | |
Collapse
|
13
|
Dickson AL, Daniel LL, Jackson E, Zanussi J, Yang W, Plummer WD, Dupont WD, Wei WQ, Nepal P, Hung AM, Cox NJ, Van Driest SL, Feng Q, Yang JJ, Stein CM, Mosley JD, Chung CP. Race, Genotype, and Azathioprine Discontinuation : A Cohort Study. Ann Intern Med 2022; 175:1092-1099. [PMID: 35724382 PMCID: PMC9378477 DOI: 10.7326/m21-4675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Thiopurines are an important class of immunosuppressants despite their risk for hematopoietic toxicity and narrow therapeutic indices. Benign neutropenia related to an ACKR1 variant (rs2814778-CC) is common among persons of African ancestries. OBJECTIVE To test whether rs2814778-CC was associated with azathioprine discontinuation attributed to hematopoietic toxicity and lower thiopurine dosing. DESIGN Retrospective cohort study. SETTING Two tertiary care centers. PATIENTS Thiopurine users with White or Black race. MEASUREMENTS Azathioprine discontinuation attributed to hematopoietic toxicity. Secondary outcomes included weight-adjusted final dose, leukocyte count, and change in leukocyte count. RESULTS The rate of azathioprine discontinuation attributed to hematopoietic toxicity was 3.92 per 100 person-years among patients with the CC genotype (n = 101) and 1.34 per 100 person-years among those with the TT or TC genotype (n = 1365) (hazard ratio [HR] from competing-risk model, 2.92 [95% CI, 1.57 to 5.41]). The risk remained significant after adjustment for race (HR, 2.61 [CI, 1.01 to 6.71]). The risk associated with race alone (HR, 2.13 [CI, 1.21 to 3.75]) was abrogated by adjustment for genotype (HR, 1.13 [CI, 0.48 to 2.69]). Lower last leukocyte count and lower dosing were significant among patients with the CC genotype. Lower dosing was validated in an external cohort of 94 children of African ancestries prescribed the thiopurine 6-mercaptopurine (6-MP) for acute lymphoblastic leukemia. The CC genotype was independently associated with lower 6-MP dose intensity relative to the target daily dose of 75 mg/m2 (median, 0.83 [IQR, 0.70 to 0.94] for the CC genotype vs. 0.94 [IQR, 0.72 to 1.13] for the TT or TC genotype; P = 0.013). LIMITATIONS Unmeasured confounding; data limited to tertiary centers. CONCLUSION Patients with the CC genotype had higher risk for azathioprine discontinuation attributed to hematopoietic toxicity and lower thiopurine doses. Genotype was associated with those risks, even after adjustment for race. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
Affiliation(s)
- Alyson L Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Laura L Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Elise Jackson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Jacy Zanussi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Wenjian Yang
- Pharmacy and Pharmaceutical Sciences Department, St. Jude Children's Research Hospital, Memphis, Tennessee (W.Y., J.J.Y.)
| | - W Dale Plummer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee (W.D.P., W.D.D.)
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee (W.D.P., W.D.D.)
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee (W.W.)
| | - Puran Nepal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Adriana M Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Sara L Van Driest
- Departments of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee (S.L.V.)
| | - QiPing Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Jun J Yang
- Pharmacy and Pharmaceutical Sciences Department, St. Jude Children's Research Hospital, Memphis, Tennessee (W.Y., J.J.Y.)
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| | - Jonathan D Mosley
- Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee (J.D.M.)
| | - Cecilia P Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.L.D., L.L.D., E.J., J.Z., P.N., A.M.H., N.J.C., Q.F., C.M.S., C.P.C.)
| |
Collapse
|
14
|
Daniel LL, Dickson AL, Zanussi JT, Miller‐Fleming TW, Straub PS, Wei W, Plummer WD, Dupont WD, Liu G, Anandi P, Reese TS, Birdwell KA, Kawai VK, Hung AM, Cox NJ, Feng Q, Stein CM, Chung CP. Predicted expression of genes involved in the thiopurine metabolic pathway and azathioprine discontinuation due to myelotoxicity. Clin Transl Sci 2022; 15:859-865. [PMID: 35118815 PMCID: PMC9010278 DOI: 10.1111/cts.13243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
TPMT and NUDT15 variants explain less than 25% of azathioprine-associated myelotoxicity. There are 25 additional genes in the thiopurine pathway that could also contribute to azathioprine myelotoxicity. We hypothesized that among TPMT and NUDT15 normal metabolizers, a score combining the genetically predicted expression of other proteins in the thiopurine pathway would be associated with a higher risk for azathioprine discontinuation due to myelotoxicity. We conducted a retrospective cohort study of new users of azathioprine who were normal TPMT and NUDT15 metabolizers. In 1201 White patients receiving azathioprine for an inflammatory disease, we used relaxed Least Absolute Shrinkage and Selection Operator (LASSO) regression to select genes that built a score for discontinuing azathioprine due to myelotoxicity. The score incorporated the predicted expression of AOX1 and NME1. Patients in the highest score tertile had a higher risk of discontinuing azathioprine compared to those in the lowest tertile (hazard ratio [HR] = 2.15, 95% confidence interval [CI] = 1.11-4.19, p = 0.024). Results remained significant after adjusting for a propensity score, including sex, tertile of calendar year at initial dose, initial dose, age at baseline, indication, prior TPMT testing, and the first 10 principal components of the genetic data (HR = 2.11, 95% CI = 1.08-4.13, p = 0.030). We validated the results in a cohort (N = 517 non-White patients and those receiving azathioprine to prevent transplant rejection) that included all other patients receiving azathioprine (HR = 2.00, (95% CI = 1.09-3.65, p = 0.024). In conclusion, among patients who were TPMT and NUDT15 normal metabolizers, a score combining the predicted expression of AOX1 and NME1 was associated with an increased risk for discontinuing azathioprine due to myelotoxicity.
Collapse
Affiliation(s)
- Laura L. Daniel
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alyson L. Dickson
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jacy T. Zanussi
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Peter S. Straub
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Wei‐Qi Wei
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - W. Dale Plummer
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - William D. Dupont
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ge Liu
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Prathima Anandi
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tyler S. Reese
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kelly A. Birdwell
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vivian K. Kawai
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Adriana M. Hung
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA,Tennessee Valley Healthcare SystemNashvilleVirginiaUSA
| | - Nancy J. Cox
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - QiPing Feng
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - C. Michael Stein
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Cecilia P. Chung
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA,Tennessee Valley Healthcare SystemNashvilleVirginiaUSA
| |
Collapse
|
15
|
Deben DS, Wong DR, van Bodegraven AA. Current status and future perspectives on the use of therapeutic drug monitoring of thiopurine metabolites in patients with inflammatory bowel disease. Expert Opin Drug Metab Toxicol 2022; 17:1433-1444. [PMID: 35023443 DOI: 10.1080/17425255.2021.2029406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite new treatment options for inflammatory bowel disease (IBD), conventional thiopurines remain a common treatment option for maintaining remission, particularly in non-Westernized countries. Therapeutic drug monitoring (TDM) is advised in standard care for optimizing therapy strategies to improve effectiveness, reveal nonadherence and reduce toxicity. Still, the rationale of TDM is debated. AREAS COVERED Key insights on TDM of thiopurine metabolites are discussed. The pharmacology of thiopurines is described, emphasizing the interindividual differences in pharmacogenetics, pharmacokinetics and pharmacodynamics. Pharmacological differences between conventional thiopurines and tioguanine are outlined. Finally, several optimization strategies for thiopurine therapy in IBD are discussed. EXPERT OPINION TDM has been a useful, but limited, tool to individualize thiopurine therapy. Pharmacokinetic data on the active thiopurine metabolites, derived from measurements in erythrocytes, associated with clinical response only partially predict effectiveness and toxicity. An additional pharmacodynamic marker, such as Rac1/pSTAT3 expression in leukocytes, may improve applicability of TDM in the future.
Collapse
Affiliation(s)
- Debbie S Deben
- Dept. of Clinical Pharmacy, Clinical pharmacology and Toxicology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Dennis R Wong
- Dept. of Clinical Pharmacy, Clinical pharmacology and Toxicology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Adriaan A van Bodegraven
- Dept. of Gastroenterology, Geriatrics, Internal and Intensive Care Medicine (Co-MIK), Zuyderland Medical Centre Sittard-Geleen/Heerlen, The Netherlands.,Dept. of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| |
Collapse
|