1
|
Lim R, Martin TLP, Chae J, Kim WJ, Ghim CM, Kim PJ. Generalized Michaelis-Menten rate law with time-varying molecular concentrations. PLoS Comput Biol 2023; 19:e1011711. [PMID: 38079453 PMCID: PMC10735182 DOI: 10.1371/journal.pcbi.1011711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Michaelis-Menten (MM) rate law has been the dominant paradigm of modeling biochemical rate processes for over a century with applications in biochemistry, biophysics, cell biology, systems biology, and chemical engineering. The MM rate law and its remedied form stand on the assumption that the concentration of the complex of interacting molecules, at each moment, approaches an equilibrium (quasi-steady state) much faster than the molecular concentrations change. Yet, this assumption is not always justified. Here, we relax this quasi-steady state requirement and propose the generalized MM rate law for the interactions of molecules with active concentration changes over time. Our approach for time-varying molecular concentrations, termed the effective time-delay scheme (ETS), is based on rigorously estimated time-delay effects in molecular complex formation. With particularly marked improvements in protein-protein and protein-DNA interaction modeling, the ETS provides an analytical framework to interpret and predict rich transient or rhythmic dynamics (such as autogenously-regulated cellular adaptation and circadian protein turnover), which goes beyond the quasi-steady state assumption.
Collapse
Affiliation(s)
- Roktaek Lim
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | | - Junghun Chae
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Woo Joong Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Cheol-Min Ghim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pan-Jun Kim
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- Center for Quantitative Systems Biology & Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon, Hong Kong
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong
- Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| |
Collapse
|
2
|
Denorme F, Armstrong ND, Stoller ML, Portier I, Tugolukova EA, Tanner RM, Montenont E, Bhatlekar S, Cody M, Rustad JL, Ajanel A, Tolley ND, Murray DC, Boyle JL, Nieman MT, McKenzie SE, Yost CC, Lange LA, Cushman M, Irvin MR, Bray PF, Campbell RA. The predominant PAR4 variant in individuals of African ancestry worsens murine and human stroke outcomes. J Clin Invest 2023; 133:e169608. [PMID: 37471144 PMCID: PMC10503801 DOI: 10.1172/jci169608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
Protease-activated receptor 4 (PAR4) (gene F2RL3) harbors a functional dimorphism, rs773902 A/G (encoding Thr120/Ala120, respectively) and is associated with greater platelet aggregation. The A allele frequency is more common in Black individuals, and Black individuals have a higher incidence of ischemic stroke than White individuals. However, it is not known whether the A allele is responsible for worse stroke outcomes. To directly test the in vivo effect of this variant on stroke, we generated mice in which F2rl3 was replaced by F2RL3, thereby expressing human PAR4 (hPAR4) with either Thr120 or Ala120. Compared with hPAR4 Ala120 mice, hPAR4 Thr120 mice had worse stroke outcomes, mediated in part by enhanced platelet activation and platelet-neutrophil interactions. Analyses of 7,620 Black subjects with 487 incident ischemic strokes demonstrated the AA genotype was a risk for incident ischemic stroke and worse functional outcomes. In humanized mice, ticagrelor with or without aspirin improved stroke outcomes in hPAR4 Ala120 mice, but not in hPAR4 Thr120 mice. P selectin blockade improved stroke outcomes and reduced platelet-neutrophil interactions in hPAR4 Thr120 mice. Our results may explain some of the racial disparity in stroke and support the need for studies of nonstandard antiplatelet therapies for patients expressing PAR4 Thr120.
Collapse
Affiliation(s)
- Frederik Denorme
- Program in Molecular Medicine and
- Department of Neurology, Division of Vascular Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | - Julie L. Boyle
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven E. McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christian Con Yost
- Program in Molecular Medicine and
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, Utah, USA
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Marguerite R. Irvin
- Department of Neurology, Division of Vascular Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Paul F. Bray
- Program in Molecular Medicine and
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, and
| | - Robert A. Campbell
- Program in Molecular Medicine and
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, and
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Stoller ML, Basak I, Denorme F, Rowley JW, Alsobrooks J, Parsawar K, Nieman MT, Yost CC, Hamilton JR, Bray PF, Campbell RA. Neutrophil cathepsin G proteolysis of protease-activated receptor 4 generates a novel, functional tethered ligand. Blood Adv 2022; 6:2303-2308. [PMID: 34883511 PMCID: PMC9006282 DOI: 10.1182/bloodadvances.2021006133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022] Open
Abstract
Platelet-neutrophil interactions regulate ischemic vascular injury. Platelets are activated by serine proteases that cleave protease-activated receptor (PAR) amino termini, resulting in an activating tethered ligand. Neutrophils release cathepsin G (CatG) at sites of injury and inflammation, which activates PAR4 but not PAR1, although the molecular mechanism of CatG-induced PAR4 activation is unknown. We show that blockade of the canonical PAR4 thrombin cleavage site did not alter CatG-induced platelet aggregation, suggesting CatG cleaves a different site than thrombin. Mass spectrometry analysis using PAR4 N-terminus peptides revealed CatG cleavage at Ser67-Arg68. A synthetic peptide, RALLLGWVPTR, representing the tethered ligand resulting from CatG proteolyzed PAR4, induced PAR4-dependent calcium flux and greater platelet aggregation than the thrombin-generated GYPGQV peptide. Mutating PAR4 Ser67or Arg68 reduced CatG-induced calcium flux without affecting thrombin-induced calcium flux. Dog platelets, which contain a conserved CatG PAR4 Ser-Arg cleavage site, aggregated in response to human CatG and RALLLGWVPTR, while mouse (Ser-Gln) and rat (Ser-Glu) platelets were unresponsive. Thus, CatG amputates the PAR4 thrombin cleavage site by cleavage at Ser67-Arg68 and activates PAR4 by generating a new functional tethered ligand. These findings support PAR4 as an important CatG signaling receptor and suggest a novel therapeutic approach for blocking platelet-neutrophil-mediated pathophysiologies.
Collapse
Affiliation(s)
- Michelle L. Stoller
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Jesse W. Rowley
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - James Alsobrooks
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, University of Arizona, Tucson, AZ
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Christian Con Yost
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Neonatology, Department of Pediatric Medicine, University of Utah, Salt Lake City, UT
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia; and
| | - Paul F. Bray
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, and
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
4
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
5
|
Maruyama K, McGuire JJ, Kagota S. Progression of Time-Dependent Changes to the Mechanisms of Vasodilation by Protease-Activated Receptor 2 in Metabolic Syndrome. Biol Pharm Bull 2018; 40:2039-2044. [PMID: 29199228 DOI: 10.1248/bpb.b17-00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteases released from tissues or by synthetic peptide ligands administered pharmacologically. Its wide expression in the cardiovascular system, particularly within the endothelium, vasodilation activity, and link to increased expression of inflammatory cytokines positions PAR2 as a potentially important regulator of vascular pathology under conditions of tissue inflammation, and injury; and thus, a pharmaceutical target for new therapeutics. Obesity is considered a chronic low-grade systemic inflammatory condition as inflammatory cytokines released from adipocytes are closely related to development of metabolic syndrome and related disorders. Our work over the past five-years has focused on the changes in vasomotor functions of PAR2 in metabolic syndrome, using an animal model known as the SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF). In young SHRSP.ZF that had already developed impaired responses to nitric oxide, we reported that PAR2-induced endothelium-dependent vasodilation is preserved. However, this PAR2 vasodilation decreased with increasing age and further chronic exposure to the conditions of metabolism disorder. These findings raise the possibility that PAR2 regulates tissue perfusion and can protect organs from injury, which is an increasing clinical concern at later stages of metabolic syndrome. Here we present our studies on the time-dependent changes in vasoreactivity to PAR2 in metabolic syndrome and the underlying mechanisms. Furthermore, we discuss the implications of these age-related changes in PAR2 for the cardiovascular system in metabolic syndrome.
Collapse
Affiliation(s)
- Kana Maruyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - John J McGuire
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University
| | - Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
6
|
PAR-4 - The PARagon of protease-activated receptors? Int J Cardiol 2018; 252:167-168. [PMID: 29249426 DOI: 10.1016/j.ijcard.2017.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
|
7
|
French SL, Paramitha AC, Moon MJ, Dickins RA, Hamilton JR. Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets. PLoS One 2016; 11:e0165565. [PMID: 27788223 PMCID: PMC5082849 DOI: 10.1371/journal.pone.0165565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets–PAR1 and PAR4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antagonists are in early clinical development. However, pre-clinical studies examining platelet PAR function are challenging because the platelets of non-primates do not accurately reflect the PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To address this limitation, we aimed to develop a genetically modified mouse that would express the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-lox was knocked into the mouse Par3 locus, and then expressed in a platelet-specific manner (hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Specifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet activation assessed by either aggregation or surface P-selectin expression. Platelets from hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse platelets and indicate a different approach is required to develop a small animal model for the purpose of any future preclinical testing of PAR antagonists as anti-platelet drugs.
Collapse
Affiliation(s)
- Shauna L. French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | - Mitchell J. Moon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
8
|
Sveshnikova AN, Balatskiy AV, Demianova AS, Shepelyuk TO, Shakhidzhanov SS, Balatskaya MN, Pichugin AV, Ataullakhanov FI, Panteleev MA. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J Thromb Haemost 2016; 14:2045-2057. [PMID: 27513817 DOI: 10.1111/jth.13442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/16/2023]
Abstract
Essentials Roles of the two thrombin receptors in platelet signaling are poorly understood. Computational systems biology modeling was used together with continuous flow cytometry. Dual-receptor system has wide-range sensitivity to thrombin and optimal response dynamics. Procoagulant platelet formation is determined by donor-specific activities of the two receptors. SUMMARY Background Activation of human platelets with thrombin proceeds via two protease-activated receptors (PARs), PAR1 and PAR4, that have identical main intracellular signaling responses. Although there is evidence that they have different cleavage/inactivation kinetics (and some secondary variations in signaling), the reason for such redundancy is not clear. Methods We developed a multicompartmental stochastic computational systems biology model of dual-receptor thrombin signaling in platelets to gain insight into the mechanisms and roles of PAR1 and PAR4 functioning. Experiments employing continuous flow cytometry of washed human platelets were used to validate the model and test its predictions. Activity of PAR receptors in donors was evaluated by mRNA measurement and by polymorphism sequencing. Results Although PAR1 activation produced rapid and short-lived response, signaling via PAR4 developed slowly and propagated in time. Response of the dual-receptor system was both rapid and prolonged in time. Inclusion of PAR1/PAR4 heterodimer formation promoted PAR4 signaling in the medium range of thrombin concentration (about 10 nm), with little contribution at high and low thrombin. Different dynamics and dose-dependence of procoagulant platelet formation in healthy donors was associated with individual variations in PAR1 and PAR4 activities and particularly by the Ala120Thr polymorphism in the F2RL3 gene encoding PAR4. Conclusions The dual-receptor combination is critical to produce a response combining three critical advantages: sensitivity to thrombin concentration, rapid onset and steady propagation; specific features of the protease-activated receptors do not allow combination of all three in a single receptor.
Collapse
Affiliation(s)
- A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Therapeutic Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Balatskiy
- Medical Scientific and Educational Center, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - A S Demianova
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - T O Shepelyuk
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - M N Balatskaya
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - A V Pichugin
- Institute of Immunology FMBA of Russia, Moscow, Russia
| | - F I Ataullakhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia.
| |
Collapse
|
9
|
Waldman SA, Terzic A. Bioinnovation Enterprise: An engine driving breakthrough therapies. Clin Pharmacol Ther 2016; 99:8-13. [PMID: 26785918 DOI: 10.1002/cpt.272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Abstract
Biological advances have radically expanded our insights into the underpinnings of health and disease. New knowledge has formed the substrate for translation-expedited in turn by the biotechnology and pharmaceutical industry into novel therapeutic solutions impacting the management of patients and populations. Indeed, this Bioinnovation Enterprise has become the dominant growth sector in drug development and the engine driving the translation of breakthrough therapies worldwide. This annual Therapeutic Innovations issue highlights recent exceptional advances by the Bioinnovation Enterprise in translating molecular insights in pathobiology into transformative therapies.
Collapse
Affiliation(s)
- S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - A Terzic
- Mayo Clinic Center for Regenerative Medicine, Divisions of Cardiovascular Diseases and Clinical Pharmacology, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|