1
|
Toksvang LN, Brigitha LJ, van der Sluis IM, Brivio E, Raja R, Pontoppidan P, Buhl Rasmussen AS, Andres-Jensen L, Uhlving HH, Kielsen K, Als-Nielsen B, Elitzur S, Dalhoff K, Schmiegelow K, Rank CU. Therapeutic drug monitoring in acute lymphoblastic leukemia-a deep dive into pharmacokinetics, -dynamics, and -genetics of antileukemic drugs. Expert Rev Clin Pharmacol 2025; 18:131-149. [PMID: 39949259 DOI: 10.1080/17512433.2025.2465426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) is important to optimize drug exposure and minimize toxicity for the individual patient. AREAS COVERED This narrative review covers the pharmacokinetics (PK), -dynamics (PD) and -genetics of classic chemotherapeutic drugs used in frontline therapy for acute lymphoblastic leukemia (ALL), including anthracyclines, asparaginase, busulfan, cyclophosphamide, cytarabine, glucocorticoids, methotrexate, nelarabine, thiopurines, tyrosine kinase inhibitors, and vincristine. Furthermore, novel immunotherapies including blinatumomab, inotuzumab ozogamicin, and chimeric antigen receptor T-cells that are rapidly moving into frontline therapy are addressed. This review focuses on TDM already used in clinical practice as well as the unused potential and feasibility of TDM. Finally, important factors affecting PK/PD such as obesity and transition to adolescence and young adulthood are discussed. EXPERT OPINION Investigation of TDM as standard of care for antileukemic agents is highly warranted to personalize curative yet toxic anticancer regimens within frontline ALL treatment. Some of the drugs have been used in ALL treatment regimens for decades, but a wide range of new compounds are being introduced, some like blinatumomab reaching standard-of-care designation. Not least, optimized drug efficacy and reduction of the risk of serious toxicities may render TDM implementation cost-effective.
Collapse
Affiliation(s)
- Linea N Toksvang
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Leiah J Brigitha
- Hemato-oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Inge M van der Sluis
- Hemato-oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Erica Brivio
- Hemato-oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Raheel Raja
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter Pontoppidan
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anna S Buhl Rasmussen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Liv Andres-Jensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hilde Hylland Uhlving
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Katrine Kielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bodil Als-Nielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Utke Rank
- Department of Hematology, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhu Y, Wang Y, Hoshitsuki K, Yang D, Kokai L, Ma X, Xie W, Fernandez CA. Induction of Cyp2e1 contributes to asparaginase-induced hepatocyte sensitization to lipotoxicity. Acta Pharm Sin B 2025; 15:963-972. [PMID: 40177540 PMCID: PMC11959929 DOI: 10.1016/j.apsb.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 04/05/2025] Open
Abstract
One of the leading therapies for acute lymphoblastic leukemia (ALL) is the chemotherapeutic agent PEGylated E. coli-derived-l-asparaginase (PEG-ASNase). Due to the high risk of dose-limiting liver injury, characterized by clinically elevated levels of hepatic transaminases, PEG-ASNase therapy is generally avoided in adult patients. Our preclinical investigations have indicated that PEG-ASNase-induced liver injury is associated with the release of free fatty acids (FFAs) from white adipose tissue (WAT), suggesting potential lipotoxic effects. However, it remains uncertain whether PEG-ASNase directly induces hepatotoxicity or sensitizes hepatocytes to FFA-induced toxicity. Our results show that PEG-ASNase treatment results in hepatocyte apoptosis and lipid peroxidation. Ex vivo and in vitro studies in mouse and human WAT suggest that PEG-ASNase induces the expression of adipose triglyceride lipase (ATGL), activates the lipase, and stimulates adipose tissue lipolysis, suggesting that the FFAs from WAT may contribute to the observed liver injury. Moreover, treatment with PEG-ASNase sensitizes hepatocytes to FFA-induced lipotoxicity. Mechanistically, our RNA-sequencing (RNA-seq) analyses reveal that PEG-ASNase-induced sensitization to lipotoxicity is accompanied by the induction of Cyp2e1. We demonstrated that this sensitization effect is attenuated by both pharmacological and genetic inhibition of Cyp2e1. Our findings suggest that PEG-ASNase therapy induces WAT lipolysis and sensitizes hepatocytes to hepatic lipotoxicity in a Cyp2e1-dependent manner.
Collapse
Affiliation(s)
- Yin Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuyin Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Keito Hoshitsuki
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Leitão LPC, Monte N, Rodrigues JCG, de Freitas LM, Ribeiro-Dos-Santos AM, Ribeiro-Dos-Santos Â, Santos S, de Souza SJ, Fernandes MR, Dos Santos NPC. Severe toxicities in amazonian populations and the role of precision medicine in acute lymphoblastic leukemia treatment. Sci Rep 2024; 14:29344. [PMID: 39592679 PMCID: PMC11599904 DOI: 10.1038/s41598-024-80393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Corticosteroids, such as prednisone or dexamethasone, constitute integral components of antineoplastic regimens for Acute Lymphoblastic Leukemia (ALL) therapy, albeit accompanied by significant adverse effects. The multifactorial nature of interindividual variability in drug response, encompassing genetic polymorphisms, underscores the complexity of pharmacotherapy outcomes. However, pharmacogenetic investigations hitherto have predominantly focused on cohorts of European and North American descent, thus limiting the generalizability of findings to populations with minimal representation. Indigenous populations in Brazil, particularly those inhabiting the Amazon region, exhibit a distinctive genetic heritage, predominantly characterized by Native American ancestry. These populations frequently manifest suboptimal therapeutic responses and elevated mortality rates following ALL treatment. Therefore, delineating the molecular signatures of genes implicated in the corticosteroid pathway within these indigenous cohorts assumes paramount importance. This study identified novel variants within genes associated with the glucocorticoid pathway in indigenous Amazonian populations and conducted comparative analyses of variant frequencies across diverse global populations. The findings underscore the genetic uniqueness of indigenous groups and highlight the potential impact of genetic factors on adverse responses to ALL treatment. Precision medicine approaches tailored to the genetic peculiarities of indigenous populations emerge as imperative strategies for optimizing therapeutic efficacy and mitigating treatment-related toxicities in these communities.
Collapse
Affiliation(s)
- Luciana Pereira Colares Leitão
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil.
- Afya Faculdade de Ciências Médicas de Palmas, Palmas 77.017-004, Tocantins, Brazil.
| | - Natasha Monte
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | - Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | - Lilian Marques de Freitas
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 01, PA, Brazil
| | - Sidney Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 01, PA, Brazil
| | | | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | - Ney Pereira Carneiro Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| |
Collapse
|
4
|
Harju T, Hurme-Niiranen A, Suo-Palosaari M, Nygaard Nielsen S, Hinttala R, Schmiegelow K, Uusimaa J, Harila A, Niinimäki R. DNA polymerase gamma variants and hepatotoxicity during maintenance therapy of childhood acute lymphoblastic leukemia: is there a causal relationship? THE PHARMACOGENOMICS JOURNAL 2023; 23:105-111. [PMID: 37138020 PMCID: PMC10506908 DOI: 10.1038/s41397-023-00303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Hepatotoxicity is a frequent complication during maintenance therapy of acute lymphoblastic leukemia (ALL) with 6-mercaptopurine and methotrexate. Elevated levels of methylated 6-mercaptopurine metabolites (MeMP) are associated with hepatotoxicity. However, not all mechanisms are known that lead to liver failure in patients with ALL. Variants in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma (POLG1), have been related to drug-induced hepatotoxicity, for example, by sodium valproate. The association of common POLG variants with hepatotoxicity during maintenance therapy was studied in 34 patients with childhood ALL. Of the screened POLG variants, four different variants were detected in 12 patients. One patient developed severe hepatotoxicity without elevated MeMP levels and harbored a heterozygous POLG p.G517V variant, which was not found in the other patients.
Collapse
Affiliation(s)
- Tekla Harju
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
| | - Anri Hurme-Niiranen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Maria Suo-Palosaari
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Stine Nygaard Nielsen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reetta Hinttala
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kjeld Schmiegelow
- Pediatric Oncology Laboratory, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Riitta Niinimäki
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
5
|
Ali AM, Adam H, Hailu D, Howe R, Abula T, Coenen MJH. Evaluating the Frequencies of CNOT3, GRIA1, NFATC2, and PNPLA3 Variant Alleles and Their Association with L-Asparaginase Hypersensitivity in Pediatric Acute Lymphoblastic Leukemia in Addis Ababa, Ethiopia. Appl Clin Genet 2023; 16:131-137. [PMID: 37551203 PMCID: PMC10404408 DOI: 10.2147/tacg.s404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/09/2023] Open
Abstract
Introduction L-asparaginase is a vital component for the treatment of childhood acute lymphoblastic leukemia (ALL); however, hypersensitivity reactions and hepatotoxicity hinder its anti-neoplastic efficacy. Previous reports indicated that genetic variants in CNOT3, GRIA1, and NFATC2 genes might be associated with hypersensitivity reactions and PNPLA3 with liver function. Objective In this study, it was investigated whether this association also exists in a pediatric ALL cohort from Ethiopia. Methods Three variants GRIA1 rs4958351, CNOT3 rs73062673, and NFATC2 rs6021191 were genotyped in a cohort of 160 patients. Association analysis to investigate the association with hypersensitivity reactions was performed using logistic regression analyses. Besides these variants, a variant in PNPLA3 (rs738409) was genotyped to assess the association with liver function. Results Genotype frequencies of GRIA1 rs4958351, CNOT3 rs73062673, and NFATC2 rs6021191 were higher/lower than previously reported. One hundred and forty-four patients were included in the association analysis of which, 18 (12.5%) developed L-ASP hypersensitivity. Though the frequency of hypersensitivity was higher in patients that carried the risk alleles of the three investigated genes, no statistically significant differences were observed. Association analysis between PNPLA3 rs738409 and liver function could not be investigated due to a lack of clinical information. Conclusion In conclusion, none of the tested genes did predict L-asparaginase hypersensitivity in an Ethiopian pediatric ALL patients.
Collapse
Affiliation(s)
- Awol Mekonnen Ali
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Haileyesus Adam
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Hailu
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Teferra Abula
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Alqahtani A, Alhousari D, Ali A, Yaghmour G, Orgel E, Curran E, Stock W, Bhojwani D, Alachkar H. Asparaginase toxicity in Hispanic adult and pediatric patients with acute lymphoblastic leukemia: current understanding. Expert Opin Drug Metab Toxicol 2023; 19:357-366. [PMID: 37410014 PMCID: PMC11516125 DOI: 10.1080/17425255.2023.2233412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Asparaginase is essential to chemotherapy regimens for acute lymphoblastic leukemia (ALL). Survival of patients with ALL has improved since incorporating asparaginase into chemotherapy backbones. Hispanic patients have a higher incidence of ALL than other ethnicities and suffer inferior outcomes. The inferior outcome of Hispanics is due to several factors, including the increased incidence of high-risk genetic subtypes and susceptibility to treatment-related toxicity. AREAS COVERED We summarize the current knowledge of asparaginase-related toxicity by comparing their incidence between Hispanic and non-Hispanic patients. These toxicities include hypersensitivity, hepatotoxicity, pancreatitis, thrombosis, and hypertriglyceridemia. The PubMed database and Google Scholar were used to search for this review from October 2022 to June 2023. EXPERT OPINION Except for hepatotoxicity and hypertriglyceridemia secondary to asparaginase-based treatments, which may develop more frequently among Hispanic patients with ALL, other toxicities were comparable between Hispanic and non-Hispanic patients. Nevertheless, studies with larger cohorts and more accurate capturing of Hispanic ethnicity should be conducted to fill the gaps in the current knowledge.
Collapse
Affiliation(s)
- Amani Alqahtani
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- Department of Clinical pharmacy, School of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Diala Alhousari
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Amir Ali
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - George Yaghmour
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Etan Orgel
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
- Cancer and Blood Disease Institute, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Emily Curran
- The Department of Medicine, Section of Hematology & Oncology at the University of Cincinnati College of Medicine
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Deepa Bhojwani
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
- Cancer and Blood Disease Institute, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Houda Alachkar
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
7
|
Bernsen EC, Hanff LM, Haveman LM, Tops BBJ, van der Lee M, Swen JJ, Huitema ADR, Diekstra MHM. Genetic variants found in paediatric oncology patients with severe chemotherapy-induced toxicity: A case series. J Oncol Pharm Pract 2022:10781552221137302. [DOI: 10.1177/10781552221137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Paediatric oncology patients who develop severe chemotherapy-induced toxicity that requires dose reduction, delay or termination of treatment are at risk of decreased treatment efficacy. Previous research has provided evidence that genetic variants in TPMT, NUDT15, UGT1A1 and DPYD are associated with toxicity of anticancer drugs. This led to pharmacogenetic guidelines that are integrated into clinical practice in paediatric oncology. Recently, novel genetic variants have been associated with a higher risk of developing chemotherapy-induced toxicity. In this case series, we selected 21 novel variants and genotyped these in nine patients with excessive chemotherapy-induced toxicity using whole exome sequencing or micro-array data. We observed that six out of nine patients carried at least one variant that, according to recent studies, potentially increased the risk of developing methotrexate- or vincristine-induced toxicity. As patient-derived genetic data are becoming widely accessible in paediatric oncology, these variants could potentially enter clinical practice to mitigate chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- EC Bernsen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - LM Hanff
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - LM Haveman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - BBJ Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Diagnostic Laboratory
| | - M van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - JJ Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - ADR Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department Pharmacy & Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - MHM Diekstra
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Dharia P, Swartz MD, Bernhardt MB, Chen H, Gramatges MM, Lupo PJ, Brown AL, Scheurer ME. Clinical and demographic factors contributing to asparaginase-associated toxicities in children with acute lymphoblastic leukemia. Leuk Lymphoma 2022; 63:2948-2954. [PMID: 35895075 PMCID: PMC9745725 DOI: 10.1080/10428194.2022.2102621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
A total of 548 patients (age range: 1-22 years, 60.4% Hispanic, 55.8% male) diagnosed with acute lymphoblastic leukemia were reviewed for pegaspargase-associated hypersensitivity (14.8%), hyperbilirubinemia (9.7%), venous thromboembolism (VTE, 9.7%), and pancreatitis (5.3%). Odds ratios (OR) and 95% confidence intervals (CI) evaluated associations between clinical factors and each toxicity, cumulative number of toxicities, and toxicity clusters identified using k-mode analysis. Most (68.9%) did not experience any toxicity, 24.6% experienced one toxicity, and 6.3% two or more. Age >10 years was associated with hyperbilirubinemia (OR = 3.83; 95% CI: 1.64-8.95), pancreatitis (OR = 3.72; 95% CI: 1.29-10.68), VTE (OR = 4.65; 95% CI: 1.96-11.02), and cumulative toxicity burden (OR = 3.28, 95% CI: 1.97-5.47); high-risk therapy with hypersensitivity (OR 2.25; 95% CI 1.25-4.05); and overweight with cumulative toxicity burden (OR = 1.76, 95% CI: 1.20-2.57). Eight unique toxicity profiles were identified. Older age, overweight, and treatment intensity contribute to pegaspargase-associated toxicities.
Collapse
Affiliation(s)
- Priyadarshani Dharia
- University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Michael D. Swartz
- University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | | | - Han Chen
- University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | | | - Philip J. Lupo
- Baylor College of Medicine, Department of Pediatrics, Houston, TX
| | - Austin L. Brown
- Baylor College of Medicine, Department of Pediatrics, Houston, TX
| | | |
Collapse
|
9
|
Pharmacogenetic Variation and Its Clinical Relevance in a Latin American Rural Population. Int J Mol Sci 2022; 23:ijms231911758. [PMID: 36233078 PMCID: PMC9570141 DOI: 10.3390/ijms231911758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Latin-American populations have been largely underrepresented in genomic studies of drug response and disease susceptibility. In this paper, we present a genome-wide Chilean dataset from Talca based on the Illumina Global Screening Array. This let us to compare the frequency of gene variants involved in response to drugs among our population and others, taking data from the 1000 Genomes Project. We found four single-nucleotide polymorphisms with low prevalence in Chileans when compared with African, Amerindian, East and South Asian, and European populations: rs2819742 (RYR2), rs2631367 (SLC22A5), rs1063320 (HLA-G), and rs1042522 (TP53). Moreover, two markers showed significant differences between lower and higher proportion of Mapuche ancestry groups: rs1719247 (located in an intergenic region in chromosome 15; p-value = 6.17 × 10−5, Bonferroni corrected p-value = 0.02) and rs738409 (A nonsynonymous gene variant in the PNPLA3 gene; p-value = 9.02 × 10−5, Bonferroni corrected p-value = 0.04). All of these polymorphisms have been shown to be associated with diverse pathologies, such as asthma, cancer, or chronic hepatitis B, or to be involved in a different response to drugs, such as metformin, HMG-CoA reductase inhibitors, or simvastatin. The present work provides a pharmacogenetic landscape of an understudied Latin American rural population and supports the notion that pharmacogenetic studies in admixed populations should consider ancestry for a higher accuracy of the results. Our study stresses the relevance of the pharmacogenomic research to provide guidance for a better choice of the best treatment for each individual in a population with admixed ancestry.
Collapse
|
10
|
Hispanic ethnicity and the rs4880 variant in SOD2 are associated with elevated liver enzymes and bilirubin levels in children receiving asparaginase-containing chemotherapy for acute lymphoblastic leukemia. Biomed Pharmacother 2022; 150:113000. [PMID: 35658244 PMCID: PMC9450009 DOI: 10.1016/j.biopha.2022.113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 01/29/2023] Open
Abstract
Asparaginase is an integral component of acute lymphoblastic leukemia (ALL)3 treatment. Hepatotoxicity related to asparaginase is one of the most common treatment-related toxicities in ALL therapy. Hispanic children are at higher risk of developing ALL, and toxicities from ALL therapy. The rs4880 variant in the superoxide dismutase 2 (SOD2)4 gene, a critical mitochondrial enzyme that protects cells against oxidative stress, was found to be associated with increased incidence of asparaginase-related hepatotoxicity in adult cohort of largely White non-Hispanics patients with ALL. The risk genotype (rs4880-CC) is more frequent among adult Hispanic patients with ALL. To assess the prevalence of hepatotoxicity and risk genotype among pediatric patients with ALL, particularly of Hispanic ethnicity, we conducted a prospective study of 143 pediatric patients with ALL (62.2% Hispanic). Bilirubin and hepatic transaminase levels were collected at different times during multiagent therapy including asparaginase treatment. Germline DNA blood samples were genotyped for the SOD2 rs4880. We found that the frequency of hepatotoxicity and the rs4880-CC risk genotype are higher in Hispanic patients than non-Hispanic. Patients with the CC genotype exhibit higher bilirubin and hepatic transaminase levels compared with patients with the TT and CT genotypes. In a multivariate Cox analysis, Hispanic ethnicity was identified as a strong predictor of hepatotoxicity (hazard ratio [HR] = 1.9, 95% confidence interval [95% CI] 1.0-3.5, p = 0.05). Altogether, these findings demonstrate that hepatotoxicity is highly prevalent among Hispanic pediatric patients with ALL, and those with rs4880-CC genotype.
Collapse
|
11
|
The pharmacogenomics of vincristine-induced peripheral neuropathy in pediatric acute lymphoblastic leukemia patients in Serbia - a single center experience. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh210813099r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. Vincristine (VCR) is one of the key drugs in current treatment protocols for pediatric acute lymphoblastic leukemia (ALL). By destabilizing microtubules, VCR arrests cells in metaphase, inducing apoptosis of malignant cells. VCR also causes axonal degradation and impairment of axonal transport, which leads to VCR-induced peripheral neuropathy (VIPN). This study aimed to investigate the association of five variants in pharmacogenes involved in VCR metabolism with VIPN in Serbian ALL children. We also wanted to discover candidate pharmacogenomic markers of VIPN in Serbian population. Methods. PCR and sequencing-based methodology was used to detect variants in CYP3?5, CEP72, ACTG1, MIR3117, and MIR4481 genes. Statistical analyses were performed for investigating their association with VIPN in 56 pediatric ALL patients. Population VCR pharmacogenomics analysis of 17 pharmacogenes from in-house next-generation sequencing data was also done. Data on allele frequency distribution for the European population were extracted from public databases. Results. During the treatment, 17.86% of patients developed VIPN. Association analyses have shown that none of the genetic variants contributed to the occurrence of VIPN in our study. Population pharmacogenomics study did not reveal valid candidate pharmacovariants for VIPN. Our results suggested that pre-emptive pharmacogenetic testing for VCR is not applicable presently. Conclusion. More comprehensive approaches are needed to identify the panel of genes that could explain the VIPN development after VCR administration in ALL patients. Utilizing better designed genome-wide association studies and more robust artificial intelligence-based tools would provide a panel of pharmacogenes for pre-emptive tests of VIPN to individualize therapy for ALL in children.
Collapse
|
12
|
Aslam S, Ameer S, Shabana NA, Ahmed M. Pharmacogenetics of induction therapy-related toxicities in childhood acute lymphoblastic leukemia patients treated with UKALL 2003 protocol. Sci Rep 2021; 11:23757. [PMID: 34887513 PMCID: PMC8660848 DOI: 10.1038/s41598-021-03208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy related toxicities have been the major factor limiting the success of acute lymphoblastic leukemia (ALL) induction therapy. Several factors, including the pharmacogenetics of asparaginase and anthracyclines, could contribute to difference in treatment outcome in ALL. We investigated the significance of variations in genes involved in hepatic and cardiac toxicity in acute lymphoblastic leukemia (ALL). Genotyping of SOD2 (rs4880), PNPL3 (rs738409) and ABCC1 (rs4148350), CBR1 (rs9024) and ABCG2 (rs2231142) was performed by Tetra-ARMS PCR-based technique to evaluate the genotype-phenotype correlation. Our results showed only minor allele G of SOD2 rs4880 increase the risk of hepatic toxicity [OR 2.63 (1.42-4.84), P = < 0.05] while minor alleles of other SNPs showed protective impact. However, the genetic contrast analysis showed a recessive form of SOD2 rs4880 [OR 7.82 (3.86-15.85), P = < 0.05] and PNPLA3 I148M [OR 5.82 (3.43-9.87), P = < 0.05] variants whereas dominant genotype of ABCC1 rs4148350 [OR 2.52 (1.55-4.10), P = < 0.05] significantly predisposes hepatotoxicity. Furthermore, heterozygous form of ABCG2 rs2231142 [OR 5.25 (1.84-14.95), P = < 0.05] and recessive genotype of 3'UTR variant CBR1 rs9024 [OR 2.31 (1.31-4.07), P = < 0.05] were strongly associated with cardiotoxicity. The information obtained from these genetic variations could offer biomarkers for individualization of therapeutic intervention in ALL.
Collapse
Affiliation(s)
- Sara Aslam
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Sonia Ameer
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - N A Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Mehboob Ahmed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
13
|
Kumar GVN, Hoshitsuki K, Rathod S, Ramsey MJ, Kokai L, Kershaw EE, Xie W, Fernandez CA. Mechanistic studies of PEG-asparaginase-induced liver injury and hepatic steatosis in mice. Acta Pharm Sin B 2021; 11:3779-3790. [PMID: 35024306 PMCID: PMC8727916 DOI: 10.1016/j.apsb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023] Open
Abstract
PEGylated-l-asparaginase (PEG-ASNase) is a chemotherapeutic agent used to treat pediatric acute lymphoblastic leukemia (ALL). Its use is avoided in adults due to its high risk of liver injury including hepatic steatosis, with obesity and older age considered risk factors of the injury. Our study aims to elucidate the mechanism of PEG-ASNase-induced liver injury. Mice received 1500 U/kg of PEG-ASNase and were sacrificed 1, 3, 5, and 7 days after drug administration. Liver triglycerides were quantified, and plasma bilirubin, ALT, AST, and non-esterified fatty acids (NEFA) were measured. The mRNA and protein levels of genes involved in hepatic fatty acid synthesis, β-oxidation, very low-density lipoprotein (VLDL) secretion, and white adipose tissue (WAT) lipolysis were determined. Mice developed hepatic steatosis after PEG-ASNase, which associated with increases in bilirubin, ALT, and AST. The hepatic genes Ppara, Lcad/Mcad, Hadhb, Apob100, and Mttp were upregulated, and Srebp-1c and Fas were downregulated after PEG-ASNase. Increased plasma NEFA, WAT loss, and adipose tissue lipolysis were also observed after PEG-ASNase. Furthermore, we found that PEG-ASNase-induced liver injury was exacerbated in obese and aged mice, consistent with clinical studies of ASNase-induced liver injury. Our data suggest that PEG-ASNase-induced liver injury is due to drug-induced lipolysis and lipid redistribution to the liver.
Collapse
Affiliation(s)
- Gundala Venkata Naveen Kumar
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Keito Hoshitsuki
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sanjay Rathod
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Manda J. Ramsey
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15261, USA
| | - Erin E. Kershaw
- University of Pittsburgh, Division of Endocrinology, Department of Medicine, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Tilson SG, Morell CM, Lenaerts A, Park SB, Hu Z, Jenkins B, Koulman A, Liang TJ, Vallier L. Modeling PNPLA3-Associated NAFLD Using Human-Induced Pluripotent Stem Cells. Hepatology 2021; 74:2998-3017. [PMID: 34288010 PMCID: PMC11497257 DOI: 10.1002/hep.32063] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is a growing public health burden. However, the pathogenesis of NAFLD has not yet been fully elucidated, and the importance of genetic factors has only recently been appreciated. Genomic studies have revealed a strong association between NAFLD progression and the I148M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3). Nonetheless, very little is known about the mechanisms by which this gene and its variants can influence disease development. To investigate these mechanisms, we have developed an in vitro model that takes advantage of the unique properties of human-induced pluripotent stem cells (hiPSCs) and the CRISPR/CAS9 gene editing technology. APPROACH AND RESULTS We used isogenic hiPSC lines with either a knockout (PNPLA3KO ) of the PNPLA3 gene or with the I148M variant (PNPLA3I148M ) to model PNPLA3-associated NAFLD. The resulting hiPSCs were differentiated into hepatocytes, treated with either unsaturated or saturated free fatty acids to induce NAFLD-like phenotypes, and characterized by various functional, transcriptomic, and lipidomic assays. PNPLA3KO hepatocytes showed higher lipid accumulation as well as an altered pattern of response to lipid-induced stress. Interestingly, loss of PNPLA3 also caused a reduction in xenobiotic metabolism and predisposed PNPLA3KO cells to be more susceptible to ethanol-induced and methotrexate-induced toxicity. The PNPLA3I148M cells exhibited an intermediate phenotype between the wild-type and PNPLA3KO cells. CONCLUSIONS Together, these results indicate that the I148M variant induces a loss of function predisposing to steatosis and increased susceptibility to hepatotoxins.
Collapse
Affiliation(s)
- Samantha G. Tilson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Carola M. Morell
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - An‐Sofie Lenaerts
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Seung Bum Park
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Zongyi Hu
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Benjamin Jenkins
- Wellcome Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Albert Koulman
- Wellcome Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUnited Kingdom
| | - T. Jake Liang
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Ludovic Vallier
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
15
|
Liu Y, Yang W, Smith C, Cheng C, Karol SE, Larsen EC, Winick N, Carroll WL, Loh ML, Raetz EA, Hunger SP, Winter SS, Dunsmore KP, Devidas M, Yang JJ, Evans WE, Jeha S, Pui CH, Inaba H, Relling MV. Class II Human Leukocyte Antigen Variants Associate With Risk of Pegaspargase Hypersensitivity. Clin Pharmacol Ther 2021; 110:794-802. [PMID: 33768542 PMCID: PMC8790808 DOI: 10.1002/cpt.2241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/13/2021] [Indexed: 10/20/2023]
Abstract
We conducted the first human leukocyte antigen (HLA) allele and genome-wide association study to identify loci associated with hypersensitivity reactions exclusively to the PEGylated preparation of asparaginase (pegaspargase) in racially diverse cohorts of pediatric leukemia patients: St Jude Children's Research Hospital's Total XVI (TXVI, n = 598) and Children's Oncology Group AALL0232 (n = 2,472) and AALL0434 (n = 1,189). Germline DNA was genotyped using arrays. Genetic variants not genotyped directly were imputed. HLA alleles were imputed using SNP2HLA or inferred using BWAkit. Analyses between genetic variants and hypersensitivity were performed in each cohort first using cohort-specific covariates and then combined using meta-analyses. Nongenetic risk factors included fewer intrathecal injections (P = 2.7 × 10-5 in TXVI) and male sex (P = 0.025 in AALL0232). HLA alleles DQB1*02:02, DRB1*07:01, and DQA1*02:01 had the strongest associations with pegaspargase hypersensitivity (P < 5.0 × 10-5 ) in patients with primarily European ancestry (EA), with the three alleles associating in a single haplotype. The top allele HLA-DQB1*02:02 was tagged by HLA-DQB1 rs1694129 in EAs (r2 = 0.96) and less so in non-EAs. All single nucleotide polymorphisms associated with pegaspargase hypersensitivity reaching genome-wide significance in EAs were in class II HLA loci, and were partially replicated in non-EAs, as is true for other HLA associations. The rs9958628 variant, in ARHGAP28 (previously linked to immune response in children) had the strongest genetic association (P = 8.9 × 10-9 ) in non-EAs. The HLA-DQB1*02:02-DRB1*07:01-DQA1*02:01 associated with hypersensitivity reactions to pegaspargase is the same haplotype associated with reactions to non-PEGylated asparaginase, even though the antigens differ between the two preparations.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Colton Smith
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Seth E. Karol
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Naomi Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Mignon L. Loh
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | | | - Stephen P. Hunger
- Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Stuart S. Winter
- Children’s Minnesota Cancer and Blood Disorders Program, Children’s Minnesota, Minneapolis, MN
| | | | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
16
|
Ward LD, Tu HC, Quenneville CB, Tsour S, Flynn-Carroll AO, Parker MM, Deaton AM, Haslett PAJ, Lotta LA, Verweij N, Ferreira MAR, Baras A, Hinkle G, Nioi P. GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95Ile with hypermanganesemia symptoms. Nat Commun 2021; 12:4571. [PMID: 34315874 PMCID: PMC8316433 DOI: 10.1038/s41467-021-24563-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1.
Collapse
Affiliation(s)
- Lucas D. Ward
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | - Ho-Chou Tu
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | | | - Shira Tsour
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | | | - Margaret M. Parker
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | - Aimee M. Deaton
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | | | - Luca A. Lotta
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | - Niek Verweij
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | | | | | | | - Aris Baras
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | - Gregory Hinkle
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | - Paul Nioi
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| |
Collapse
|
17
|
Franca R, Zudeh G, Lucafò M, Rabusin M, Decorti G, Stocco G. Genome wide association studies for treatment-related adverse effects of pediatric acute lymphoblastic leukemia. WIREs Mech Dis 2021; 13:e1509. [PMID: 33016644 DOI: 10.1002/wsbm.1509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/01/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy; notwithstanding the success of ALL therapy, severe adverse drugs effects represent a serious issue in pediatric oncology, because they could be both an additional life threatening condition for ALL patients per se and a reason to therapy delay or discontinuation with important fallouts on final outcome. Cancer treatment-related toxicities have generated a significant need of finding predictive pharmacogenomic markers for the a priori identification of at risk patients. In the era of precision medicine, high throughput genomic screening such as genome wide association studies (GWAS) might provide useful markers to tailor therapy intensity on patients' genetic profile. Furthermore, these findings could be useful in basic research for better understanding the mechanistic and regulatory pathways of the biological functions associated with ALL treatment toxicities. The purpose of this review is to give an overview of high throughput genomic screening of the last 10 years that had investigated the landscape of ALL treatment-associated toxicities. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Zudeh
- University of Trieste, PhD Course in Reproductive and Developmental Sciences, Trieste, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
18
|
Dosing-related saturation of toxicity and accelerated drug clearance with pegaspargase treatment. Blood 2021; 136:2955-2958. [PMID: 32750103 DOI: 10.1182/blood.2020006214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
|
19
|
Pirola CJ, Salatino A, Sookoian S. Pleiotropy within gene variants associated with nonalcoholic fatty liver disease and traits of the hematopoietic system. World J Gastroenterol 2021; 27:305-320. [PMID: 33584064 PMCID: PMC7852588 DOI: 10.3748/wjg.v27.i4.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies of complex diseases, including nonalcoholic fatty liver disease (NAFLD), have demonstrated that a large number of variants are implicated in the susceptibility of multiple traits — a phenomenon known as pleiotropy that is increasingly being explored through phenome-wide association studies. We focused on the analysis of pleiotropy within variants associated with hematologic traits and NAFLD. We used information retrieved from large public National Health and Nutrition Examination Surveys, Genome-wide association studies, and phenome-wide association studies based on the general population and explored whether variants associated with NAFLD also present associations with blood cell-related traits. Next, we applied systems biology approaches to assess the potential biological connection/s between genes that predispose affected individuals to NAFLD and nonalcoholic steatohepatitis, and genes that modulate hematological-related traits—specifically platelet count. We reasoned that this analysis would allow the identification of potential molecular mediators that link NAFLD with platelets. Genes associated with platelet count are most highly expressed in the liver, followed by the pancreas, heart, and muscle. Conversely, genes associated with NAFLD presented high expression levels in the brain, lung, spleen, and colon. Functional mapping, gene prioritization, and functional analysis of the most significant loci (P < 1 × 10-8) revealed that loci involved in the genetic modulation of platelet count presented significant enrichment in metabolic and energy balance pathways. In conclusion, variants in genes influencing NAFLD exhibit pleiotropic associations with hematologic traits, particularly platelet count. Likewise, significant enrichment of related genes with variants influencing platelet traits was noted in metabolic-related pathways. Hence, this approach yields novel mechanistic insights into NAFLD pathogenesis.
Collapse
Affiliation(s)
- Carlos Jose Pirola
- Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute of Medical Research (IDIM), Ciudad Autónoma de Buenos Aires C1427ARO, Argentina
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine, Ciudad Autónoma de Buenos Aires, Ciudad Autónoma de Buenos Aires C1427ARO, Argentina
| | - Adrian Salatino
- Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute of Medical Research (IDIM), Ciudad Autónoma de Buenos Aires C1427ARO, Argentina
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine, Ciudad Autónoma de Buenos Aires, Ciudad Autónoma de Buenos Aires C1427ARO, Argentina
| | - Silvia Sookoian
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine, Ciudad Autónoma de Buenos Aires, Ciudad Autónoma de Buenos Aires C1427ARO, Argentina
- Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute of Medical Research (IDIM), Ciudad Autónoma de Buenos Aires C1427ARO, Argentina
| |
Collapse
|
20
|
Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol 2020; 17:153-169. [DOI: 10.1080/17425255.2021.1854726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| |
Collapse
|
21
|
Karol SE, Yang JJ. Pharmacogenomics and ALL treatment: How to optimize therapy. Semin Hematol 2020; 57:130-136. [PMID: 33256902 DOI: 10.1053/j.seminhematol.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/28/2023]
Abstract
Inherited genetic variations may alter drug sensitivity in patients with acute lymphoblastic leukemia, predisposing to adverse treatment side effects. In this review, we discuss evidence from children and young adults with acute lymphoblastic leukemia to review the available pharmacogenomic data with an emphasis on clinically actionable and emerging discoveries, for example, genetic variants in thiopurine methyltransferase and NUDT15 that alter 6-mercaptopurine dosing. We also highlight the need for ongoing pharmacogenomic research to validate the significance of recent findings. Further research in young adults, as well as with novel therapeutics, is needed to provide optimal therapy in future trials.
Collapse
Affiliation(s)
- Seth E Karol
- Departments of Oncology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
22
|
|
23
|
Maamari D, El-Khoury H, Saifi O, Muwakkit SA, Zgheib NK. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med 2020; 13:295-317. [PMID: 32848445 PMCID: PMC7429230 DOI: 10.2147/pgpm.s239602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Despite major advances in the management and high cure rates of childhood acute lymphoblastic leukemia (ALL), patients still suffer from many drug-induced toxicities, sometimes necessitating dose reduction, or halting of cytotoxic drugs with a secondary risk of disease relapse. In addition, investigators have noted significant inter-individual variability in drug toxicities and disease outcomes, hence the role of pharmacogenetics (PGx) in elucidating genetic polymorphisms in candidate genes for the optimization of disease management. In this review, we present the PGx data in association with main toxicities seen in children treated for ALL in addition to efficacy, with a focus on the most plausible germline PGx variants. We then follow with a summary of the highest evidence drug-gene annotations with suggestions to move forward in implementing preemptive PGx for the individualization of treatment regimens for children with ALL.
Collapse
Affiliation(s)
- Dimitri Maamari
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib El-Khoury
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omran Saifi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar A Muwakkit
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
24
|
Bernsen EC, Hagleitner MM, Kouwenberg TW, Hanff LM. Pharmacogenomics as a Tool to Limit Acute and Long-Term Adverse Effects of Chemotherapeutics: An Update in Pediatric Oncology. Front Pharmacol 2020; 11:1184. [PMID: 32848787 PMCID: PMC7421781 DOI: 10.3389/fphar.2020.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
In the past decades, new cancer treatments have been introduced in pediatric oncology leading to improvement in clinical outcomes and survival rates. However, due to inter-individual differences, some children experience severe chemotherapy-induced toxicities or a poor clinical outcome. An explanation for the diversity in response to chemotherapy is genetic variation, leading to differences in expression and activity of metabolizing and transport enzymes as well as drug targets. Pharmacogenetic testing has emerged as a promising tool to predict and limit acute and long-term adverse effects in patients. However, in pediatric oncology, limited number of patients and a considerable diversity in study results complicate the interpretation of test results and its clinical relevance. With this review, we provide an overview of new developments over the past four years regarding relevant polymorphisms related to toxicity in pediatric oncology. The following chemotherapeutics and associated toxicities are discussed: alkylating agents, anthracyclines, asparaginase, methotrexate, platinum compounds, steroids, thiopurines, topoisomerase inhibitors, and vinca alkaloids. Our review identifies several questions regarding the role of genetic variants in chemotherapy-induced toxicities. Ambiguities in the literature stem from small population sizes, differences in (statistical) interpretation and variations in sequencing technologies as well as different clinical outcome definitions. Standardization of clinical outcome data and toxicity definitions within electronic health records combined with the increased availability of genomic sequence techniques in clinical practice will help to validate these models in upcoming years.
Collapse
Affiliation(s)
- Emma C. Bernsen
- Pharmacy, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Melanie M. Hagleitner
- Department of Pediatric Hemato-oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Theodorus W. Kouwenberg
- Department of Pediatric Hemato-oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Lidwien M. Hanff
- Pharmacy, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
25
|
Carr DF, Turner RM, Pirmohamed M. Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response. Br J Clin Pharmacol 2020; 87:237-255. [PMID: 32501544 DOI: 10.1111/bcp.14407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The field of pharmacogenomics has made great strides in oncology over the last 20 years and indeed a significant number of pre-emptive genetic tests are now routinely undertaken prior to anticancer drug administration. Many of these gene-drug interactions are the fruits of candidate gene and genome-wide association studies, which have largely focused on common genetic variants (allele frequency>1%). Examples where there is clinical utility include genotyping or phenotyping for G6PD to prevent rasburicase-induced RBC haemolysis, and TPMT to prevent thiopurine-induced bone marrow suppression. Other associations such as CYP2D6 status in determining the efficacy of tamoxifen are more controversial because of contradictory evidence from different sources, which has led to variability in the implementation of testing. As genomic technology becomes ever cheaper and more accessible, we must look to the additional data our genome can provide to explain interindividual variability in anticancer drug response. Clearly genes do not act on their own and it is therefore important to investigate genetic factors in conjunction with clinical factors, interacting concomitant drug therapies and other factors such as the microbiome, which can all affect drug disposition. Taking account of all of these factors, in conjunction with the somatic genome, is more likely to provide better predictive accuracy in determining anticancer drug response, both efficacy and safety. This review summarises the existing knowledge related to the pharmacogenomics of anticancer drugs and discusses areas of opportunity for further advances in personalisation of therapy in order to improve both drug safety and efficacy.
Collapse
Affiliation(s)
- Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
26
|
Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, Loomba R. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:1305-1320. [PMID: 32383295 PMCID: PMC7318322 DOI: 10.1111/apt.15738] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks of NAFLD, NASH and NASH-related cirrhosis. AIMS To review NASH genetics and discuss the potential for precision medicine approaches to treatment. METHOD PubMed search and inclusion of relevant literature. RESULTS Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 are clearly associated with NASH development or progression. These genetic variants are common and have moderate-to-large effect sizes for development of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, with approximately twofold increased odds of NAFLD and threefold increased odds of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver fat content and increase rates of NASH. Although the isoleucine-to-methionine substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid remodelling activity, the effect of PNPLA3 I148M results from trans-repression of another lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown reduces hepatic steatosis, inflammation and fibrosis. CONCLUSION The emerging genetic and molecular understanding of NASH paves the way for novel interventions, including precision medicines that can modulate the activity of specific genes associated with NASH.
Collapse
Affiliation(s)
- Björn Carlsson
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Daniel Lindén
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden,Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gabriella Brolén
- Precision MedicineCardiovascular, Renal and MetabolismR&DAstraZenecaGothenburgSweden
| | - Mathias Liljeblad
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Mikael Bjursell
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden,Clinical Nutrition UnitDepartment of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden
| | - Rohit Loomba
- NAFLD Research CenterDivision of GastroenterologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
27
|
Cao M, Yin D, Qin Y, Liao F, Su Y, Xia X, Gao J, Zhu Y, Zhang W, Shu Y, Lu X. Screening of Novel Pharmacogenetic Candidates for Mercaptopurine-Induced Toxicity in Patients With Acute Lymphoblastic Leukemia. Front Pharmacol 2020; 11:267. [PMID: 32265697 PMCID: PMC7098961 DOI: 10.3389/fphar.2020.00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/25/2020] [Indexed: 02/05/2023] Open
Abstract
A small proportion of patients with acute lymphoblastic leukemia (ALL) may experience severe leukopenia after treating with 6-mercaptopurine (6MP), which can be largely explained by germline variants in TPMT and NUDT15. However, a minority of patients who suffered such adverse drug reaction have NUDT15 wt/wt TPMT wt/wt genotype, indicating that other genetic factors may take part in. In this study, we genotyped 539 exon-located nonsilent pharmacogenetic variants in genes involved in phase I/II of drug metabolism in 173 pediatric patients with ALL and conducted association screening for 6MP-induced leukopenia. Besides NUDT15 (rs116855232, P = 6.4 × 10-11) and TPMT (rs1142345, P = 0.003), a novel variant was identified in CYP2A7 gene (i.e., rs73032311, P = 0.0007), which is independent of NUDT15/TPMT variant. In addition, a variant (i.e., rs4680) in COMT is significantly associated with 6MP-induced hepatotoxicity (P = 0.007). In conclusion, variants in CYP2A7 and COMT may be considered as novel potential pharmacogenetic markers for 6MP-induced toxicities, but additional independent validations with large sample size and investigations on related mechanisms are further needed.
Collapse
Affiliation(s)
- Minyuan Cao
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China.,Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Yin
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liao
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Su
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ju Gao
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yiping Zhu
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Shu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Lu
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Hashmi SK, Navai SA, Chambers TM, Scheurer ME, Hicks MJ, Rau RE, Gramatges MM. Incidence and predictors of treatment-related conjugated hyperbilirubinemia during early treatment phases for children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28063. [PMID: 31736183 PMCID: PMC7382403 DOI: 10.1002/pbc.28063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 11/12/2022]
Abstract
Conjugated hyperbilirubinemia (CHB) and liver transaminase elevation are known complications of acute lymphoblastic leukemia (ALL) therapy, but host risk factors are poorly understood. Among 373 children diagnosed with ALL between 2011 and 2016, clinically significant CHB and transaminase elevation were observed in 15 (4.0%) and 12 (3.2%) children, respectively, during induction and consolidation. Body mass index ≥95th percentile (odds ratio 9.20, 95% confidence interval 2.56-32.96) was the only host factor independently associated with CHB, and no host factors were associated with transaminase elevation. Obese patients warrant closer monitoring of hepatic function to facilitate early intervention prior to the development of severe, adverse hepatic events.
Collapse
Affiliation(s)
- Saman K. Hashmi
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Shoba A. Navai
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Tiffany M. Chambers
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - M. John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Rachel E. Rau
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Maria M. Gramatges
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
29
|
Finch ER, Smith CA, Yang W, Liu Y, Kornegay NM, Panetta JC, Crews KR, Molinelli AR, Cheng C, Pei D, Ramsey LB, Karol SE, Inaba H, Sandlund JT, Metzger M, Evans WE, Jeha S, Pui CH, Relling MV. Asparaginase formulation impacts hypertriglyceridemia during therapy for acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28040. [PMID: 31612640 PMCID: PMC6868303 DOI: 10.1002/pbc.28040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Glucocorticoids and asparaginase, used to treat acute lymphoblastic leukemia (ALL), can cause hypertriglyceridemia. We compared triglyceride levels, risk factors, and associated toxicities in two ALL trials at St. Jude Children's Research Hospital with identical glucocorticoid regimens, but different asparaginase formulations. In Total XV (TXV), native Escherichia coli l-asparaginase was front-line therapy versus the pegylated formulation (PEG-asparaginase) in Total XVI (TXVI). PROCEDURE Patients enrolled on TXV (n = 498) and TXVI (n = 598) were assigned to low-risk (LR) or standard/high-risk (SHR) treatment arms (ClinicalTrials.gov identifiers: NCT00137111 and NCT00549848). Triglycerides were measured four times and were evaluable in 925 patients (TXV: n = 362; TXVI: n = 563). The genetic contribution was assessed using a triglyceride polygenic risk score (triglyceride-PRS). Osteonecrosis, thrombosis, and pancreatitis were prospectively graded. RESULTS The largest increase in triglycerides occurred in TXVI SHR patients treated with dexamethasone and PEG-asparaginase (4.5-fold increase; P <1 × 10-15 ). SHR patients treated with PEG-asparaginase (TXVI) had more severe hypertriglyceridemia (>1000 mg/dL) compared to native l-asparaginase (TXV): 10.5% versus 5.5%, respectively (P = .007). At week 7, triglycerides did not increase with dexamethasone treatment alone (LR patients) but did increase with dexamethasone plus asparaginase (SHR patients). The variability in triglycerides explained by the triglyceride-PRS was highest at baseline and declined with therapy. Hypertriglyceridemia was associated with osteonecrosis (P = .0006) and thrombosis (P = .005), but not pancreatitis (P = .4). CONCLUSION Triglycerides were affected more by PEG-asparaginase than native l-asparaginase, by asparaginase more than dexamethasone, and by drug effects more than genetics. It is not clear whether triglycerides contribute to thrombosis and osteonecrosis or are biomarkers of the toxicities.
Collapse
Affiliation(s)
- Emily R. Finch
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Colton A. Smith
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Yiwei Liu
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Nancy M. Kornegay
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - John C. Panetta
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Kristine R. Crews
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Alejandro R. Molinelli
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s
Research Hospital, Memphis, TN
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s
Research Hospital, Memphis, TN
| | - Laura B. Ramsey
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Seth E. Karol
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN,Department of Oncology, St. Jude Children’s
Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s
Research Hospital, Memphis, TN
| | - John T. Sandlund
- Department of Oncology, St. Jude Children’s
Research Hospital, Memphis, TN
| | - Monika Metzger
- Department of Oncology, St. Jude Children’s
Research Hospital, Memphis, TN,Department of Global Pediatric Medicine, St. Jude
Children’s Research Hospital, Memphis, TN
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s
Research Hospital, Memphis, TN,Department of Global Pediatric Medicine, St. Jude
Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s
Research Hospital, Memphis, TN
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude
Children’s Research Hospital, Memphis, TN
| |
Collapse
|
30
|
Robinson KM, Yang W, Karol SE, Kornegay N, Jay D, Cheng C, Choi JK, Campana D, Pui CH, Wood B, Borowitz MJ, Gastier-Foster J, Larsen EC, Winick N, Carroll WL, Loh ML, Raetz EA, Hunger SP, Devidas M, Mardis ER, Fulton RS, Relling MV, Jeha S. No evidence that G6PD deficiency affects the efficacy or safety of daunorubicin in acute lymphoblastic leukemia induction therapy. Pediatr Blood Cancer 2019; 66:e27681. [PMID: 30848065 PMCID: PMC6518412 DOI: 10.1002/pbc.27681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND/OBJECTIVES Anthracyclines are used in induction therapy of pediatric acute lymphoblastic leukemia (ALL) and are known to generate oxidative stress; whether this translates into enhanced antileukemic activity or hemolytic effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency is unknown. DESIGN/METHODS Among 726 pediatric patients with newly diagnosed ALL treated at St. Jude Children's Research Hospital, 22 had deficient G6PD activity. We compared the prevalence of positive minimal residual disease (MRD) ≥1% at Day 15/Day 19 of induction or ≥0.01% at Day 42/Day 46 (end of induction) and the number of red blood cell (RBC) transfusions after daunorubicin in induction between patients with or without G6PD deficiency, adjusting for ALL risk group, treatment protocol, age, and gender. RESULTS There was no difference in Day 15/19 (P = 1) or end of induction MRD (P = 0.76) nor in the number of RBC transfusions (P = 0.73); the lack of association with MRD was confirmed in a dataset of 1192 newly diagnosed male patients enrolled in a Children's Oncology Group trial (P = 0.78). CONCLUSION We found no evidence that G6PD deficiency affects daunorubicin activity during induction treatment for ALL.
Collapse
Affiliation(s)
- Katherine M. Robinson
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Seth E. Karol
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Nancy Kornegay
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Dennis Jay
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - John K. Choi
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Dario Campana
- Department of Paediatrics, National University of Singapore, Singapore
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Brent Wood
- Department of Laboratory Medicine, Seattle Children’s Hospital, Seattle, WA
| | - Michael J. Borowitz
- Department of Hematologic Pathology, John’s Hopkins University, Baltimore, MD
| | | | - Eric C. Larsen
- Department of Pediatric Hematology-Oncology, Maine Medical Center, Scarborough, ME
| | - Naomi Winick
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX
| | - William L. Carroll
- Perlmutter Cancer Center, Department of Pediatrics, NYU Langone Medical Center, New York, New York
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Elizabeth A. Raetz
- Perlmutter Cancer Center, Department of Pediatrics, NYU Langone Medical Center, New York, New York
| | - Stephen P. Hunger
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Elaine R. Mardis
- The Ohio State University and Nationwide Children’s Hospital, Columbus, Ohio
| | - Robert S. Fulton
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
31
|
Ma J, Nano J, Ding J, Zheng Y, Hennein R, Liu C, Speliotes EK, Huan T, Song C, Mendelson MM, Joehanes R, Long MT, Liang L, Smith JA, Reynolds LM, Ghanbari M, Muka T, van Meurs JBJ, Alferink LJM, Franco OH, Dehghan A, Ratliff S, Zhao W, Bielak L, Kardia SLR, Peyser PA, Ning H, VanWagner LB, Lloyd-Jones DM, Carr JJ, Greenland P, Lichtenstein AH, Hu FB, Liu Y, Hou L, Darwish Murad S, Levy D. A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease. Diabetes 2019; 68:1073-1083. [PMID: 30936141 PMCID: PMC6477898 DOI: 10.2337/db18-1193] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 × 10-6) with replication at Bonferroni-corrected P < 8.6 × 10-4 Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 × 10-4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.
Collapse
Affiliation(s)
- Jiantao Ma
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
- Nutrition Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Jana Nano
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jingzhong Ding
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rachel Hennein
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
| | - Chunyu Liu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
- Department of Biostatistics, Boston University, Boston, MA
| | | | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
| | - Ci Song
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
- Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael M Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
| | - Michelle T Long
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taulant Muka
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joyce B J van Meurs
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Louise J M Alferink
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, U.K
| | - Scott Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Lawrence Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Hongyan Ning
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lisa B VanWagner
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and Framingham Heart Study, Framingham, MA
| |
Collapse
|
32
|
Pingitore P, Sasidharan K, Ekstrand M, Prill S, Lindén D, Romeo S. Human Multilineage 3D Spheroids as a Model of Liver Steatosis and Fibrosis. Int J Mol Sci 2019; 20:ijms20071629. [PMID: 30986904 PMCID: PMC6480107 DOI: 10.3390/ijms20071629] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in western countries. Despite the high prevalence of NAFLD, the underlying biology of the disease progression is not clear, and there are no approved drugs to treat non-alcoholic steatohepatitis (NASH), the most advanced form of the disease. Thus, there is an urgent need for developing advanced in vitro human cellular systems to study disease mechanisms and drug responses. We attempted to create an organoid system genetically predisposed to NAFLD and to induce steatosis and fibrosis in it by adding free fatty acids. We used multilineage 3D spheroids composed by hepatocytes (HepG2) and hepatic stellate cells (LX-2) with a physiological ratio (24:1). HepG2 and LX-2 cells are homozygotes for the PNPLA3 I148M sequence variant, the strongest genetic determinant of NAFLD. We demonstrate that hepatic stellate cells facilitate the compactness of 3D spheroids. Then, we show that the spheroids develop accumulations of fat and collagen upon exposure to free fatty acids. Finally, this accumulation was rescued by incubating spheroids with liraglutide or elafibranor, drugs that are in clinical trials for the treatment of NASH. In conclusion, we have established a simple, easy to handle, in vitro model of genetically induced NAFLD consisting of multilineage 3D spheroids. This tool may be used to understand molecular mechanisms involved in the early stages of fibrogenesis induced by lipid accumulation. Moreover, it may be used to identify new compounds to treat NASH using high-throughput drug screening.
Collapse
Affiliation(s)
- Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| | - Kavitha Sasidharan
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| | - Sebastian Prill
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, SE-431 83 Gothenburg, Sweden.
| | - Daniel Lindén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, SE-431 83 Gothenburg, Sweden.
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
- Cardiology Department, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
33
|
Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: Paving the Way to Personalized Treatment. Genes (Basel) 2019; 10:E191. [PMID: 30832275 PMCID: PMC6471971 DOI: 10.3390/genes10030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Personalized medicine is focused on research disciplines which contribute to the individualization of therapy, like pharmacogenomics and pharmacotranscriptomics. Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood. It is one of the pediatric malignancies with the highest cure rate, but still a lethal outcome due to therapy accounts for 1%⁻3% of deaths. Further improvement of treatment protocols is needed through the implementation of pharmacogenomics and pharmacotranscriptomics. Emerging high-throughput technologies, including microarrays and next-generation sequencing, have provided an enormous amount of molecular data with the potential to be implemented in childhood ALL treatment protocols. In the current review, we summarized the contribution of these novel technologies to the pharmacogenomics and pharmacotranscriptomics of childhood ALL. We have presented data on molecular markers responsible for the efficacy, side effects, and toxicity of the drugs commonly used for childhood ALL treatment, i.e., glucocorticoids, vincristine, asparaginase, anthracyclines, thiopurines, and methotrexate. Big data was generated using high-throughput technologies, but their implementation in clinical practice is poor. Research efforts should be focused on data analysis and designing prediction models using machine learning algorithms. Bioinformatics tools and the implementation of artificial i Lack of association of the CEP72 rs924607 TT genotype with intelligence are expected to open the door wide for personalized medicine in the clinical practice of childhood ALL.
Collapse
Affiliation(s)
- Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Lidija Dokmanovic
- University Children's Hospital, 11000 Belgrade, Serbia.
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia.
| |
Collapse
|
34
|
Tipirneni-Sajja A, Krafft AJ, Loeffler RB, Song R, Bahrami A, Hankins JS, Hillenbrand CM. Autoregressive moving average modeling for hepatic iron quantification in the presence of fat. J Magn Reson Imaging 2019; 50:1620-1632. [PMID: 30761652 DOI: 10.1002/jmri.26682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Measuring hepatic R2* by fitting a monoexponential model to the signal decay of a multigradient-echo (mGRE) sequence noninvasively determines hepatic iron content (HIC). Concurrent hepatic steatosis introduces signal oscillations and confounds R2* quantification with standard monoexponential models. PURPOSE To evaluate an autoregressive moving average (ARMA) model for accurate quantification of HIC in the presence of fat using biopsy as the reference. STUDY TYPE Phantom study and in vivo cohort. POPULATION Twenty iron-fat phantoms covering clinically relevant R2* (30-800 s-1 ) and fat fraction (FF) ranges (0-40%), and 10 patients (four male, six female, mean age 18.8 years). FIELD STRENGTH/SEQUENCE 2D mGRE acquisitions at 1.5 T and 3 T. ASSESSMENT Phantoms were scanned at both field strengths. In vivo data were analyzed using the ARMA model to determine R2* and FF values, and compared with biopsy results. STATISTICAL TESTS Linear regression analysis was used to compare ARMA R2* and FF results with those obtained using a conventional monoexponential model, complex-domain nonlinear least squares (NLSQ) fat-water model, and biopsy. RESULTS In phantoms and in vivo, all models produced R2* and FF values consistent with expected values in low iron and low/high fat conditions. For high iron and no fat phantoms, monoexponential and ARMA models performed excellently (slopes: 0.89-1.07), but NLSQ overestimated R2* (slopes: 1.14-1.36) and produced false FFs (12-17%) at 1.5 T; in high iron and fat phantoms, NLSQ (slopes: 1.02-1.16) outperformed monoexponential and ARMA models (slopes: 1.23-1.88). The results with NLSQ and ARMA improved in phantoms at 3 T (slopes: 0.96-1.04). In patients, mean R2*-HIC estimates for monoexponential and ARMA models were close to biopsy-HIC values (slopes: 0.90-0.95), whereas NLSQ substantially overestimated HIC (slope 1.4) and produced false FF values (4-28%) with very high SDs (15-222%) in patients with high iron overload and no steatosis. DATA CONCLUSION ARMA is superior in quantifying R2* and FF under high iron and no fat conditions, whereas NLSQ is superior for high iron and concurrent fat at 1.5 T. Both models give improved R2* and FF results at 3 T. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1620-1632.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Axel J Krafft
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf B Loeffler
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ruitian Song
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jane S Hankins
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Claudia M Hillenbrand
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
35
|
Liu Y, Janke LJ, Li L, Relling MV. L-carnitine does not ameliorate asparaginase-associated hepatotoxicity in a C57BL6 mouse model. Leuk Lymphoma 2019; 60:2088-2090. [PMID: 30714450 DOI: 10.1080/10428194.2019.1571198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yiwei Liu
- a Department of Pharmaceutical Sciences , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Laura J Janke
- b Department of Pathology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Lie Li
- a Department of Pharmaceutical Sciences , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Mary V Relling
- a Department of Pharmaceutical Sciences , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
36
|
Green DM, Wang M, Krasin MJ, Srivastava D, Relling MV, Howell CR, Ness KK, Kaste SC, Greene W, Jay DW, Fernandez-Pineda I, Pui CH, Jeha S, Bishop MW, Furman WL, Robison LL, Hudson MM. Serum Alanine Aminotransferase Elevations in Survivors of Childhood Cancer: A Report From the St. Jude Lifetime Cohort Study. Hepatology 2019; 69:94-106. [PMID: 30016547 PMCID: PMC6324960 DOI: 10.1002/hep.30176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to define the prevalence of and risk factors for elevated serum alanine aminotransferase (ALT) level among adult childhood cancer survivors (CCS). The study cohort comprised 2,751 CCS from the St. Jude Lifetime Cohort Study (>10 years postdiagnosis, age ≥18 years). Serum ALT level was graded using the Common Terminology Criteria for Adverse Events v. 4.03. Modified Poisson regression models were used to estimate relative risks and 95% confidence intervals for the association between demographic and clinical factors and grades 1-4 ALT on the selected models. A total of 1,339 (48.7%) CCS were female; 2,271 (82.6%) were non-Hispanic white. Median age at evaluation was 31.4 years (interquartile range [IQR] = 25.8-37.8); median elapsed time from diagnosis to evaluation was 23.2 years (IQR = 17.6-29.7). A total of 1,137 (41.3%) CSS had ALT > upper limit of normal (Common Terminology Criteria for Adverse Events v. 4.03 grade 1-1,058 (38.5%); grade 2-56 (2.0%); grade 3-23 (0.8%); grade 4-none). Multivariable models demonstrated non-Hispanic white race/ethnicity, age at evaluation in years, being overweight or obese, presence of the metabolic syndrome, current treatment with atorvastatin or rosuvastatin or simvastatin, hepatitis C virus infection, prior treatment with busulfan or thioguanine, history of hepatic surgery, and the percentage of liver treated with ≥10 Gray, ≥15 Gray, or ≥20 Gray were associated with elevated ALT. Conclusion: Grade 3 or 4 hepatic injury is infrequent in CCS. Mild hepatic injury in this group may be amenable to lifestyle modifications.
Collapse
Affiliation(s)
- Daniel M. Green
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee,Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Mingjuan Wang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew J. Krasin
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - DeoKumar Srivastava
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Carrie R. Howell
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sue C. Kaste
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee,Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee,Department of Radiology, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - William Greene
- Department of Pharmaceutical Services, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Dennis W. Jay
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Michael W. Bishop
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Wayne L. Furman
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee,Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee,Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| |
Collapse
|
37
|
Guzman CB, Duvvuru S, Akkari A, Bhatnagar P, Battioui C, Foster W, Zhang XM, Shankar SS, Deeg MA, Chalasani N, Hardy TA, Kazda CM, Pillai SG. Coding variants in PNPLA3 and TM6SF2 are risk factors for hepatic steatosis and elevated serum alanine aminotransferases caused by a glucagon receptor antagonist. Hepatol Commun 2018; 2:561-570. [PMID: 29761171 PMCID: PMC5944587 DOI: 10.1002/hep4.1171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 01/04/2023] Open
Abstract
LY2409021 is a glucagon receptor antagonist that was associated with hepatic steatosis and elevated aminotransferases in phase 2 diabetes studies. We investigated the relationship between selected genetic variants and hepatic steatosis and elevated alanine aminotransferases (ALTs) associated with LY2409021. Patients participated in a 6‐week placebo‐controlled trial (I1R‐MC‐GLDI [GLDI], n = 246) and a 52‐week placebo‐ and active comparator‐controlled trial (I1R‐MC‐GLDJ [GLDJ], n = 158). GLDJ had endpoints at 6 months, including measures of hepatic fat fraction (HFF) by magnetic resonance imaging. The five genes tested were patatin‐like phospholipase domain containing 3 (PNPLA3) (rs738409 and rs738491), transmembrane 6 superfamily member 2 (TM6SF2) (rs58542926), peroxisome proliferative activated receptor gamma coactivator 1 alpha (PPARGC1A) (rs4361373, rs3774921, rs2970849), adenylate cyclase 3 (ADCY3) (rs713586), and insulin‐like growth factor 1 (IGF‐1) (rs1520220). In GLDI, PNPLA3 I148M (P = 0.001) and TM6SF2 E167K (P = 0.001) were significantly associated with an increase in ALT at 6 weeks for LY2409021 but not for placebo. In GLDJ, PNPLA3 I148M showed the same effect (P = 0.007) on ALT at 6 months but the placebo or sitagliptin did not. In GLDJ, both PNPLA3 and TM6SF2 risk‐allele carriers showed increases in HFF that were numerically greater but not statistically significant. The carriers of PNPLA3 and/or TM6SF2 risk alleles showed significantly increased ALT (GLDI, +13.28 U/L in carriers versus +4.84 U/L in noncarriers, P = 4 × 10–5; GLDJ, +14.6 U/L in carriers versus +1.7 in noncarriers, P = 0.0018) and HFF (GLDJ, +5.35% in carriers versus 2.38% in noncarriers, P = 0.048). Elevation of transaminase and HFF were also noted in the noncarriers but at a significantly lower degree. Conclusion: The carriers of PNPLA3 and/or TM6SF2 variant alleles are at risk for hepatic steatosis and elevated ALT levels caused by LY2409021, a glucagon receptor antagonist. More studies are needed to investigate if our observations are generalizable to hepatic steatosis caused by other medications. (Hepatology Communications 2018;2:561‐570)
Collapse
Affiliation(s)
- Cristina B Guzman
- Eli Lilly and Company Indianapolis IN.,Present address: Enanta Pharmaceuticals Inc Watertown MA
| | - Suman Duvvuru
- Eli Lilly and Company Indianapolis IN.,Present address: Amazon Seattle WA
| | | | | | | | | | | | - Sudha S Shankar
- Eli Lilly and Company Indianapolis IN.,Present address: NGM Biopharmaceuticals San Francisco CA
| | - Mark A Deeg
- Eli Lilly and Company Indianapolis IN.,Present address: Regulus Pharmaceuticals San Diego CA
| | - Naga Chalasani
- Indiana University Department of Medicine Indianapolis IN
| | | | | | | |
Collapse
|
38
|
Gutierrez-Camino A, Umerez M, Santos B, Martin-Guerrero I, García de Andoin N, Sastre A, Navajas A, Astigarraga I, Garcia-Orad A. Pharmacoepigenetics in childhood acute lymphoblastic leukemia: involvement of miRNA polymorphisms in hepatotoxicity. Epigenomics 2018; 10:409-417. [PMID: 29569486 DOI: 10.2217/epi-2017-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Hepatotoxicity is one of the most common drug-related toxicities during the treatment of childhood acute lymphoblastic leukemia (ALL). Many genes involved in liver-specific signaling pathways are tightly controlled by miRNAs, and miRNA function could be modulated by SNPs. As a consequence, we hypothesized that variants in miRNAs could be associated with drug-induced hepatotoxicity. METHODS We analyzed 213 SNPs in 206 miRNAs in a cohort of 179 children with ALL homogeneously treated. RESULTS rs2648841 in miR-1208 was the most significant SNP during consolidation phase after false discovery rate correction, probably through an effect on its target genes DHFR, MTR and MTHFR. CONCLUSION These results point out the possible involvement of SNPs in miRNAs in toxicity to chemotherapy in children with ALL.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physic Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maitane Umerez
- Department of Genetics, Physic Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Borja Santos
- Department of Genetics, Physic Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physic Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Nagore García de Andoin
- Department of Pediatrics, University Hospital Donostia, San Sebastian, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Ana Sastre
- Department of Oncohematology, University Hospital La Paz, Madrid, Spain
| | - Aurora Navajas
- Department of Pediatrics, University Hospital Cruces, Barakaldo, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| | - Itziar Astigarraga
- Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain.,Department of Pediatrics, University Hospital Cruces, Barakaldo, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physic Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
39
|
Denton CC, Rawlins YA, Oberley MJ, Bhojwani D, Orgel E. Predictors of hepatotoxicity and pancreatitis in children and adolescents with acute lymphoblastic leukemia treated according to contemporary regimens. Pediatr Blood Cancer 2018; 65:10.1002/pbc.26891. [PMID: 29218844 PMCID: PMC7522002 DOI: 10.1002/pbc.26891] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatotoxicity and pancreatitis are common treatment-related toxicities (TRTs) during contemporary treatment regimens for acute lymphoblastic leukemia (ALL). Limited detailed data from Children's Oncology Group (COG) regimens has been previously reported to enable identification of patient and treatment risk factors for these toxicities and their impact on outcomes. PROCEDURE We analyzed a retrospective pediatric ALL cohort treated at a single institution according to COG regimens from 2008 to 2015. The primary endpoint was cumulative incidence of study-defined "severe" hepatotoxicity (Common Terminology Criteria for Adverse Events [CTCAE] Grade ≥ 4 transaminitis or Grade ≥ 3 hyperbilirubinemia) and clinically significant pancreatitis (any grade). Pancreatitis was additionally classified using the Ponte di Legno (PdL) toxicity criteria. Secondary endpoints were chemotherapy interruptions, early disease response (end of induction [EOI] minimal residual disease [MRD]), and event-free survival (EFS). RESULTS We identified 262 patients, of whom 71 (27%) and 28 (11%) developed hepatotoxicity and pancreatitis, respectively. Three cases of pancreatitis did not fulfill PdL criteria despite otherwise consistent presentations. Both TRTs occurred throughout therapy, but approximately 25% of hepatotoxicity (18/71) and pancreatitis (8/28) occurred during induction alone. Both obesity and age (≥10 years) were identified as predictors of hepatotoxicity (subdistribution hazard ratio [SHR] obesity = 1.75, 95% confidence interval [95% CI] 1.04-2.96; SHR age ≥10 = 1.9, 95% CI 1.19-3.10) and pancreatitis (SHR obesity = 2.18, 95% CI 1.01-4.67; SHR age ≥ 10 = 2.76, 95% CI 1.19-6.39, P = 0.018). Dose interruptions were common but neither toxicity influenced EOI MRD nor EFS. CONCLUSIONS Obese and/or older children are particularly at risk for hepatotoxicity and pancreatitis, and may benefit from toxicity surveillance and chemoprotective strategies to prevent or mitigate associated morbidity.
Collapse
Affiliation(s)
- Christopher C. Denton
- Division of Hematology, Oncology, & BMT, Children’s Hospital Los Angeles, Los Angeles, California
| | - Yasmin A. Rawlins
- College of Physicians and Surgeons, Columbia University, New York, New York
| | - Matthew J. Oberley
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California,Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Deepa Bhojwani
- Division of Hematology, Oncology, & BMT, Children’s Hospital Los Angeles, Los Angeles, California,Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Etan Orgel
- Division of Hematology, Oncology, & BMT, Children’s Hospital Los Angeles, Los Angeles, California,Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
40
|
Abstract
A single-nucleotide polymorphism occurring in the sequence of the human patatin-like phospholipase domain-containing 3 gene (PNPLA3), known as I148M variant, is one of the best characterized and deeply investigated variants in several clinical scenarios, because of its tight correlation with increased risk for developing hepatic steatosis and more aggressive part of the disease spectrum, such as nonalcoholic steatohepatitis, advanced fibrosis and cirrhosis. Further, the I148M variant is positively associated with alcoholic liver diseases, chronic hepatitis C-related cirrhosis and hepatocellular carcinoma. The native gene encodes for a protein that has not yet a fully defined role in liver lipid metabolism and, according to recent observations, seems to be divergently regulated among distinct liver cells type, such as hepatic stellate cells. Therefore, the aim of this review is to collect the latest data regarding PNPLA3 expression in human liver and to analyze the impact of its genetic variant in human hepatic pathologies. Moreover, a description of the current biochemical and metabolic data pertaining to PNPLA3 function in both animal models and in vitro studies is summarized to allow a better understanding of the relevant pathophysiological role of this enzyme in the progression of hepatic diseases.
Collapse
Affiliation(s)
- Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| |
Collapse
|