1
|
Moyal A, Nazemian R, Colon EP, Zhu L, Benzar R, Palmer NR, Craycroft M, Hausladen A, Premont RT, Stamler JS, Klick J, Reynolds JD. Renal dysfunction in adults following cardiopulmonary bypass is linked to declines in S-nitroso hemoglobin: a case series. Ann Med Surg (Lond) 2024; 86:2425-2431. [PMID: 38694342 PMCID: PMC11060257 DOI: 10.1097/ms9.0000000000001880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 05/04/2024] Open
Abstract
Background Impaired kidney function is frequently observed in patients following cardiopulmonary bypass (CPB). Our group has previously linked blood transfusion to acute declines in S-nitroso haemoglobin (SNO-Hb; the main regulator of tissue oxygen delivery), reductions in intraoperative renal blood flow, and postoperative kidney dysfunction. While not all CPB patients receive blood, kidney injury is still common. We hypothesized that the CPB procedure itself may negatively impact SNO-Hb levels leading to renal dysfunction. Materials and methods After obtaining written informed consent, blood samples were procured immediately before and after CPB, and on postoperative day (POD) 1. SNO-Hb levels, renal function (estimated glomerular filtration rate; eGFR), and plasma erythropoietin (EPO) concentrations were quantified. Additional outcome data were extracted from the patients' medical records. Results Twenty-seven patients were enroled, three withdrew consent, and one was excluded after developing bacteremia. SNO-Hb levels declined after surgery and were directly correlated with declines in eGFR (R=0.48). Conversely, plasma EPO concentrations were elevated and inversely correlated with SNO-Hb (R=-0.53) and eGFR (R=-0.55). Finally, ICU stay negatively correlated with SNO-Hb concentration (R=-0.32). Conclusion SNO-Hb levels are reduced following CPB in the absence of allogenic blood transfusion and are predictive of decreased renal function and prolonged ICU stay. Thus, therapies directed at maintaining or increasing SNO-Hb levels may improve outcomes in adult patients undergoing cardiac surgery.
Collapse
Affiliation(s)
| | - Ryan Nazemian
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Edwin Pacheco Colon
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Lin Zhu
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Ruth Benzar
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | | | | | - Alfred Hausladen
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - John Klick
- Departments ofAnesthesiology & Perioperative Medicine
| | - James D. Reynolds
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
2
|
Nazemian R, Matta M, Aldamouk A, Zhu L, Awad M, Pophal M, Palmer NR, Armes T, Hausladen A, Stamler JS, Reynolds JD. S-Nitrosylated hemoglobin predicts organ yield in neurologically-deceased human donors. Sci Rep 2022; 12:6639. [PMID: 35459243 PMCID: PMC9033847 DOI: 10.1038/s41598-022-09933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Current human donor care protocols following death by neurologic criteria (DNC) can stabilize macro-hemodynamic parameters but have minimal ability to preserve systemic blood flow and microvascular oxygen delivery. S-nitrosylated hemoglobin (SNO-Hb) within red blood cells (RBCs) is the main regulator of tissue oxygenation (StO2). Based on various pre-clinical studies, we hypothesized that brain death (BD) would decrease post-mortem SNO-Hb levels to negatively-impact StO2 and reduce organ yields. We tracked SNO-Hb and tissue oxygen in 61 DNC donors. After BD, SNO-Hb levels were determined to be significantly decreased compared to healthy humans (p = 0·003) and remained reduced for the duration of the monitoring period. There was a positive correlation between SNO-Hb and StO2 (p < 0.001). Furthermore, SNO-Hb levels correlated with and were prognostic for the number of organs transplanted (p < 0.001). These clinical findings provide additional support for the concept that BD induces a systemic impairment of S-nitrosylation that negatively impacts StO2 and reduces organ yield from DNC human donors. Exogenous S-nitrosylating agents are in various stages of clinical development. The results presented here suggest including one or more of these agents in donor support regimens could increase the number and quality of organs available for transplant.
Collapse
Affiliation(s)
- Ryan Nazemian
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Maroun Matta
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Pulmonology and Sleep Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Amer Aldamouk
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Lin Zhu
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Mohamed Awad
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Megan Pophal
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Nicole R Palmer
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Tonya Armes
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, 4-128 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - James D Reynolds
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA. .,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA. .,Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, 4-128 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Premont RT, Singel DJ, Stamler JS. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol Aspects Med 2022; 84:101056. [PMID: 34852941 PMCID: PMC8821404 DOI: 10.1016/j.mam.2021.101056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The allosteric transition within tetrameric hemoglobin (Hb) that allows both full binding to four oxygen molecules in the lung and full release of four oxygens in hypoxic tissues would earn Hb the moniker of 'honorary enzyme'. However, the allosteric model for oxygen binding in hemoglobin overlooked the essential role of blood flow in tissue oxygenation that is essential for life (aka autoregulation of blood flow). That is, blood flow, not oxygen content of blood, is the principal determinant of oxygen delivery under most conditions. With the discovery that hemoglobin carries a third biologic gas, nitric oxide (NO) in the form of S-nitrosothiol (SNO) at β-globin Cys93 (βCys93), and that formation and export of SNO to dilate blood vessels are linked to hemoglobin allostery through enzymatic activity, this title is honorary no more. This chapter reviews evidence that hemoglobin formation and release of SNO is a critical mediator of hypoxic autoregulation of blood flow in tissues leading to oxygen delivery, considers the physiological implications of a 3-gas respiratory cycle (O2/NO/CO2) and the pathophysiological consequences of its dysfunction. Opportunities for therapeutic intervention to optimize oxygen delivery at the level of tissue blood flow are highlighted.
Collapse
Affiliation(s)
- Richard T Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - David J Singel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Bertolone L, Shin HKH, Baek JH, Gao Y, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Guinea Pigs, Humans, and Non-human Primates During Refrigerated Storage for Up to 42 Days. Front Physiol 2022; 13:845347. [PMID: 35388289 PMCID: PMC8977988 DOI: 10.3389/fphys.2022.845347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
Unlike other rodents, guinea pigs (Cavia porcellus) have evolutionarily lost their capacity to synthesize vitamin C (ascorbate) de novo and, like several non-human primates and humans, rely on dietary intake and glutathione-dependent recycling to cope with oxidant stress. This is particularly relevant in red blood cell physiology, and especially when modeling blood storage, which exacerbates erythrocyte oxidant stress. Herein we provide a comprehensive metabolomics analysis of fresh and stored guinea pig red blood cell concentrates (n = 20), with weekly sampling from storage day 0 through 42. Results were compared to previously published ZOOMICS studies on red blood cells from three additional species with genetic loss of L-gulonolactone oxidase function, including humans (n = 21), olive baboons (n = 20), and rhesus macaques (n = 20). While metabolic trends were comparable across all species, guinea pig red blood cells demonstrated accelerated alterations of the metabolic markers of the storage lesion that are consistent with oxidative stress. Compared to the other species, guinea pig red blood cells showed aberrant glycolysis, pentose phosphate pathway end product metabolites, purine breakdown products, methylation, glutaminolysis, and markers of membrane lipid remodeling. Consistently, guinea pig red blood cells demonstrated higher end storage hemolysis, and scanning electron microscopy confirmed a higher degree of morphological alterations of their red blood cells, as compared to the other species. Despite a genetic inability to produce ascorbate that is common to the species evaluated, guinea pig red blood cells demonstrate accelerated oxidant stress under standard storage conditions. These data may offer relevant insights into the basal and cold storage metabolism of red blood cells from species that cannot synthesize endogenous ascorbate.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Hye Kyung H Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Pulmonary Vasodilation by Intravenous Infusion of Organic Mononitrites Of 1,2-Propanediol in Acute Pulmonary Hypertension Induced by Aortic Cross Clamping and Reperfusion: A Comparison With Nitroglycerin in Anesthetized Pigs. Shock 2021; 54:119-127. [PMID: 31425404 DOI: 10.1097/shk.0000000000001436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Suprarenal aortic cross clamping (SRACC) and reperfusion may cause acute pulmonary hypertension and multiple organ failure. HYPOTHESIS The organic mononitrites of 1,2-propanediol (PDNO), an nitric oxide donor with a very short half-life, are a more efficient pulmonary vasodilator and attenuator of end-organ damage and inflammation without significant side effects compared with nitroglycerin and inorganic nitrite in a porcine SRACC model. METHODS Anesthetized and instrumented domestic pigs were randomized to either of four IV infusions until the end of the experiment (n = 10 per group): saline (control), PDNO (45 nmol kg min), nitroglycerin (44 nmol kg min), or inorganic nitrite (a dose corresponding to PDNO). Thereafter, all animals were subjected to 90 min of SRACC and 10 h of reperfusion and protocolized resuscitation. Hemodynamic and respiratory variables as well as blood samples were collected and analysed. RESULTS During reperfusion, mean pulmonary arterial pressure and pulmonary vascular resistance were significantly lower, and stroke volume was significantly higher in the PDNO group compared with the control, nitroglycerin, and inorganic nitrite groups. In parallel, mean arterial pressure, arterial oxygenation, and fraction of methaemoglobin were similar in all groups. The serum concentration of creatinine and tumor necrosis factor alpha were lower in the PDNO group compared with the control group during reperfusion. CONCLUSIONS PDNO was an effective pulmonary vasodilator and appeared superior to nitroglycerin and inorganic nitrite, without causing significant systemic hypotension, impaired arterial oxygenation, or methaemoglobin formation in an animal model of SRACC and reperfusion. Also, PDNO may have kidney-protective effects and anti-inflammatory properties.
Collapse
|
6
|
Bertolone L, Shin HK, Stefanoni D, Baek JH, Gao Y, Morrison EJ, Nemkov T, Thomas T, Francis RO, Hod EA, Zimring JC, Yoshida T, Karafin M, Schwartz J, Hudson KE, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Old World Monkeys and Humans. Front Physiol 2020; 11:593841. [PMID: 33192610 PMCID: PMC7645159 DOI: 10.3389/fphys.2020.593841] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
As part of the ZOOMICS project, we set out to investigate common and diverging metabolic traits in the blood metabolome across various species by taking advantage of recent developments in high-throughput metabolomics. Here we provide the first comparative metabolomics analysis of fresh and stored human (n = 21, 10 males, 11 females), olive baboon (n = 20), and rhesus macaque (n = 20) red blood cells at baseline and upon 42 days of storage under blood bank conditions. The results indicated similarities and differences across species, which ultimately resulted in a differential propensity to undergo morphological alterations and lyse as a function of the duration of refrigerated storage. Focusing on purine oxidation, carboxylic acid, fatty acid, and arginine metabolism further highlighted species-specific metabolic wiring. For example, through a combination of steady state measurements and 13C615N4-arginine tracing experiments, we report an increase in arginine catabolism into ornithine in humans, suggestive of species-specific arginase 1 activity and nitric oxide synthesis—an observation that may impact the translatability of cardiovascular disease studies carried out in non-human primates (NHPs). Finally, we correlated metabolic measurements to storage-induced morphological alterations via scanning electron microscopy and hemolysis, which were significantly lower in human red cells compared to both NHPs.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Hye K Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, VA, United States
| | | | - Matthew Karafin
- Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pathology and Laboratory Medicine, Milwaukee, WI, United States
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Division of Hematology, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Abstract
OBJECTIVE To determine if addition of the S-nitrosylating agent ethyl nitrite (ENO) to the preservation solution can improve perfusion parameters in pumped human kidneys. BACKGROUND A significant percentage of actively stored kidneys experience elevations in resistance and decreases in flow rate during the ex vivo storage period. Preclinical work indicates that renal status after brain death is negatively impacted by inflammation and reduced perfusion-processes regulated by protein S-nitrosylation. To translate these findings, we added ENO to the preservation solution in an attempt to reverse the perfusion deficits observed in nontransplanted pumped human kidneys. METHODS After obtaining positive proof-of-concept results with swine kidneys, we studied donated human kidneys undergoing hypothermic pulsatile perfusion deemed unsuitable for transplantation. Control kidneys continued to be pumped a 4°C (ie, standard of care). In the experimental group, the preservation solution was aerated with 50 ppm ENO in nitrogen. Flow rate and perfusion were recorded for 10 hours followed by biochemical analysis of the kidney tissue. RESULTS In controls, perfusion was constant during the monitoring period (ie, flow rate remained low and resistance stayed high). In contrast, the addition of ENO produced significant and sustained reductions in resistance and increases in flow rate. ENO-treated kidneys had higher levels of cyclic guanosine monophosphate, potentially explaining the perfusion benefits, and increased levels of interleukin-10, suggestive of an anti-inflammatory effect. CONCLUSIONS S-Nitrosylation therapy restored the microcirculation and thus improved overall organ perfusion. Inclusion of ENO in the renal preservation solution holds promise to increase the number and quality of kidneys available for transplant.
Collapse
|
8
|
Lundberg JO, Cabrales P, Tsai AG, Patel RP, Kim-Shapiro DB. Response by Lundberg et al to Letter Regarding Article, "Hemoglobin β93 Cysteine Is Not Required for Export of Nitric Oxide Bioactivity From the Red Blood Cell". Circulation 2019; 140:e760-e761. [PMID: 31682526 DOI: 10.1161/circulationaha.119.043151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (J.O.L.)
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego (P.C., A.G.T.)
| | - Amy G Tsai
- Department of Bioengineering, University of California, San Diego (P.C., A.G.T.)
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham (R.P.P.)
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina (D.B.K.-S.)
| |
Collapse
|
9
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|
10
|
Nilsson KF, Gustafsson LE. Treatment with new organic nitrites in pulmonary hypertension of acute experimental pulmonary embolism. Pharmacol Res Perspect 2019; 7:e00462. [PMID: 30693089 PMCID: PMC6343054 DOI: 10.1002/prp2.462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Acute pulmonary embolism may cause right heart failure due to increased pulmonary vascular resistance and arterial hypoxemia. Effective vasodilator therapy of the pulmonary hypertension is highly needed. Therefore, we investigated the effects of a newly developed effective pulmonary vasodilator, the organic mononitrites of 1,2-propanediol (PDNO), in a rabbit model of acute pulmonary embolism. In anesthetized and ventilated rabbits, systemic and pulmonary hemodynamics, exhaled nitric oxide (NO), plasma nitrite concentration, and blood gases were monitored. First, dose-response experiments with intravenous and left heart ventricle infusions of PDNO and inorganic nitrite were done in naive animals and in pulmonary hypertension induced by a thromboxane A2 analogue. Second, acute pulmonary embolism was induced and either PDNO or placebo were administered intravenously within 20 minutes and evaluated within 1 hour after pulmonary embolization. PDNO intravenously, in contrast to inorganic nitrite intravenously, increased exhaled NO and counteracted pulmonary hypertension and vasodilated the systemic circulation, dose-dependently, thereby showing efficient NO donation. Pulmonary embolization induced pulmonary hypertension and gas exchange disturbances. PDNO significantly decreased and normalized pulmonary vascular resistance and the right ventricle rate-pressure product, without causing tolerance, with no significant side effects on the systemic circulation, nor on blood-gas values or on methemoglobin formation. In conclusion, PDNO is a NO donor and an efficient vasodilator in the pulmonary circulation. Treatment with this or similar organic nitrites intravenously may be a future option to avoid right heart failure in life-threatening acute pulmonary embolism.
Collapse
Affiliation(s)
- Kristofer F. Nilsson
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Department of Cardiothoracic and Vascular SurgeryFaculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Lars E. Gustafsson
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
| |
Collapse
|