• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (2652)
For: Wright WRH, Palkovits R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. ChemSusChem 2012;5:1657-1667. [PMID: 22890968 DOI: 10.1002/cssc.201200111] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 06/01/2023]
Number Cited by Other Article(s)
1
Sepulveda Lanziano CA, Rodella CB, Guirardello R. Evaluation of Kinetic Models for the Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone over Nickel Catalyst Supported by Titania. Molecules 2025;30:1400. [PMID: 40285868 PMCID: PMC11990501 DOI: 10.3390/molecules30071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]  Open
2
Vega Sánchez E, Tzompantzi-Morales JFJ, Ortiz-Frade L, Esparza-Schulz M, Ojeda-López R, Pérez-Hernández R, Gutiérrez-Carrillo A, Huerta L, Lara VH, Lomas-Romero L, González-Sebastián L. Green catalytic process for γ-valerolactone production from levulinic acid and formic acid. Dalton Trans 2025;54:4201-4212. [PMID: 39908024 DOI: 10.1039/d4dt03345k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
3
Kumar S, Choudhary P, Sharma D, Sajwan D, Kumar V, Krishnan V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. CHEMSUSCHEM 2024;17:e202400737. [PMID: 38864756 DOI: 10.1002/cssc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
4
Popova M, Boycheva S, Dimitrov I, Dimitrov M, Kovacheva D, Karashanova D, Velinov N, Atanasova G, Szegedi A. The Formation of γ-Valerolactone from Renewable Levulinic Acid over Ni-Cu Fly Ash Zeolite Catalysts. Molecules 2024;29:5753. [PMID: 39683910 DOI: 10.3390/molecules29235753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]  Open
5
Khalid M, Granollers Mesa M, Scapens D, Osatiashtiani A. Advances in Sustainable γ-Valerolactone (GVL) Production via Catalytic Transfer Hydrogenation of Levulinic Acid and Its Esters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024;12:16494-16517. [PMID: 39545102 PMCID: PMC11558667 DOI: 10.1021/acssuschemeng.4c05812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
6
Min HY, Xiong JS, Liu TH, Fu S, Hu CW, Yang HQ. Mechanism of CO2 in promoting the hydrogenation of levulinic acid to γ-valerolactone catalyzed by RuCl3 in aqueous solution. Phys Chem Chem Phys 2024;26:14613-14623. [PMID: 38739028 DOI: 10.1039/d4cp00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
7
Martínez Figueredo KG, Martínez FA, Segobia DJ, Bertero NM. Valeric Biofuels from Biomass-Derived γ-Valerolactone: A Critical Overview of Production Processes. Chempluschem 2023;88:e202300381. [PMID: 37751007 DOI: 10.1002/cplu.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
8
Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth Zeolites, Synthesis, Characterization, and Catalysis. Chem Rev 2023;123:11664-11721. [PMID: 37707958 DOI: 10.1021/acs.chemrev.3c00373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
9
Montejano‐Nares E, Ivars‐Barceló F, Osman SM, Luque R. Modeling and Thermodynamic Studies of γ-Valerolactone Production from Bio-derived Methyl Levulinate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023;7:2200208. [PMID: 37020618 PMCID: PMC10069308 DOI: 10.1002/gch2.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Indexed: 06/19/2023]
10
Bounoukta CE, Megías-Sayago C, Navarro JC, Ammari F, Ivanova S, Centeno MÁ, Odriozola JA. Functionalized Biochars as Supports for Ru/C Catalysts: Tunable and Efficient Materials for γ-Valerolactone Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:1129. [PMID: 36986022 PMCID: PMC10051761 DOI: 10.3390/nano13061129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
11
Guo H, Bian K, Ding S, Cai H, Zhang H, Chen X, Wang C, Yao S, Chen X. Efficient Utilization of Biomass Hydrolysis Residues in Preparing a Metal/Acid Bifunctional Catalyst for Butyl Levulinate Hydrogenation to γ-Valerolactone. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
12
García-Sancho C, Mérida-Robles JM, Cecilia-Buenestado JA, Moreno-Tost R, Maireles-Torres PJ. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. Int J Mol Sci 2023;24:2443. [PMID: 36768767 PMCID: PMC9916970 DOI: 10.3390/ijms24032443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]  Open
13
Yang Y, Zhang S, Gu L, Hao S. Ru Single Atoms on One-Dimensional CF@g-C3N4 Hierarchy as Highly Stable Catalysts for Aqueous Levulinic Acid Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2022;15:7464. [PMID: 36363056 PMCID: PMC9658288 DOI: 10.3390/ma15217464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
14
Popova M, Trendafilova I, Oykova M, Mitrev Y, Shestakova P, Mihályi MR, Szegedi Á. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Molecules 2022;27:molecules27175383. [PMID: 36080151 PMCID: PMC9458178 DOI: 10.3390/molecules27175383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]  Open
15
Hao J, Zhang Y, Zhang T, Zhou H, Liu Q, Zhi K, Li N, He R. A novel and highly efficient Zr-containing catalyst supported by biomass-derived sodium carboxymethyl cellulose for hydrogenation of furfural. Front Chem 2022;10:966270. [PMID: 35936079 PMCID: PMC9352927 DOI: 10.3389/fchem.2022.966270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022]  Open
16
Lu J, Wei Y, Lu K, Wu C, Nong X, Li J, Liu CL, Dong WS. Co-C N embedded in N-doped carbon as robust catalysts for the synthesis of γ-valerolactone from the hydrogenation of levulinic acid under low hydrogen pressure. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
17
Antunes MM, Silva AF, Fernandes A, Valente AA. γ-Valerolactone synthesis from α-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
18
Li Y, Liu B, Wang Y, Wang S, Lan X, Wang T. High-Performance Ni3P Catalyst for C═O Hydrogenation of Ethyl Levulinate: Niδ+ as Outstanding Adsorption Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Gomez LA, Bababrik R, Komarneni MR, Marlowe J, Salavati-fard T, D’Amico AD, Wang B, Christopher P, Crossley SP. Selective Reduction of Carboxylic Acids to Aldehydes with Promoted MoO3 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Hijazi A, Khalaf N, Kwapinski W, Leahy JJ. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H2 donor: a critical review. RSC Adv 2022;12:13673-13694. [PMID: 35530384 PMCID: PMC9073962 DOI: 10.1039/d2ra01379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]  Open
21
Li CC, Hsieh CH, Lin YC. Ni/SiO2 catalysts derived from carbothermal reduction of nickel phyllosilicate in the hydrogenation of levulinic acid to γ-valerolactone: The efficacy of nitrogen decoration. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
22
López-Aguado C, del Monte DM, Paniagua M, Morales G, Melero JA. Techno-Economic Assessment of Conceptual Design for Gamma-Valerolactone Production over a Bifunctional Zr–Al–Beta Catalyst. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
23
Meng Y, Jian Y, Chen D, Huang J, Zhang H, Li H. Reductive Upgrading of Biomass-Based Levulinic Acid to γ-Valerolactone Over Ru-Based Single-Atom Catalysts. Front Chem 2022;10:895198. [PMID: 35433635 PMCID: PMC9010461 DOI: 10.3389/fchem.2022.895198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022]  Open
24
Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
25
Ortuño MA, Rellán-Piñeiro M, Luque R. Computational Mechanism of Methyl Levulinate Conversion to γ-Valerolactone on UiO-66 Metal Organic Frameworks. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022;10:3567-3573. [PMID: 35360051 PMCID: PMC8942187 DOI: 10.1021/acssuschemeng.1c08021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
26
Zhang Z, Liu Z, Gu Z, Wen Z, Xue B. Selective production of γ-Valerolactone from ethyl levulinate by catalytic transfer hydrogenation over Zr-based catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04646-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
27
Bunrit A, Butburee T, Liu M, Huang Z, Meeporn K, Phawa C, Zhang J, Kuboon S, Liu H, Faungnawakij K, Wang F. Photo–Thermo-Dual Catalysis of Levulinic Acid and Levulinate Ester to γ-Valerolactone. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
28
Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Int J Mol Sci 2022;23:ijms23020799. [PMID: 35054984 PMCID: PMC8776037 DOI: 10.3390/ijms23020799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]  Open
29
Ding S, Zhang H, Li B, Xu W, Chen X, Yao S, Xiong L, Guo H, Chen X. Selective hydrogenation of butyl levulinate to γ-valerolactone over sulfonated activated carbon-supported SnRuB bifunctional catalysts. NEW J CHEM 2022. [DOI: 10.1039/d1nj04800g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Osatiashtiani A, Orr SA, Durndell L, Collado García I, Merenda A, Lee AF, Wilson K. Liquid phase catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over ZrO2/SBA-15. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00538g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Cationic Ru complexes anchored on POM via non-covalent interaction towards efficient transfer hydrogenation catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Fraga G, Santos MS, Konarova M, Hasan MD, Laycock B, Batalha N, Pratt S. Role of Catalyst Support's Physicochemical Properties on Catalytic Transfer Hydrogenation over Palladium Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
33
Grzelak K, Trejda M. Spherical Silica Modified with Magnesium and Ruthenium-Synthesis, Characterization and Catalytic Properties. MATERIALS 2021;14:ma14237378. [PMID: 34885533 PMCID: PMC8658599 DOI: 10.3390/ma14237378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
34
Sosa LF, da Silva VT, de Souza PM. Hydrogenation of levulinic acid to γ-valerolactone using carbon nanotubes supported nickel catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
35
Grillo G, Manzoli M, Bucciol F, Tabasso S, Tabanelli T, Cavani F, Cravotto G. Hydrogenation of Levulinic Acid to γ-Valerolactone via Green Microwave-Assisted Reactions Either in Continuous Flow or Solvent-Free Batch Processes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
36
Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
37
Shivhare A, Kumar A, Srivastava R. The Size‐Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the Upgrading of Biomass‐Derived 5‐Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
38
He J, Wu Z, Gu Q, Liu Y, Chu S, Chen S, Zhang Y, Yang B, Chen T, Wang A, Weckhuysen BM, Zhang T, Luo W. Zeolite-Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angew Chem Int Ed Engl 2021;60:23713-23721. [PMID: 34409728 DOI: 10.1002/anie.202108170] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/16/2021] [Indexed: 11/07/2022]
39
Qian L, Lan G, Liu X, Li Z, Li Y. Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt-ruthenium catalysts. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
40
Grigorev ME, Mikhailov SP, Bykov AV, Sidorov AI, Tiamina IY, Vasiliev AL, Nikoshvili LZ, Matveeva VG, Plentz Meneghetti SM, Sulman MG, Sulman EM. Mono- and bimetallic (Ru-Co) polymeric catalysts for levulinic acid hydrogenation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
41
Conversion of levulinic acid to γ-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Brønsted acid sites. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
42
Taran OP, Sychev VV, Kuznetsov BN. γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
43
He J, Wu Z, Gu Q, Liu Y, Chu S, Chen S, Zhang Y, Yang B, Chen T, Wang A, Weckhuysen BM, Zhang T, Luo W. Zeolite‐Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
44
Yuan Q, van de Bovenkamp HH, Zhang Z, Piskun AS, Sami S, Havenith RW, Heeres HJ, Deuss PJ. Mechanistic Investigations into the Catalytic Levulinic Acid Hydrogenation, Insight in H/D Exchange Pathways, and a Synthetic Route to d8-γ-Valerolactone. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
45
Furfural acetalization over Keggin heteropolyacid salts at room temperature: effect of cesium doping. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02025-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
46
Capecci S, Wang Y, Delgado J, Casson Moreno V, Mignot M, Grénman H, Murzin DY, Leveneur S. Bayesian Statistics to Elucidate the Kinetics of γ-Valerolactone from n-Butyl Levulinate Hydrogenation over Ru/C. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
47
Li J, Zhao S, Li Z, Liu D, Chi Y, Hu C. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Inorg Chem 2021;60:7785-7793. [PMID: 33755456 DOI: 10.1021/acs.inorgchem.1c00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
48
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
49
Conversion of levulinic acid using CuO/WO3(x)-Al2O3 catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
50
Ru Catalysts Supported on Commercial and Biomass-Derived Activated Carbons for the Transformation of Levulinic Acid into γ-Valerolactone under Mild Conditions. Catalysts 2021. [DOI: 10.3390/catal11050559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]  Open
PrevPage 1 of 6 123456Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA