• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4628136)   Today's Articles (4200)   Subscriber (49620)
For: Chen P, Wu F, Wang Y. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. ChemSusChem 2014;7:1407-1414. [PMID: 24648261 DOI: 10.1002/cssc.201301198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/16/2014] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
Moon GD. Yolk-Shell Nanostructures: Syntheses and Applications for Lithium-Ion Battery Anodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020;10:E675. [PMID: 32260228 PMCID: PMC7221814 DOI: 10.3390/nano10040675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/22/2023]
2
Sun W, Tang X, Wang Y. Multi-metal–Organic Frameworks and Their Derived Materials for Li/Na-Ion Batteries. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00056-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
3
Chen H, Jia B, Lu X, Guo Y, Hu R, Khatoon R, Jiao L, Leng J, Zhang L, Lu J. Two‐Dimensional SnSe 2 /CNTs Hybrid Nanostructures as Anode Materials for High‐Performance Lithium‐Ion Batteries. Chemistry 2019;25:9973-9983. [DOI: 10.1002/chem.201901487] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Indexed: 11/08/2022]
4
Shi C, Huang H, Xia Y, Yu J, Fang R, Liang C, Zhang J, Gan Y, Zhang W. Importing Tin Nanoparticles into Biomass-Derived Silicon Oxycarbides with High-Rate Cycling Capability Based on Supercritical Fluid Technology. Chemistry 2019;25:7719-7725. [PMID: 30972842 DOI: 10.1002/chem.201900786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 11/05/2022]
5
Guo H, Cai H, Li W, Chen C, Chen K, Zhang Y, Li Y, Wang M, Wang Y. Tailored Ni2P nanoparticles supported on N-doped carbon as a superior anode material for Li-ion batteries. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00480g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Dai R, Sun W, Lv LP, Wu M, Liu H, Wang G, Wang Y. Bimetal-Organic-Framework Derivation of Ball-Cactus-Like Ni-Sn-P@C-CNT as Long-Cycle Anode for Lithium Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017;13. [PMID: 28544389 DOI: 10.1002/smll.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/07/2017] [Indexed: 05/03/2023]
7
Dai R, Sun W, Wang Y. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
8
Luo B, Qiu T, Wang B, Hao L, Li X, Cao A, Zhi L. Freestanding carbon-coated CNT/Sn(O2) coaxial sponges with enhanced lithium-ion storage capability. NANOSCALE 2015;7:20380-20385. [PMID: 26602813 DOI: 10.1039/c5nr06613a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
9
Purbia R, Paria S. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. NANOSCALE 2015;7:19789-873. [PMID: 26567966 DOI: 10.1039/c5nr04729c] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
10
Hu Y, Yang QR, Ma J, Chou SL, Zhu M, Li Y. Sn/SnO 2 @C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.185] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
11
Hong YJ, Kang YC. General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015;11:2157-2163. [PMID: 25565252 DOI: 10.1002/smll.201402994] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/24/2014] [Indexed: 06/04/2023]
12
Sun W, Wang Y. Graphene-based nanocomposite anodes for lithium-ion batteries. NANOSCALE 2014;6:11528-52. [PMID: 25177843 DOI: 10.1039/c4nr02999b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA