1
|
Santos B, Araújo J, Carvalho B, Cotrim C, Bernardino R, Freitas F, Sobral AJFN, Encarnação T. Bioremediation of Synthetic Wastewater with Contaminants of Emerging Concern by Nannochloropsis sp. and Lipid Production: A Circular Approach. Bioengineering (Basel) 2025; 12:246. [PMID: 40150710 PMCID: PMC11939778 DOI: 10.3390/bioengineering12030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Contaminants of emerging concern (CECs) pose a potential risk to human and environmental health. Microalgae bioremediation is a promising approach for transforming or removing contaminants from the environment, while contributing to the circular economy. In this study, Nannochloropsis sp. was effectively used for the simultaneous removal of six CECs: paracetamol, ibuprofen, imidacloprid, methylparaben and bisphenol A at 10 µg mL-1 and triclosan at 0.5 µg mL-1 from synthetic wastewater, which were able to survive under such concentrations, higher than those commonly found in the environment (up to 2.82 µg mL-1 of methylparaben). High removal efficiencies were reached for methylparaben (100%) and bisphenol A (93 ± 2%), while for imidacloprid, paracetamol and ibuprofen, 30 ± 1%, 64 ± 2% and 49 ± 5% were removed, respectively. Subsequently, lipids were extracted, and the FAME profile was characterised using GS-MS. The main fatty acids identified after bioremediation were hexadecadienoic acid isomers (C16:2), palmitic acid (C16), linoleic acid (C18:2) and γ-linolenic acid (C18:3). The absence of oleic acid and stearic acid was noticed, suggesting an alteration in the lipidic profile due to contaminant exposure. By exploring the quantification of fatty acids in future work, potential applications for the extracted lipids can be explored, further demonstrating the feasibility of this circular process.
Collapse
Affiliation(s)
- Bruna Santos
- PTScience, Rua da Liberdade nº10, 2460-060 Alcobaça, Portugal; (B.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Juliana Araújo
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (J.A.)
| | - Beatriz Carvalho
- PTScience, Rua da Liberdade nº10, 2460-060 Alcobaça, Portugal; (B.S.)
| | - Carolina Cotrim
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM—School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-614 Peniche, Portugal; (C.C.)
| | - Raul Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM—School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-614 Peniche, Portugal; (C.C.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Abílio J. F. N. Sobral
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (J.A.)
| | - Telma Encarnação
- PTScience, Rua da Liberdade nº10, 2460-060 Alcobaça, Portugal; (B.S.)
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (J.A.)
| |
Collapse
|
2
|
Li X, Yu X, Liu Q, Zhang Y, Wang Q. Lipid Production of Schizochytrium sp. HBW10 Isolated from Coastal Waters of Northern China Cultivated in Food Waste Hydrolysate. Microorganisms 2023; 11:2714. [PMID: 38004726 PMCID: PMC10672807 DOI: 10.3390/microorganisms11112714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Marine oleaginous thraustochytrids have attracted increasing attention for their great potential in producing high-value active metabolites using various industrial and agricultural waste. Food waste containing abundant nutrients is considered as an excellent feedstock for microbial fermentation. In this study, a thraustochytrid strain Schizochytrium sp. HBW10 was isolated from a water column in Bohai Bay in Northern China for the first time. Further lipid production characteristics of S. sp. HBW10 were investigated utilizing sulfuric acid hydrolysate of food waste (FWH) from two different restaurants (FWH1 and FWH2) with the initial pH value adjusted by NaOH or NaHCO3. Results showed that the highest concentration of total fatty acids (TFAs) was observed in FWH2 medium with the 50% content level on the fifth day, reaching up to 0.34 g/L. A higher initial pH promoted the growth and saturated fatty acid (SFA) accumulation of S. sp. HBW10, achieving nearly 100% of the sum of saturated and monounsaturated fatty acids (SMUFAs) in TFAs with initial pH7 and pH8 in FWH1 medium. This work demonstrates a possible way for lipid production by thraustochytrids using food waste hydrolysate with a higher initial pH (pH7~pH8) adjusted by NaHCO3.
Collapse
Affiliation(s)
- Xiaofang Li
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Qian Liu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Yong Zhang
- Marine Environment Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China
| | - Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| |
Collapse
|
3
|
Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties. Catalysts 2023. [DOI: 10.3390/catal13030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems.
Collapse
|
4
|
Hooshmand S, Kumar S, Bahadur I, Singh T, Varma RS. Deep eutectic solvents as reusable catalysts and promoter for the greener syntheses of small molecules: Recent advances. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Otopkova KV, Esipovich AL, Kanakov EA, Charykova TA, Baydachenko VE, Ryabova TA. A Comparative Study of the Catalytic Activity of Sulfonic Acid Cation-Exchange Resins with a Macroporous and Gel Structure in Fatty Acid Esterification. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s002315842206009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Dong Q, Li X, Dong J. Synthesis of branched surfactant via ethoxylation of oleic acid derivative and its surface properties. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Fioroni G, Katahira R, Van Wychen S, Rowland SM, Christensen ED, Dong T, Pienkos PT, Laurens LML. Synthesis of Hydrophilic Derivative Surfactants From Algae-Derived Unsaponifiable Lipids. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.768382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the context of decarbonizing the economy, the utilization of biologically sourced feedstocks to produce replacements for petroleum-derived materials is becoming more urgent. Improving renewable biomass production and utilization is imperative for commercializing future biorefineries. Algae-derived biomass is a particularly promising feedstock thanks to its attractive oil content and composition; specifically, the high-value products in the unsaponifiable lipids have not been included in a conversion process. Here we demonstrate surfactant synthesis from a complex oil fraction as the hydrophobic donor moieties, yielding products that are similar to commercially available surfactants such as the linear alkyl benzene sulfonates. Unsaponifiable lipids extracted from algae were derivatized to non-ionic surfactants using a green chemical synthesis route based on a double esterification with succinic acid and polyethylene glycol. The in-depth molecular and structural surfactant characterization is included and indicates that the resulting properties fall between those of pure cholesterol and phytol used as surrogates for the reaction synthesis demonstration. This is the first demonstration of an effective and potentially high-value synthesis of functional surfactants with properties that can be tailored based on the relative composition of the resulting hydrocarbon alcohol components in the mixture. This novel green chemistry synthesis approach provides a route to high-value product synthesis from algae.
Collapse
|
8
|
Shen Z, Long F, Ma T, Li H, Li A, Feng Q, Liu J, Sun Y. Keggin-type Heteropolyacids-Catalyzed Selective Hydrothermal Oxidation of Microalgae for Low Nitrogen Biofuel Production. CHEMSUSCHEM 2020; 13:6016-6027. [PMID: 33021034 DOI: 10.1002/cssc.202001817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal liquefaction (HTL) of microalgae for biofuel production is suffering from low bio-oil yield and high heteroatomic compositions owing to their low efficiency and selectivity to hydrolysis of cellular compounds. Hereby we report Keggin-type (Mo-V-P) heteropolyacids (HPAs)-catalyzed HTL of microalgae for efficient low-nitrogen biocrude production. The increases of reaction temperature, reaction time, and vanadium substitution degrees of HPAs are favorable to biocrude yield initially, whereas a significant decrease of biocrude yield is observed owing to the enhanced oxidation of carbohydrates above the optimum reaction conditions. The maximum biocrude yield of HPAs-catalyzed HTL of microalgae is 29.95 % at reaction temperature of 300 °C, reaction time of 2 h, and 5 wt% of HPA-4, which is about 19.66 % higher than that of control with 71.17 % less N-containing compounds, including 1,3-propanediamine, 1-pentanamine, and 2, 2'-heptamethylene-di-2-imidazoline than that of control. This work reveals that HPAs with Brønsted acidity and reversible redox properties are capable of both enhancing biocrude production via catalyzing the hydrolysis of cellular compounds and reducing their nitrogen content through avoiding the Maillard reactions between the intermediates of hydrolysis of carbohydrates and proteins. HPAs-catalyzed HTL is an efficient strategy to produce low N-containing biofuels, possibly paving the way of their direct use in modern motors.
Collapse
Affiliation(s)
- Zhensheng Shen
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Anhui, 230039, P. R. China
| | - Feiping Long
- SDIC Microalgae Biotechnology Center, SDIC Biotech Investment Co., LTD., Beijing, 100035, P. R. China
- Beijing Key Laboratory of Algae Biomass., Beijing, 100142, P. R. China
| | - Tian Ma
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Anhui, 230039, P. R. China
| | - Huan Li
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Anhui, 230039, P. R. China
| | - An Li
- School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Anhui, 230039, P. R. China
| | - Qian Feng
- College of Environment, Hohai University, Xikang Rd 1, Jiangsu, 210098, P. R. China
| | - Jiuyi Liu
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Anhui, 230039, P. R. China
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Anhui, 230039, P. R. China
| |
Collapse
|
9
|
Batch and Continuous Lactic Acid Fermentation Based on A Multi-Substrate Approach. Microorganisms 2020; 8:microorganisms8071084. [PMID: 32708134 PMCID: PMC7409180 DOI: 10.3390/microorganisms8071084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L−1·h−1, while the lactic acid to sugar conversion yield was 0.86 g·g−1. This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals.
Collapse
|
10
|
Membrane Technologies for Lactic Acid Separation from Fermentation Broths Derived from Renewable Resources. MEMBRANES 2018; 8:membranes8040094. [PMID: 30322044 PMCID: PMC6315696 DOI: 10.3390/membranes8040094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022]
Abstract
Lactic acid (LA) was produced on a pilot scale using a defined medium with glucose, acid whey, sugar bread and crust bread. The fermentation broths were then subjected to micro- and nanofiltration. Microfiltration efficiently separated the microbial cells. The highest average permeate flow flux was achieved for the defined medium (263.3 L/m2/h) and the lowest for the crust bread-based medium (103.8 L/m2/h). No LA losses were observed during microfiltration of the acid whey, whilst the highest retention of LA was 21.5% for crust bread. Nanofiltration led to high rejections of residual sugars, proteins and ions (sulphate, magnesium, calcium), with a low retention of LA. Unconverted sugar rejections were 100% and 63% for crust bread and sugar bread media respectively, with corresponding LA losses of 22.4% and 2.5%. The membrane retained more than 50% of the ions and proteins present in all media and more than 60% of phosphorus. The average flux was highly affected by the nature of the medium as well as by the final concentration of LA and sugars. The results of this study indicate that micro- and nanofiltration could be industrially employed as primary separation steps for the biotechnologically produced LA.
Collapse
|
11
|
Kwan TH, Ong KL, Haque MA, Kwan WH, Kulkarni S, Lin CSK. Valorisation of food and beverage waste via saccharification for sugars recovery. BIORESOURCE TECHNOLOGY 2018; 255:67-75. [PMID: 29414174 DOI: 10.1016/j.biortech.2018.01.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 05/23/2023]
Abstract
Valorisation of mixed food and beverage (F&B) waste was studied for the recovery of sugars via saccharification. Glucoamylase and sucrase were employed to hydrolyse the starch and sucrose present in the mixed F&B waste because of the high cost-effectiveness for such recovery. The Michaelis-Menten kinetics model suggests that preservatives and additives in beverages did not inhibit glucoamylase and sucrase during saccharification. High levels of glucose (228.1 g L-1) and fructose (55.7 g L-1) were efficiently produced within 12 h at a solid-to-liquid ratio of 37.5% (w/v) in 2.5 L bioreactors. An overall conversion yield of 0.17 g sugars per g of mixed F&B waste was obtained in mass balance analysis. Lastly, possible industrial applications of the sugar-rich hydrolysate and by-products are discussed. This study is believed to cast insights into F&B waste recycling via biotechnology to produce high-value added products to promote the establishment of a circular bio-economy.
Collapse
Affiliation(s)
- Tsz Him Kwan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Wing Hei Kwan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Sandeep Kulkarni
- PepsiCo Global R&D - Sustainable Beverage Packaging, 3 Skyline Drive, Hawthorne, NY 10532, United States
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Pleissner D, Rumpold BA. Utilization of organic residues using heterotrophic microalgae and insects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:227-239. [PMID: 29150257 DOI: 10.1016/j.wasman.2017.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/31/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Various organic residues occur globally in the form of straw, wood, green biomass, food waste, feces, manure etc. Other utilization strategies apart from anaerobic digestion, composting and incineration are needed to make use of the whole potential of organic residues as sources of various value added compounds. This review compares the cultivation of heterotrophic microalgae and insects using organic residues as nutrient sources and illuminates their potential with regard to biomass production, productivity and yield, and utilization strategies of produced biomasses. Furthermore, cultivation processes as well as advantages and disadvantages of utilization processes are identified and discussed. It was shown that both heterotrophic algae and insects are able to reduce a sufficient amount of organic residues by converting it into biomass. The biomass composition of both organisms is similar which allows similar utilization strategies in food and feed, chemicals and materials productions. Even though insect is the more complex organism, biomass production can be carried out using simple equipment without sterilization and hydrolysis of organic residues. Contrarily, heterotrophic microalgae require a pretreatment of organic residues in form of sterilization and in most cases hydrolysis. Interestingly, the volumetric productivity of insect biomass exceeds the productivity of algal biomass. Despite legal restrictions, it is expected that microalgae and insects will find application as alternative food and feed sources in the future.
Collapse
Affiliation(s)
- Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13, 21335 Lüneburg, Germany.
| | - Birgit A Rumpold
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Research Program Quality and Safety of Food and Feed, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Technische Universität Berlin, Institute of Vocational Education and Work Studies, Department of Education of Sustainable Nutrition and Food Science, Marchstr. 23, 10587 Berlin, Germany
| |
Collapse
|
13
|
|
14
|
Hofmann LE, Mach L, Heinrich MR. Nitrogen Oxides and Nitric Acid Enable the Sustainable Hydroxylation and Nitrohydroxylation of Benzenes under Visible Light Irradiation. J Org Chem 2017; 83:431-436. [PMID: 29171756 DOI: 10.1021/acs.joc.7b02333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new type of waste recycling strategy is described in which nitrogen oxides or nitric acid are directly employed in photocatalyzed hydroxylations and nitrohydroxylations of benzenes. Through these transformations, otherwise costly denitrification can be combined with the synthesis of valuable compounds for various applications.
Collapse
Affiliation(s)
- Laura Elena Hofmann
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Leonard Mach
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Demichelis F, Pleissner D, Fiore S, Mariano S, Navarro Gutiérrez IM, Schneider R, Venus J. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. BIORESOURCE TECHNOLOGY 2017; 241:508-516. [PMID: 28600944 DOI: 10.1016/j.biortech.2017.05.174] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
This work concerns the investigation of the sequential production of lactic acid (LA) and biogas from food waste (FW). LA was produced from FW using a Streptococcus sp. strain via simultaneous saccharification and fermentation (SSF) and separate enzymatic hydrolysis and fermentation (SHF). Via SHF a yield of 0.33gLA/gFW (productivity 3.38gLA/L·h) and via SSF 0.29gLA/gFW (productivity 2.08gLA/L·h) was obtained. Fermentation residues and FW underwent anaerobic digestion (3wt% TS). Biogas yields were 0.71, 0.74 and 0.90Nm3/kgVS for FW and residues from SSF and SHF respectively. The innovation of the approach is considering the conversion of FW into two different products through a biorefinery concept, therefore making economically feasible LA production and valorising its fermentative residues. Finally, a mass balance of three different outlines with the aim to assess the amount of LA and biogas that may be generated within different scenarios is presented.
Collapse
Affiliation(s)
| | - Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, C13.203, 21335 Lüneburg, Germany
| | - Silvia Fiore
- DIATI, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Silvia Mariano
- DIATI, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | | | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| |
Collapse
|
16
|
Hess SK, Schunck NS, Goldbach V, Ewe D, Kroth PG, Mecking S. Valorization of Unconventional Lipids from Microalgae or Tall Oil via a Selective Dual Catalysis One-Pot Approach. J Am Chem Soc 2017; 139:13487-13491. [DOI: 10.1021/jacs.7b06957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sandra K. Hess
- Chair of Chemical Materials Science, Department of Chemistry and ‡Plant Ecology,
Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Natalie S. Schunck
- Chair of Chemical Materials Science, Department of Chemistry and ‡Plant Ecology,
Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Verena Goldbach
- Chair of Chemical Materials Science, Department of Chemistry and ‡Plant Ecology,
Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Daniela Ewe
- Chair of Chemical Materials Science, Department of Chemistry and ‡Plant Ecology,
Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Peter G. Kroth
- Chair of Chemical Materials Science, Department of Chemistry and ‡Plant Ecology,
Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry and ‡Plant Ecology,
Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
17
|
Hess SK, Lepetit B, Kroth PG, Mecking S. Production of chemicals from microalgae lipids - status and perspectives. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandra K. Hess
- Department of Chemistry; Chair of Chemical Materials Science; University of Konstanz; Konstanz Germany
| | - Bernard Lepetit
- Department of Biology; Plant Ecology; University of Konstanz; Konstanz Germany
| | - Peter G. Kroth
- Department of Biology; Plant Ecology; University of Konstanz; Konstanz Germany
| | - Stefan Mecking
- Department of Chemistry; Chair of Chemical Materials Science; University of Konstanz; Konstanz Germany
| |
Collapse
|
18
|
Wang J, Liu Y, Zhou Z, Fu Y, Chang J. Epoxidation of Soybean Oil Catalyzed by Deep Eutectic Solvents Based on the Choline Chloride–Carboxylic Acid Bifunctional Catalytic System. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01677] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ju Wang
- School of Chemistry and Chemical
Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Yong Liu
- School of Chemistry and Chemical
Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Zhining Zhou
- School of Chemistry and Chemical
Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Yan Fu
- School of Chemistry and Chemical
Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Jie Chang
- School of Chemistry and Chemical
Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| |
Collapse
|
19
|
Affiliation(s)
- Shou Zhao
- Department of Chemistry & Biochemistry and ‡Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Mahdi M. Abu-Omar
- Department of Chemistry & Biochemistry and ‡Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
20
|
Hofmann D, Gans E, Krüll J, Heinrich MR. Sustainable Synthesis of Balsalazide and Sulfasalazine Based on Diazotization with Low Concentrations of Nitrogen Dioxide in Air. Chemistry 2017; 23:4042-4045. [PMID: 28054726 DOI: 10.1002/chem.201605359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/07/2023]
Abstract
Low concentrations of nitrogen dioxide, which arises as a side product from a range of industrial processes, can effectively be recycled through the diazotization of anilines. The studies reported herein now demonstrate that the removal of nitrogen dioxide from gas streams is even more effective when hydrophilic anilines are used as starting materials. The diazonium salts, which are obtained in this way in up to quantitative yields, can directly be employed in azo coupling reactions, thus opening up an attractive route to the industrially important group of azo compounds.
Collapse
Affiliation(s)
- Dagmar Hofmann
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052, Erlangen, Germany
| | - Eva Gans
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052, Erlangen, Germany
| | - Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052, Erlangen, Germany
| |
Collapse
|
21
|
Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, Venus J. Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Valorization of bakery waste for biocolorant and enzyme production by Monascus purpureus. J Biotechnol 2016; 231:55-64. [DOI: 10.1016/j.jbiotec.2016.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/19/2022]
|
23
|
|
24
|
Kwan TH, Pleissner D, Lau KY, Venus J, Pommeret A, Lin CSK. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. BIORESOURCE TECHNOLOGY 2015; 198:292-9. [PMID: 26402872 DOI: 10.1016/j.biortech.2015.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 05/28/2023]
Abstract
A techno-economic study of food waste valorization via fungal hydrolysis, microalgae cultivation and production of plasticizer, lactic acid and animal feed was simulated and evaluated by Super-Pro Designer®. A pilot-scale plant was designed with a capacity of 1 metric ton day(-1) of food waste with 20 years lifetime. Two scenarios were proposed with different products: Scenario (I) plasticizer & lactic acid, Scenario (II) plasticizer & animal feed. It was found that only Scenario I was economically feasible. The annual net profits, net present value, payback period and internal rate of return were US$ 422,699, US$ 3,028,000, 7.56 years and 18.98%, respectively. Scenario II was not economic viable due to a deficit of US$ 42,632 per year. Sensitivity analysis showed that the price of lactic acid was the largest determinant of the profitability in Scenario I, while the impact of the variables was very close in Scenario II.
Collapse
Affiliation(s)
- Tsz Him Kwan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Daniel Pleissner
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Bioengineering, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany
| | - Kin Yan Lau
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Joachim Venus
- Department of Bioengineering, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany
| | - Aude Pommeret
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|