1
|
Li Z, Su K, Li T, Cheng J, Jiang B, Zhang T, Zhang C. Radical-Friedel-Crafts benzylation of arenes over a metallic-basic bifunctional MoO 2 surface. Dalton Trans 2025. [PMID: 40433909 DOI: 10.1039/d5dt00631g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Selective ether bond activation is essential in organic synthesis and natural polymer depolymerization. Herein, we report that MoO2 with negligible acidity but characterized metallic-basic bifunctional properties can efficiently catalyze the benzylation of arenes with benzyl ethers as a benzylation reagent via a radical-Friedel-Crafts mechanism. Through combining catalyst characterizations, control experiments, thermomechanical analysis, intermediates capture, and density functional theory (DFT) calculations, multiple Mo sites on the MoO2 surface facilitate the initial transfer of oxygen-centered groups from adsorbed dibenzyl ether (DBE*). This process involved the homolytic cleavage of Bn-OBn ether bonds, promoted by adjacent-group auxiliary activation of benzyl aromatic rings adsorbed on the MoO2 surface. The generated benzyl radical (Bn˙) attacks the aromatic ring of the arene substrates, while the first-exfoliated oxygen-centered group (BnO*) and its potential decomposition fragment, the oxidative MoO* species, abstract a H atom from the above addition-intermediate to restore aromaticity and achieve benzylation. The remaining alcohol (BnOH) can also participate in the benzylation mediated by MoO2. This study could provide some inspiration on C-O bond activation and ether utilization mediated by a Mo-based catalyst.
Collapse
Affiliation(s)
- Zhuo Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - KaiYi Su
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jinlan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Yu Z, Kong W, Liang W, Guo Y, Cui J, Hu Y, Sun Z, Elangovan S, Xu F. Heterogeneously Catalyzed Reductive Depolymerization of Lignin to Value-Added Chemicals. CHEMSUSCHEM 2025; 18:e202401399. [PMID: 39193807 DOI: 10.1002/cssc.202401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Lignin is an abundant renewable source of aromatics, but its complex heterogeneous structure poses challenges for its depolymerization and valorization. Heterogeneously catalyzed reductive depolymerization (HCRD) has emerged as a promising approach, utilizing heterogeneous catalysts to facilitate selective bond cleavage in lignin and hydrogen transfer to stabilize the products under mild conditions. This review provides a comprehensive understanding of the hydrogen transfer mechanisms in HCRD, involving different hydrogen sources, including molecular hydrogen, alcohols, formic acid, etc., and the native hydrogen donor groups in lignin. The interaction between hydrogen sources and catalyst design is explored, emphasizing how catalyst characteristics must align with specific hydrogen transfer pathways to optimize efficiency and selectivity. Precious metal-based and non-precious metal-based catalysts are examined, highlighting advances that enhance hydrogen activation and transfer. Comparative analyses of hydrogen sources reveal distinct advantages and limitations. The significance of HCRD in lignin valorization and the development of integrated biorefineries is underscored, emphasizing its potential to contribute to a sustainable bioeconomy through improved process integration and economic viability.
Collapse
Affiliation(s)
- Zhaozhuo Yu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzhuo Kong
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wen Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yaping Guo
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiahao Cui
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yang Hu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhuohua Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Fuqing Xu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
3
|
Dolan D, Brucato R, Reid C, Lee AF, Wilson K, Voutchkova-Kostal AM. Selective lignin depolymerization via transfer hydrogenolysis using Pd/hydrotalcite catalysts: model compounds to whole biomass. Chem Sci 2024; 15:20223-20239. [PMID: 39600500 PMCID: PMC11587535 DOI: 10.1039/d4sc03942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Cleavage of lignin ether bonds via transfer hydrogenolysis is a promising route to valorize lignin, thus processes that use mild reaction conditions and exploit renewable hydrogen donor solvents (rather than molecular hydrogen) are economically advantageous. Herein we demonstrate the efficient catalytic transfer hydrogenolysis and tandem decarbonylation of lignin model compounds possessing aromatic ether bonds (α-O-4, β-O-4 and 4-O-5 linkages), over transition metal-modified Pd hydrotalcite catalysts with ethanol as the hydrogen donor and solvent. Quantitative conversions and yields were attained for all model compounds, except for 4-O-5 models, which possess inherently strong sp2 C-O bonds. The latter demonstrates the utility of Pd hydrotalcite catalysts for transfer hydrogenolysis of model compounds. This process was employed to achieve whole pine biomass delignification with 97% yield and a 22% phenolic monomer yield, with 64% selectivity for 4-(3-hydroxypropyl)-2-methoxyphenol.
Collapse
Affiliation(s)
- Darren Dolan
- Chemistry Department, The George Washington University 800 22nd St NW Washington D.C. 20910 USA
| | - Rebekah Brucato
- Chemistry Department, The George Washington University 800 22nd St NW Washington D.C. 20910 USA
| | - Christopher Reid
- Chemistry Department, The George Washington University 800 22nd St NW Washington D.C. 20910 USA
| | - Adam F Lee
- Centre for Catalysis and Clean Energy, Griffith University Gold Coast QLD 4222 Australia
| | - Karen Wilson
- Centre for Catalysis and Clean Energy, Griffith University Gold Coast QLD 4222 Australia
| | | |
Collapse
|
4
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Ewuzie RN, Genza JR, Abdullah AZ. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals. Int J Biol Macromol 2024; 265:131084. [PMID: 38521312 DOI: 10.1016/j.ijbiomac.2024.131084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.
Collapse
Affiliation(s)
| | - Jackson Robinson Genza
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
6
|
Shen Z, Shi C, Liu F, Wang W, Ai M, Huang Z, Zhang X, Pan L, Zou J. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306693. [PMID: 37964410 PMCID: PMC10767463 DOI: 10.1002/advs.202306693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.
Collapse
Affiliation(s)
- Zhensheng Shen
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Fan Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Wei Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Minhua Ai
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhenfeng Huang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
7
|
Miroshnikova AV, Baryshnikov SV, Malyar YN, Li X, Alekseeva MV, Kuznetsov BN, Taran OP. Depolymerization of Pine Wood Organosolv Lignin in Ethanol Medium over NiCu/SiO 2 and NiCuMo/SiO 2 Catalysts: Impact of Temperature and Catalyst Composition. Polymers (Basel) 2023; 15:4722. [PMID: 38139973 PMCID: PMC10747262 DOI: 10.3390/polym15244722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The process of thermocatalytic conversion of pine ethanol lignin in supercritical ethanol was studied over NiCu/SiO2 and NiCuMo/SiO2 catalysts bearing 8.8 and 11.7 wt.% of Mo. The structure and composition of ethanol lignin and the products of its thermocatalytic conversion were characterized via 2D-HSQC NMR spectroscopy, GC-MC. The main aromatic monomers among the liquid products of ethanol lignin conversion were alkyl derivatives of guaiacol (propyl guaiacol, ethyl guaiacol and methyl guaiacol). The total of the monomers yield in this case was 12.1 wt.%. The temperature elevation up to 350 °C led to a slight decrease in the yield (to 11.8 wt.%) and a change in the composition of monomeric compounds. Alkyl derivatives of pyrocatechol, phenol and benzene were observed to form due to deoxygenation processes. The ratio of the yields of these compounds depended on the catalyst, namely, on the content of Mo in the catalyst composition. Thus, the distribution of monomeric compounds used in various industries can be controlled by varying the catalyst composition and the process conditions.
Collapse
Affiliation(s)
- Angelina V. Miroshnikova
- Institute of Chemistry and Chemical Technology Siberian Branch, Russian Academy of Sciences, FRC Krasnoyarsk Science Center SB RAS, Akademgorodok 50, Bld. 24, Krasnoyarsk 660036, Russia; (S.V.B.); (Y.N.M.); (B.N.K.)
- Institute of Non-Ferrous Metals and Material Science, Department of Analytical and Organic Chemistry, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia;
| | - Sergey V. Baryshnikov
- Institute of Chemistry and Chemical Technology Siberian Branch, Russian Academy of Sciences, FRC Krasnoyarsk Science Center SB RAS, Akademgorodok 50, Bld. 24, Krasnoyarsk 660036, Russia; (S.V.B.); (Y.N.M.); (B.N.K.)
| | - Yuriy N. Malyar
- Institute of Chemistry and Chemical Technology Siberian Branch, Russian Academy of Sciences, FRC Krasnoyarsk Science Center SB RAS, Akademgorodok 50, Bld. 24, Krasnoyarsk 660036, Russia; (S.V.B.); (Y.N.M.); (B.N.K.)
- Institute of Non-Ferrous Metals and Material Science, Department of Analytical and Organic Chemistry, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia;
| | - Xiaomin Li
- Institute of Non-Ferrous Metals and Material Science, Department of Analytical and Organic Chemistry, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia;
| | - Maria V. Alekseeva
- Federal Research Center “Boreskov Institute of Catalysis”, Pr. Akademika Lavrentieva 5, Novosibirsk 630090, Russia;
| | - Boris N. Kuznetsov
- Institute of Chemistry and Chemical Technology Siberian Branch, Russian Academy of Sciences, FRC Krasnoyarsk Science Center SB RAS, Akademgorodok 50, Bld. 24, Krasnoyarsk 660036, Russia; (S.V.B.); (Y.N.M.); (B.N.K.)
- Institute of Non-Ferrous Metals and Material Science, Department of Analytical and Organic Chemistry, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia;
| | - Oxana P. Taran
- Institute of Chemistry and Chemical Technology Siberian Branch, Russian Academy of Sciences, FRC Krasnoyarsk Science Center SB RAS, Akademgorodok 50, Bld. 24, Krasnoyarsk 660036, Russia; (S.V.B.); (Y.N.M.); (B.N.K.)
- Institute of Non-Ferrous Metals and Material Science, Department of Analytical and Organic Chemistry, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia;
- Federal Research Center “Boreskov Institute of Catalysis”, Pr. Akademika Lavrentieva 5, Novosibirsk 630090, Russia;
| |
Collapse
|
8
|
Zhang H, Yang K, Tao Y, Yang Q, Xu L, Liu C, Ma L, Xiao R. Biomass directional pyrolysis based on element economy to produce high-quality fuels, chemicals, carbon materials - A review. Biotechnol Adv 2023; 69:108262. [PMID: 37758024 DOI: 10.1016/j.biotechadv.2023.108262] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Biomass is regarded as the only carbon-containing renewable energy source and has performed an increasingly important role in the gradual substitution of conventional fossil energy, which also contributes to the goals of carbon neutrality. In the past decade, the academic field has paid much greater attention to the development of biomass pyrolysis technologies. However, most biomass conversion technologies mainly derive from the fossil fuel industry, and it must be noticed that the large element component difference between biomass and traditional fossil fuels. Thus, it's necessary to develop biomass directional pyrolysis technology based on the unique element distribution of biomass for realizing enrichment target element (i.e., element economy). This article provides a broad review of biomass directional pyrolysis to produce high-quality fuels, chemicals, and carbon materials based on element economy. The C (carbon) element economy of biomass pyrolysis is realized by the production of high-performance carbon materials from different carbon sources. For efficient H (hydrogen) element utilization, high-value hydrocarbons could be obtained by the co-pyrolysis or catalytic pyrolysis of biomass and cheap hydrogen source. For improving the O (oxygen) element economy, different from the traditional hydrodeoxygenation (HDO) process, the high content of O in biomass would also become an advantage because biomass is an appropriate raw material for producing oxygenated liquid additives. Based on the N (nitrogen) element economy, the recent studies on preparing N-containing chemicals (or N-rich carbon materials) are reviewed. Moreover, the feasibility of the biomass poly-generation industrialization and the suitable process for different types of target products are also mentioned. Moreover, the enviro-economic assessment of representative biomass pyrolysis technologies is analyzed. Finally, the brief challenges and perspectives of biomass pyrolysis are provided.
Collapse
Affiliation(s)
- Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Ke Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Yujie Tao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qing Yang
- Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lujiang Xu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
9
|
Jindal M, Uniyal P, Thallada B. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2023; 385:129396. [PMID: 37369316 DOI: 10.1016/j.biortech.2023.129396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Presently, the use of lignocellulosic biomass is mainly focused on creating pulp/paper, energy, sugars and bioethanol from the holocellulose component, leaving behind lignin to be discarded or burned as waste despite of its highest aromatic carbon and energy content (22-29 KJ/g). During the pulping process, lignin undergoes significant structural changes to yield technical lignin. For a circular bioeconomy, there is an urgent need to enhance the use of native lignin for generating more valuable products. Over the last few years, a new method called 'lignin-first', or 'reductive catalytic fractionation' (RCF), has been devised to achieve selective phenolic monomers under mild reaction conditions. This involves deconstructing lignin before capitalizing on carbohydrates. The objective of this study is to record the recent developments of the 'lignin-first' process. This review also underlines the contribution of RCF biorefinery towards achieving sustainable development goals (SDGs) and concludes with an overview of challenges and upcoming opportunities.
Collapse
Affiliation(s)
- Meenu Jindal
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Priyanka Uniyal
- Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Bhaksar Thallada
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India.
| |
Collapse
|
10
|
Wu X, De Bruyn M, Barta K. Deriving high value products from depolymerized lignin oil, aided by (bio)catalytic funneling strategies. Chem Commun (Camb) 2023; 59:9929-9951. [PMID: 37526604 DOI: 10.1039/d3cc01555f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
| | - Mario De Bruyn
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| | - Katalin Barta
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| |
Collapse
|
11
|
Zhou H, Liu X, Guo Y, Wang Y. Self-Hydrogen Supplied Catalytic Fractionation of Raw Biomass into Lignin-Derived Phenolic Monomers and Cellulose-Rich Pulps. JACS AU 2023; 3:1911-1917. [PMID: 37502153 PMCID: PMC10369670 DOI: 10.1021/jacsau.3c00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/29/2023]
Abstract
Lignocellulosic biomass is one of the most well-studied and promising green carbon sources. The fullest utilization of lignocellulosic biomass in hydrogen-free and mild conditions to produce phenolic monomers while preserving cellulose-rich pulps is challenging and has far-reaching significance. Here, we report an innovative strategy to convert lignocellulosic biomass into lignin oils and cellulose-rich pulps without exogenous hydrogen under mild conditions over a Pt/NiAl2O4 catalyst. In this process, the structural hydrogens in hemicellulose acted as a hydrogen source to realize the fractionation and depolymerization of lignin into phenolic monomers while keeping the cellulose intact, which is named self-hydrogen supplied catalytic fractionation (SCF). By using water as a solvent, the theoretical yield of phenolic monomers (46.6 wt %, with propyl(ethyl) end-chained syringol and guaiacol as main products) is achieved at 140 °C for 24 h, with 90% cellulose intact in birch sawdust. This H2-free process can be extended to other biomass (hardwood, softwood, and grass) and can be scaled up. The Pt/NiAl2O4 catalyst also shows good stability in recycling as well as regeneration treatment. This work provides a new strategy to achieve high utilization of lignocellulosic biomass for sustainable biorefinery by using water as a solvent without exogenous hydrogen under mild conditions.
Collapse
|
12
|
Xiao LP, Lv YH, Yang YQ, Zou SL, Shi ZJ, Sun RC. Unraveling the Lignin Structural Variation in Different Bamboo Species. Int J Mol Sci 2023; 24:10304. [PMID: 37373449 DOI: 10.3390/ijms241210304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The structure of cellulolytic enzyme lignin (CEL) prepared from three bamboo species (Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii) has been characterized by different analytical methods. The chemical composition analysis revealed a higher lignin content, up to 32.6% of B. lapidea as compared to that of N. affinis (20.7%) and D. brandisii (23.8%). The results indicated that bamboo lignin was a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin associated with p-coumarates and ferulates. Advanced NMR analyses displayed that the isolated CELs were extensively acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate groups). Moreover, a predominance of S over G lignin moieties was found in CELs of N. affinis and B. lapidea, with the lowest S/G ratio observed in D. brandisii lignin. Catalytic hydrogenolysis of lignin demonstrated that 4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived from β-O-4' moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units were identified as the six major monomeric products. We anticipate that the insights of this work could shed light on the sufficient understanding of lignin, which could open a new avenue to facilitate the efficient utilization of bamboo.
Collapse
Affiliation(s)
- Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue-Qin Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang-Lin Zou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng-Jun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Li F, Liu Y, Jia J, Yu H. Combination of biological pretreatment with deep eutectic solvent pretreatment for enhanced enzymatic saccharification of Pinus massoniana. BIORESOURCE TECHNOLOGY 2023; 380:129110. [PMID: 37127170 DOI: 10.1016/j.biortech.2023.129110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Lignocellulosic biorefineries depended on effective pretreatment strategies to improve the conversion efficiency of the enzymatic hydrolysis. Here, this study coupled brown rot fungi and deep eutectic solvent (DES) to pretreat Pinus massoniana. The results showed that compared to fungal pretreatment and DES pretreatment alone, the combined ChCl-Lac/fungal pretreatments could effectively improve enzymatic saccharification of Pinus massoniana. The highest content of releasing reducing sugar reached 510.3 mg/g substrate. Environmental scanning electron micrograph (ESEM) showed that the surface structure of Pinus massoniana was almost completely torn and loose and FT-IR spectra and component analysis revealed that most of hemicellulose and lignin were selected removed and cellulose was enriched after ChCl-Lac/fungal pretreatments, which could account for the enhanced hydrolysis efficiency. The combination of biological pretreatment with DES pretreatment could be a mild and promising pretreatment approach for enzymatic saccharification of lignocellulose and had an extensive application prospect in the field of biorefinery.
Collapse
Affiliation(s)
- Fei Li
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jia Jia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
14
|
Zhu G, Ye D, Chen X, Wu Y, Yang Z, Mai Y, Liao B, Chen J. Lignin-derived polyphenols with enhanced antioxidant activities by chemical demethylation and their structure-activity relationship. Int J Biol Macromol 2023; 237:124030. [PMID: 36921813 DOI: 10.1016/j.ijbiomac.2023.124030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Lignin valorization to biobased polyphenols antioxidants is increasingly attractive in the modern industry due to their inherent phenolic structures. Herein, lignin-derived polyphenols with enhanced antioxidant activities were prepared from the most available technical lignin including organosolv lignin (OL), alkali lignin (AL), and enzyme lignin (EL) by iodocyclohexane (ICH) chemical demethylation. The structural evolution of lignin indicated that the CAr-OCH3 group and the CAr-O-Calkyl side-chain could be effectively transformed into the CAr-OH group, resulting in a significant increase of the phenolic-OH content and a slight decrease of the molecular weight. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging activity was in the order of ICHOL-24 > ICHAL-24 > ICHEL-24 ≈ FA > BHT, and the IC50 value of ICHOL-24 was 0.56 times lower than that of BHT. The structure-activity relationship demonstrated the activities were quasi-linearly related to phenolic-OH contents and could be affected by molecular weights. The H/G/S proportions of lignin could be an indicator for accurate screening of efficient lignin-derived polyphenols antioxidants (LPA). It was preliminarily estimated to have economic feasibility for producing LPA from technical lignin by demethylation compared with synthetic or natural antioxidants. This work will help to develop efficient biobased antioxidants for lignin valorization.
Collapse
Affiliation(s)
- Guozhi Zhu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Dawei Ye
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China.
| | - Xiaotian Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Yuchao Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Zongmei Yang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China
| | - Bing Liao
- Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, PR China.
| | - Jiazhi Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, Guangdong, PR China.
| |
Collapse
|
15
|
Reductive Catalytic Fractionation of Abies Wood into Bioliquids and Cellulose with Hydrogen in an Ethanol Medium over NiCuMo/SiO2 Catalyst. Catalysts 2023. [DOI: 10.3390/catal13020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Noble metal-based catalysts are widely used to intensify the processes of reductive fractionation of lignocellulose biomass. In the present investigation, we proposed for the first time using the inexpensive NiCuMo/SiO2 catalyst to replace Ru-, Pt-, and Pd-containing catalysts in the process of reductive fractionation of abies wood into bioliquids and cellulose products. The optimal conditions of abies wood hydrogenation were selected to provide the effective depolymerization of wood lignin (250 °C, 3 h, initial H2 pressure 4 MPa). The composition and structure of the liquid and solid products of wood hydrogenation were established. The NiCuMo/SiO2 catalyst increases the yield of bioliquids (from 36 to 42 wt%) and the content of alkyl derivatives of methoxyphenols, predominantly 4-propylguaiacol and 4-propanolguaiacol. A decrease in the molecular mass and polydispersity (from 1870 and 3.01 to 1370 Da and 2.66, respectively) of the liquid products and a threefold increase (from 9.7 to 36.8 wt%) in the contents of monomer and dimer phenol compounds were observed in the presence of the catalyst. The solid product of catalytic hydrogenation of abies wood contains up to 73.2 wt% of cellulose. The composition and structure of the solid product were established using IRS, XRD, elemental and chemical analysis. The data obtained show that the catalyst NiCuMo/SiO2 can successfully replace noble metal catalysts in the process of abies wood reductive fractionation into bioliquids and cellulose.
Collapse
|
16
|
Zhu X, Zhang C, Ma H, Lu F. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis. Biomacromolecules 2022; 23:4985-4994. [PMID: 36332059 DOI: 10.1021/acs.biomac.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hydrogen bond (H-bond) is essential to stabilizing the three-dimensional biological structure such as protein, cellulose, and lignin, which are integral parts of animal and plant cells; thus, stereo-recognition of the H-bond is extremely attractive. Herein, a methodology combining the variable-temperature 1H NMR technique with the density functional theory was established to recognize the underlying H-bonding patterns in lignin diastereomers. This method successfully classified the intramolecular and intermolecular H-bonds with slope values varying between 50.2-201.5 and 221.9-655.4, respectively, from the natural logarithm of the hydroxyl proton chemical shift versus the inverse of the temperature plot. Moreover, this slope was found to be correlated with the interaction distance between the H-bond donor and acceptor. Finally, it was proposed that the stereo-preferential formation of the β-O-4 structure (erythro vs threo form) during lignin biomimetic synthesis was probably influenced by their intramolecular H-bonding patterns, thus making it easier to reach thermodynamic equilibrium.
Collapse
Affiliation(s)
- Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| | - Cong Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| |
Collapse
|
17
|
Wang Q, Xiao LP, Lv YH, Yin WZ, Hou CJ, Sun RC. Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into Monomeric Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan-Jin Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Miroshnikova AV, Kazachenko AS, Kuznetsov BN, Taran OP. Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Depolymerization of Rice Straw Lignin into Value-Added Chemicals in Sub-Supercritical Ethanol. ScientificWorldJournal 2022; 2022:7872307. [PMID: 35645630 PMCID: PMC9142282 DOI: 10.1155/2022/7872307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Depolymerization of lignin is an important step to obtain a lignin monomer for the synthesis of functional chemicals. In the context of more lignin produced from biomass and pulp industry, converting real lignin with low purity is still required more studies. In this study, the influence of solvent composition and reaction parameters such as binary solvents ratio, time, and temperature, the solvent-to-lignin ratio on the depolymerization of rice straw lignin was investigated carefully. Essential lignin-degraded products including liquid product (LP), char (solid), and gas were obtained, and their yields were directly influenced by reaction conditions. Results show that the maximum lignin conversion rate of 92% and LP yield of 66% was under the condition of 275°C, 30 min, 75 : 1 (mL solvent/1 g lignin), and ethanol 50%. Gas chromatography-mass spectroscopy (GC-MS) analysis was used for the analysis of the depolymerization products and identified 11 compounds which are mainly phenolic compounds such as 2-ethylphenol, 3-ethylphenol, phenol, methyl 2,4,6-trimethylbenzoate. The structure changes of LP and char in various conditions were analyzed using Fourier-transform infrared (FTIR).
Collapse
|
20
|
Fan Y, Li H, Su S, Chen J, Liu C, Wang S, Xu X, Song G. Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63881-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Liu X, Luo Y, Ma H, Zhang S, Che P, Zhang M, Gao J, Xu J. Hydrogen‐Binding‐Initiated Activation of O−H Bonds on a Nitrogen‐Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Luo
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Hong Ma
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Shujing Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penghua Che
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
22
|
Sun Z, Zhang ZH, Yuan TQ, Ren X, Rong Z. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zhe-Hui Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Xiaohong Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People’s Republic of China
| | - Zeming Rong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People’s Republic of China
| |
Collapse
|
23
|
Liu X, Luo Y, Ma H, Zhang S, Che P, Zhang M, Gao J, Xu J. Hydrogen-Binding-Initiated Activation of O-H Bonds on a Nitrogen-Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angew Chem Int Ed Engl 2021; 60:18103-18110. [PMID: 34121299 DOI: 10.1002/anie.202103604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Indexed: 11/11/2022]
Abstract
Hydrogen binding of molecules on solid surfaces is an attractive interaction that can be used as the driving force for bond activation, material-directed assembly, protein protection, etc. However, the lack of a quantitative characterization method for hydrogen bonds (HBs) on surfaces seriously limits its application. We measured the standard Gibbs free energy change (ΔG0 ) of on-surface HBs using NMR. The HB-accepting ability of the surface was investigated by comparing ΔG0 values employing the model biomass platform 5-hydroxymethylfurfural on a series of Co-N-C-n catalysts with adjustable electron-rich nitrogen-doped contents. Decreasing ΔG0 improves the HB-accepting ability of the nitrogen-doped surface and promotes the selectively initiated activation of O-H bonds in the oxidation of 5-hydroxymethylfurfural. As a result, the reaction kinetics is accelerated. In addition to the excellent catalytic performance, the turnover frequency (TOF) for this oxidation is much higher than for reported non-noble-metal catalysts.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Hong Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Shujing Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Penghua Che
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
24
|
Hofmann L, Altmann LM, Fischer O, Prusko L, Xiao G, Westwood NJ, Heinrich MR. Cleavage of Organosolv Lignin to Phenols Using Nitrogen Monoxide and Hydrazine. ACS OMEGA 2021; 6:19400-19408. [PMID: 34368527 PMCID: PMC8340100 DOI: 10.1021/acsomega.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
From the variety of methods known for the depolymerization of organosolv lignin, a broad range of diversely substituted aromatic compounds are available today. In the present work, a novel two-step reaction sequence is reported, which is focused on the formation of phenols. While the first step of the depolymerization strategy comprises the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-catalyzed oxidation of organosolv lignin with nitrogen monoxide so that two waste materials are combined, cleavage to the phenolic target compounds is achieved in the second step employing hydrazine and potassium hydroxide under Wolff-Kishner-type conditions. Besides the fact that the novel strategy proceeds via an untypical form of oxidized organosolv lignin, the two-step sequence is further able to provide phenols as cleavage products, which bear no substituent at the 4-position.
Collapse
Affiliation(s)
- Laura
Elena Hofmann
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Lisa-Marie Altmann
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Oliver Fischer
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Lea Prusko
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Ganyuan Xiao
- School
of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Nicholas J. Westwood
- School
of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Fan X, Jia X, Ma J, Gao M, Gao J, Xu J. Accelerating Selective Oxidation of Biomass-Based Hydroxyl Compounds with Hydrogen Bond Acceptors. J Phys Chem Lett 2021; 12:7041-7045. [PMID: 34288672 DOI: 10.1021/acs.jpclett.1c02114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen-bonding-initiated self-association makes the valorization of biomass-based hydroxyl compounds a formidable challenge at high concentration. Apart from enhancing the dehydration reaction of hydroxyl compounds with the noncovalent medium effects, insights into how these effects can be exploited to optimize the oxidative reactivity of concentrated hydroxyl compounds remain unclear. Herein, we elucidate that deaggregation of hydroxyl groups with a catalytic number of hydrogen bond acceptors is essential in improving the reactivity of the aerobic oxidation of biomass-based neat aromatic alcohols over the vanadium-based catalyst. The neat 5-hydroxymethylfurfural (HMF) deaggregated with 25 mol % N,N-dimethylformamide (DMF) shows a >7-fold increase in reactivity to produce corresponding aldehydes with excellent selectivity, in stark contrast to the contrary deactivation of reaction in excessive DMF.
Collapse
Affiliation(s)
- Xiaomeng Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuquan Jia
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Mingxia Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
26
|
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr Polym 2021; 261:117884. [PMID: 33766371 DOI: 10.1016/j.carbpol.2021.117884] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Due to over-consumption of fossil resources and environmental problems, lignocellulosic biomass as the most abundant and renewable materials is considered as the best candidate to produce biomaterials, biochemicals, and bioenergy, which is of strategic significance and meets the theme of Green Chemistry. Highly efficient and green fractionation of lignocellulose components significantly boosts the high-value utilization of lignocellulose and the biorefinery development. However, heterogeneity of lignocellulosic structure severely limited the lignocellulose fractionation. This paper offers the summary and perspective of the extensive investigation that aims to give insight into the lignocellulose prior-fractionation. Based on the role and structure of lignocellulose component in the plant cell wall, lignocellulose prior-fractionation can be divided into cellulose-first strategy, hemicelluloses-first strategy, and lignin-first strategy, which realizes the selective dissociation and transformation of a component in lignocellulose. Ultimately, the challenges and opportunities of lignocellulose prior-fractionation are proposed on account of the existing problems in the biorefining valorization.
Collapse
Affiliation(s)
- Xiaojun Shen
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
27
|
Li L, Dong L, Li D, Guo Y, Liu X, Wang Y. Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lingxiao Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lin Dong
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Didi Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
28
|
Sun Z, Cheng J, Wang D, Yuan TQ, Song G, Barta K. Downstream Processing Strategies for Lignin-First Biorefinery. CHEMSUSCHEM 2020; 13:5199-5212. [PMID: 32748524 DOI: 10.1002/cssc.202001085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Indexed: 05/14/2023]
Abstract
The lignin-first strategy has emerged as one of the most powerful approaches for generating novel platform chemicals from lignin by efficient depolymerization of native lignin. Because of the emergence of this novel depolymerization method and the definition of viable platform chemicals, future focus will soon shift towards innovative downstream processing strategies. Very recently, many interesting approaches have emerged that describe the production of valuable products across the whole value chain, including bulk and fine chemical building blocks, and several concrete examples have been developed for the production of polymers, pharmaceutically relevant compounds, or fuels. This Minireview provides an overview of these recent advances. After a short summary of catalytic systems for obtaining aromatic monomers, a comprehensive discussion on their separation and applications is given. This Minireview will fill the gap in biorefinery between deriving high yields of lignin monomers and tapping into their potential for making valuable consumer products.
Collapse
Affiliation(s)
- Zhuohua Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Jinling Cheng
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Dingsheng Wang
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Tong-Qi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Katalin Barta
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 TC, Groningen (The, Netherlands
| |
Collapse
|
29
|
|
30
|
Park J, Cahyadi HS, Mushtaq U, Verma D, Han D, Nam KW, Kwak SK, Kim J. Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03393] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jaeyong Park
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Handi Setiadi Cahyadi
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Umair Mushtaq
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Deepak Verma
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Daseul Han
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 Unist-gil, Ulsan 44919, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
31
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. CHEMSUSCHEM 2020; 13:4296-4317. [PMID: 32662564 PMCID: PMC7540457 DOI: 10.1002/cssc.202001213] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Indexed: 05/05/2023]
Abstract
The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Florent P. Bouxin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jiajun Fan
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Vitaliy L. Budarin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
| | - James H. Clark
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
32
|
Jing Y, Dong L, Guo Y, Liu X, Wang Y. Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. CHEMSUSCHEM 2020; 13:4181-4198. [PMID: 31886600 DOI: 10.1002/cssc.201903174] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Indexed: 05/14/2023]
Abstract
Lignin is the most abundant biopolymer with aromatic building blocks and its valorization to sustainable chemicals and fuels has extremely great potential to reduce the excessive dependence on fossil resources, although such conversions remain challenging. The purpose of this Review is to present an insight into the catalytic conversion of lignin involving hydrogen, including reductive depolymerization and the hydrodeoxygenation of lignin-derived monomers to arenes, cycloalkanes and phenols, with a main focus on the catalyst systems and reaction mechanisms. The roles of hydrogenation sites (Ru, Pt, Pd, Rh) and acid sites (Nb, Ti, Mo), as well as their interaction in selective hydrodeoxygenation reactions are emphasized. Furthermore, some inspirational strategies for the production of other value-added chemicals are mentioned. Finally, some personal perspectives are provided to highlight the opportunities within this attractive field.
Collapse
Affiliation(s)
- Yaxuan Jing
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Dong
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
33
|
Cooreman E, Vangeel T, Van Aelst K, Van Aelst J, Lauwaert J, Thybaut JW, Van den Bosch S, Sels BF. Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02294] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elias Cooreman
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thijs Vangeel
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Korneel Van Aelst
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Joost Van Aelst
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Sander Van den Bosch
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
34
|
Dias RMP, de Oliveira GP, Burtoloso ACB. One-pot synthesis of β-O-4 lignin models via the insertion of stable 2-diazo-1,3-dicarbonyls into O-H bonds. Org Biomol Chem 2020; 18:4815-4823. [PMID: 32539068 DOI: 10.1039/d0ob00800a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Because lignin is a macromolecule that is a sustainable source of aromatic compounds, model substrates are commonly used to increase our understanding of its complex structure. However, few methods have been described for the synthesis of these models. Herein, we describe a new route towards the synthesis of β-O-4 lignin models by intermolecular O-H insertion reactions with simple and stable diazocarbonyls. The benefits of this developed method were shorter reaction times and high yields, as well as mild and environmentally friendly conditions.
Collapse
Affiliation(s)
- Rafael Mafra P Dias
- Chemistry Institute at São Carlos, University of São Paulo (USP), CEP 13560-970, São Paulo, SP, Brazil. and Department of Chemistry, Biotechnology and Bioprocess Engineering, University of São João del Rei (UFSJ), CEP 36420-000, Brazil
| | - Gabriela P de Oliveira
- Chemistry Institute at São Carlos, University of São Paulo (USP), CEP 13560-970, São Paulo, SP, Brazil.
| | - Antonio C B Burtoloso
- Chemistry Institute at São Carlos, University of São Paulo (USP), CEP 13560-970, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Korányi TI, Fridrich B, Pineda A, Barta K. Development of 'Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass. Molecules 2020; 25:E2815. [PMID: 32570887 PMCID: PMC7356833 DOI: 10.3390/molecules25122815] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/20/2023] Open
Abstract
Currently, valorization of lignocellulosic biomass almost exclusively focuses on the production of pulp, paper, and bioethanol from its holocellulose constituent, while the remaining lignin part that comprises the highest carbon content, is burned and treated as waste. Lignin has a complex structure built up from propylphenolic subunits; therefore, its valorization to value-added products (aromatics, phenolics, biogasoline, etc.) is highly desirable. However, during the pulping processes, the original structure of native lignin changes to technical lignin. Due to this extensive structural modification, involving the cleavage of the β-O-4 moieties and the formation of recalcitrant C-C bonds, its catalytic depolymerization requires harsh reaction conditions. In order to apply mild conditions and to gain fewer and uniform products, a new strategy has emerged in the past few years, named 'lignin-first' or 'reductive catalytic fractionation' (RCF). This signifies lignin disassembly prior to carbohydrate valorization. The aim of the present work is to follow historically, year-by-year, the development of 'lignin-first' approach. A compact summary of reached achievements, future perspectives and remaining challenges is also given at the end of the review.
Collapse
Affiliation(s)
- Tamás I. Korányi
- Surface Chemistry and Catalysis Department, Centre for Energy Research, Konkoly Thege M. u. 29-33, 1121 Budapest, Hungary
| | - Bálint Fridrich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (B.F.); (K.B.)
| | - Antonio Pineda
- Department of Organic Chemistry, University of Cordoba, Ed. Marie Curie (C 3), Campus of Rabanales, Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain;
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (B.F.); (K.B.)
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
36
|
Hofmann LE, Hofmann D, Prusko L, Altmann L, Heinrich MR. Sequential Cleavage of Lignin Systems by Nitrogen Monoxide and Hydrazine. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Laura Elena Hofmann
- Department of Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen
| | - Dagmar Hofmann
- Department of Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen
| | - Lea Prusko
- Department of Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen
| | - Lisa‐Marie Altmann
- Department of Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen
| | - Markus R. Heinrich
- Department of Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen
| |
Collapse
|
37
|
Luo Y, Ma H, Zhang S, Zheng D, Che P, Liu X, Zhang M, Gao J, Xu J. Binding Energy as Driving Force for Controllable Reconstruction of Hydrogen Bonds with Molecular Scissors. J Am Chem Soc 2020; 142:6085-6092. [DOI: 10.1021/jacs.9b12117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hong Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Shujing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Daoyuan Zheng
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Penghua Che
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Xin Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| |
Collapse
|
38
|
Zhang Y, Wang Z, Feng J, Pan H. Maximizing utilization of poplar wood by microwave-assisted pretreatment with methanol/dioxane binary solvent. BIORESOURCE TECHNOLOGY 2020; 300:122657. [PMID: 31918300 DOI: 10.1016/j.biortech.2019.122657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 05/15/2023]
Abstract
Organosolv is a promising pretreatment for lignocellulose biorefinery on the integrated utilization of full components from lignocellulosic biomass. A highly efficient pretreatment process using methanol/dioxane binary solvent with microwave irradiation is proposed in this study. Poplar wood was fractionated to high quality cellulosic residue, lignin, and monosaccharide derivatives under mild conditions (120 °C, 10 min). The follow-up enzymatic hydrolysis of resulting cellulosic residues achieved almost theoretical glucan conversion over 99%. The 2D-NMR and GPC results showed that the recovered lignin precipitates contain low amount of condensed structures and have relatively narrow molecular weight distributions. The composition analysis of monosaccharide derivatives indicated that the methanol/dioxane solvent tends to convert monosaccharides into glycosides rather than further degradation by-products. The mass balance result estimated that totally 74.2% of raw poplar can be utilized by the pretreatment proposed in this study.
Collapse
Affiliation(s)
- Yongjian Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China
| | - Zining Wang
- College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China
| | - Junfeng Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China
| | - Hui Pan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China.
| |
Collapse
|
39
|
Abstract
In recent decades, research on lignin depolymerization and its downstream product transformation has drawn an enormous amount of attention from academia to industry worldwide, aiming at harvesting aromatic compounds from this abundant and renewable biomass resource. Although the lignin conversion can be traced back to the 1930s and various noncatalytic and catalytic methods have been explored to depolymerize lignin via direct lignin conversion research or lignin models conversion studies, the complexity of the lignin structure, various linkages, the high stability of lignin bonds, and the diverse fragments condensation process make lignin depolymerization to monomers a highly challenging task. For the potential practical utilization of lignin, compared with lignin conversion to liquid fuel with extra H2 consumption, maintaining the aromatic structure and preparing high-value aromatic chemicals from renewable lignin is more profitable. Therefore, lignin depolymerization to easy-to-handle aromatic monomers with acceptable conversion and selectivity is of great importance. In this article, we present our recent studies on lignin's catalytic conversion to aromatic chemicals. First, we introduce our research on protolignin depolymerization via a fragmentation-hydrogenolysis process in alcohol solvents. Then, focusing on the catalytic cleavage of lignin C-C and C-O bonds, we shed light on a recapitulative adjacent functional group modification (AFGM) strategy for the conversion of lignin models. AFGM strategy begins with the adjacent functional group modification of the target C-C or C-O bond to directly decrease the bond dissociation enthalpy (BDE) of targeted bonds or generate new substrate sites to introduce the cleavage reagent for further conversion. Subsequently, on the basis of these two concepts from AFGM, we summarize our strategies on lignin depolymerization, which highlight the effects of lignin structure, catalyst character, and reaction conditions on the efficiency of strategies. In short, the key point for lignin depolymerization to aromatics is promoting the lignin conversion and restraining the condensation. Compared with the complex research on direct lignin conversion, this bottom-up research approach, beginning with lignin model research, can make the conversion mechanism study clear and provide potential methods for the protolignin/technical lignin conversion. In addition, one of our perspectives for lignin utilization is that the products from lignin conversion can be used as monomers for artificial polymerization, such as the simple phenol (PhOH) and other potential acid compounds, or that lignin derivative molecules can be used to synthesize high-value synthetic building blocks.
Collapse
Affiliation(s)
- Chaofeng Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
40
|
Wong SS, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 2020; 49:5510-5560. [DOI: 10.1039/d0cs00134a] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides critical analysis on various downstream processes to convert lignin derived feedstock into fuels, chemicals and materials.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| | - Riyang Shu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
| | - Jiaguang Zhang
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane
- Lincoln
- UK
| | - Haichao Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
41
|
Wang M, Wang F. Catalytic Scissoring of Lignin into Aryl Monomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901866. [PMID: 31821648 DOI: 10.1002/adma.201901866] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Lignin is an aromatic polymer, which is the biggest and most sustainable reservoir for aromatics. The selective conversion of lignin polymers into aryl monomers is a promising route to provide aromatics, but it is also a challenging task. Compared to cellulose, lignin remains the most poorly utilized biopolymer due to its complex structure. Although harsh conditions can degrade lignin, the aromatic rings are usually destroyed. This article comprehensively analyzes the challenges facing the scissoring of lignin into aryl monomers and summarizes the recent progress, focusing on the strategies and the catalysts to address the problems. Finally, emphasis is given to the outlook and future directions of this research.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| |
Collapse
|
42
|
Wang D, Li G, Zhang C, Wang Z, Li X. Nickel nanoparticles inlaid in lignin-derived carbon as high effective catalyst for lignin depolymerization. BIORESOURCE TECHNOLOGY 2019; 289:121629. [PMID: 31220768 DOI: 10.1016/j.biortech.2019.121629] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Ni nanoparticles inlaid in lignin-derived carbon constructing the "inlaid type" Ni/C-I was reported to improve stability and adjust metal-support interaction of lignin hydrogenolysis catalyst. The Ni/C-I was further heat treated in air to prepare Ni/C-R so as to re-expose the blocked active sites by carbon species. A lot of characterization techniques were carried out to confirm the "inlaid structure" of the catalysts. The lignin depolymerization results demonstrated that the Ni/C-R had better catalytic performance than traditional "supported type" Ni/C, 23.3% aromatic monomer yield and 82.4% bio-oil yield were achieved. Moreover, the mechanism studies with lignin model compound revealed that Ni/C-R had better bond breaking ability than Ni/C, even CC bond could be cleaved. The electron effect could be responsible for that, since the electrons could transfer from Ni0 to carbon support for Ni/C-R, which could improve the bond breaking ability.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Guangci Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhong Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Xuebing Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
43
|
Ma Y, Ma J, Xia F, Lu F, Du Z, Xu J. Molybdenum‐Catalyzed Oxidative Cleavage of Raw Poplar Sawdust into Mono‐Aromatics and Organic Acid Esters. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yangyang Ma
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P. R. China
- College of Food Science and TechnologyHenan Agricultural University Zhengzhou 450002 P. R. China
| | - Jiping Ma
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Fei Xia
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Fang Lu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Zhongtian Du
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Jie Xu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| |
Collapse
|
44
|
Abstract
Energy and fuels derived from biomass pose lesser impact on the environmental carbon footprint than those derived from fossil fuels. In order for the biomass-to-energy and biomass-to-chemicals processes to play their important role in the loop of the circular economy, highly active, selective, and stable catalysts and the related efficient chemical processes are urgently needed. Lignin is the most thermal stable fraction of biomass and a particularly important resource for the production of chemicals and fuels. This mini review mainly focuses on lignin valorizations for renewable chemicals and fuels production and summarizes the recent interest in the lignin valorization over Ni and relevant bimetallic metal catalysts on various supports. Particular attention will be paid to those strategies to convert lignin to chemicals and fuels components, such as pyrolysis, hydrodeoxygenation, and hydrogenolysis. The review is written in a simple and elaborated way in order to draw chemists and engineers’ attention to Ni-based catalysts in lignin valorizations and guide them in designing innovative catalytic materials based on the lignin conversion reaction.
Collapse
|
45
|
Park J, Riaz A, Verma D, Lee HJ, Woo HM, Kim J. Fractionation of Lignocellulosic Biomass over Core-Shell Ni@Al 2 O 3 Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. CHEMSUSCHEM 2019; 12:1743-1762. [PMID: 30702216 DOI: 10.1002/cssc.201802847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Highly dispersed, core-shell Ni@Al2 O3 on activated carbon (AC) catalysts were prepared to develop an effective, external-hydrogen-free fractionation process for various types of lignocellulosic biomass. In a mixture of formic acid, ethanol, and water at 190 °C, the conversion of oak wood produced 23.4 C% lignin-derived phenolic monomers (LDPMs) and highly delignified pulp-rich solid. At an early stage, formic acid acted as a cocatalyst to enhance the delignification by solvolysis, and at a later stage, it acted as a hydrogen source to stabilize the phenolic monomers by hydrodeoxygenation and hydrogenation. Based on the positive correlation between spillover hydrogen on the catalysts and LDPM yields, a new suite of catalyst design criteria was proposed to develop highly active, non-noble-metal based catalysts for realizing economically viable biorefineries. Enzymatic saccharification of the pulp-rich solid indicated that the pulp-rich solid is an excellent source of fermentable sugars.
Collapse
Affiliation(s)
- Jaeyong Park
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Asim Riaz
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Deepak Verma
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| |
Collapse
|
46
|
Li H, Song G. Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
47
|
Renders T, Van den Bossche G, Vangeel T, Van Aelst K, Sels B. Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Curr Opin Biotechnol 2019; 56:193-201. [PMID: 30677700 DOI: 10.1016/j.copbio.2018.12.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023]
Abstract
Reductive catalytic fractionation (RCF) of lignocellulose is an emerging biorefinery scheme that combines biomass fractionation with lignin depolymerisation. Central to this scheme is the integration of heterogeneous catalysis, which overcomes the tendency of lignin to repolymerise. Ultimately, this leads to a low-Mw lignin oil comprising a handful of lignin-derived monophenolics in close-to-theoretical yield, as well as a carbohydrate pulp. Both product streams are considered to be valuable resources for the bio-based chemical industry. This Opinion article sheds light on recently achieved milestones and consequent research opportunities. More specifically, mechanistic studies have established a general understanding of the elementary RCF steps, which include (i) lignin extraction, (ii) solvolytic and catalytic depolymerisation and (iii) stabilisation. This insight forms the foundation for recently developed flow-through RCF. Compared to traditional batch, flow-through RCF has the advantage of (i) separating the solvolytic steps from the catalytic steps and (ii) being a semi-continuous process; both of which are beneficial for research purposes and for industrial operation. Although RCF has originally been developed for 'virgin' biomass, researchers have just begun to explore alternative feedstocks. Low-value biomass sources such as agricultural residues, waste wood and bark, are cheap and abundant but are also often more complex. On the other side of the feedstock spectrum are high-value bio-engineered crops, specifically tailored for biorefinery purposes. Advantageous for RCF are feedstocks designed to (i) increase the total monomer yield, (ii) extract lignin more easily, and/or (iii) yield unconventional, high-value products (e.g. alkylated catechols derived from C-lignin). Taking a look at the bigger picture, this Opinion article highlights the multidisciplinary nature of RCF. Collaborative efforts involving chemists, reactor engineers, bioengineers and biologists working closer together are, therefore, strongly encouraged.
Collapse
Affiliation(s)
- Tom Renders
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Gil Van den Bossche
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thijs Vangeel
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Korneel Van Aelst
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bert Sels
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
48
|
Son D, Gu S, Choi JW, Suh DJ, Jae J, Choi J, Ha JM. Production of phenolic hydrocarbons from organosolv lignin and lignocellulose feedstocks of hardwood, softwood, grass and agricultural waste. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Zhang J, Lombardo L, Gözaydın G, Dyson PJ, Yan N. Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63132-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Sun Z, Barta K. Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem Commun (Camb) 2018; 54:7725-7745. [PMID: 29926013 DOI: 10.1039/c8cc02937g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural complexity of lignocellulose offers unique opportunities for the development of entirely new, energy efficient and waste-free pathways in order to obtain valuable bio-based building blocks. Such sustainable catalytic methods - specifically tailored to address the efficient conversion of abundant renewable starting materials - are necessary to successfully compete, in the future, with fossil-based multi-step processes. In this contribution we give a summary of recent developments in this field and describe our "cleave and couple" strategy, where "cleave" refers to the catalytic deconstruction of lignocellulose to aromatic and aliphatic alcohol intermediates, and "couple" involves the development of novel, sustainable transformations for the formation of C-C and C-N bonds in order to obtain a range of attractive products from lignocellulose.
Collapse
Affiliation(s)
- Zhuohua Sun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | |
Collapse
|