1
|
Wang W, Wang A, Xu G, Dong S, Zhang X, Cai M, Song JL. In Situ Construction of N-Doped Ni 3S 2@Ni(OH) 2 Self-Supported Heterostructures for Highly Selective Electrooxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Inorg Chem 2025. [PMID: 40375620 DOI: 10.1021/acs.inorgchem.5c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The selective electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) is promising for biomass valorization but remains challenging under alkaline conditions due to inefficient nonprecious metal catalysts. Herein, we develop a scalable N-doped Ni3S2@Ni(OH)2 heterostructure via a molten-salt-derived precursor and a one-pot hydrothermal synthesis. This catalyst achieves a low potential of 1.395 V (10 mA cm-2) and 96% DFF selectivity, with a 47.6% yield in 1.0 M K2CO3 (pH = 12). Experimental and DFT studies reveal that interfacial electron redistribution enhances HMF and hydroxyl radical adsorption, lowers the HMF-to-DFF energy barrier, and accelerates charge transfer. The hydroxyl group in HMF is more reactive than the aldehyde, boosting the DFF selectivity. The heterojunction's synergistic effect is key to achieving high-value aldehydes efficiently.
Collapse
Affiliation(s)
- Wenbiao Wang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ao Wang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Gang Xu
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Shijiao Dong
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ximin Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Meiqing Cai
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
2
|
Du Z, Yang D, Cao Q, Dai J, Yang R, Gu X, Li F. Recent advances in catalytic synthesis of 2,5-furandimethanol from 5-hydroxymethylfurfural and carbohydrates. BIORESOUR BIOPROCESS 2023; 10:52. [PMID: 38647628 PMCID: PMC10991370 DOI: 10.1186/s40643-023-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 04/25/2024] Open
Abstract
5-Hydroxymethylfurfural (HMF) is a versatile platform chemical derived from the dehydration of renewable carbohydrates (typically glucose/fructose-based monosaccharides, oligosaccharides, and polysaccharides). Some useful compounds, such as 2,5-furandimethanol (FDM), 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF), have been synthesized by reduction of HMF. Among these, FDM is a promising diol and can be further converted towards fine chemicals, liquid fuels and polymer materials. In this review, some typical catalytic systems for the synthesis of FDM from both HMF and carbohydrates were summarized. The discussion focused on controlling the reaction networks for the reduction of HMF. The reaction mechanisms and the stability of the catalysts were introduced briefly. Last but not least, the prospects of effective production of FDM were discussed as well.
Collapse
Affiliation(s)
- Ziting Du
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Delong Yang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Qingya Cao
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Jinhang Dai
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Ronghe Yang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xingxing Gu
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Fukun Li
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
- Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
3
|
Wu X, De bruyn M, Barta K. A Diamine-Oriented Biorefinery Concept Using Ammonia and Raney Ni as a Multifaceted Catalyst. CHEM-ING-TECH 2022; 94:1808-1817. [PMID: 36632530 PMCID: PMC9826469 DOI: 10.1002/cite.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/14/2023]
Abstract
Diamines are important industrial chemicals. In this paper we outline the feasibility of lignocellulose as a source of diol-containing molecules. We also illustrate the possibility of turning these diols into their diamines in good to excellent yields. Central to these transformations is the use of commercially available Raney Ni. For diol formation, the Raney Ni engages in hydrogenation and often also demethoxylation, that way funneling multiple components to one single molecule. For diamine formation, Raney Ni catalyzes hydrogen-borrowing mediated diamination in the presence of NH3.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of GroningenStratingh Institute for ChemistryGroningenThe Netherlands
| | - Mario De bruyn
- University of GrazDepartment of Chemistry, Organic and Bioorganic ChemistryHeinrichstraße 28/II8010GrazAustria
| | - Katalin Barta
- University of GroningenStratingh Institute for ChemistryGroningenThe Netherlands,University of GrazDepartment of Chemistry, Organic and Bioorganic ChemistryHeinrichstraße 28/II8010GrazAustria
| |
Collapse
|
4
|
Obtaining (5-formylfuran-2-yl)methyl 4-chlorobenzoate through an esterification of 5-hydroxymethylfurfural: Interesting achiral molecule crystallizing in a Sohncke P212121 space group. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Wei Z, Cheng Y, Huang H, Ma Z, Zhou K, Liu Y. Reductive Amination of 5-Hydroxymethylfurfural to 2,5-Bis(aminomethyl)furan over Alumina-Supported Ni-Based Catalytic Systems. CHEMSUSCHEM 2022; 15:e202200233. [PMID: 35225422 DOI: 10.1002/cssc.202200233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mono- and bimetallic Ni-based catalysts were prepared by screening 6 supports and 14 secondary metals for reductive amination of 5-hydroxymethylfurfural (5-HMF) into 2,5-bis(aminomethyl)furan (BAMF), among which γ-Al2 O3 and Mn were the best candidates. By further optimization of the reaction conditions at 0.4 g catalyst loading for 0.5 g substrate of 5-HMF and 160 °C of reaction temperature, 10Ni/γ-Al2 O3 and 10NiMn(4 : 1)/γ-Al2 O3 achieved the highest BAMF yields of 86.3 and 82.1 %, respectively. Although the BAMF yield values were comparable with that over Raney Ni, the turnover frequencies based on the initial BAMF yield and unit weight of Ni for 10NiMn(4 : 1)/γ-Al2 O3 , 10Ni/γ-Al2 O3 , and Raney Ni were calculated as 0.41, 0.09, and 0.04 h-1 , respectively. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy showed that the existence of MnOx well dispersed on the γ-Al2 O3 support and its electron transfer effect with Ni particles on the surface of the support contributed to the high efficiency and better recyclability for the five-time reused 10NiMn(4 : 1)/γ-Al2 O3 catalyst.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Yuran Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Hao Huang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Zhihe Ma
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Kuo Zhou
- Research and Development Base of Catalytic Hydrogenation College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| |
Collapse
|
6
|
Wei Z, Cheng Y, Zhou K, Zeng Y, Yao E, Li Q, Liu Y, Sun Y. One-Step Reductive Amination of 5-Hydroxymethylfurfural into 2,5-Bis(aminomethyl)furan over Raney Ni. CHEMSUSCHEM 2021; 14:2308-2312. [PMID: 33909345 DOI: 10.1002/cssc.202100564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Simultaneous reductive amination of C=O and C-OH in 5-hydroxymethylfurfural (HMF) into C-NH2 in 2,5-bis(aminomethyl)furan (BAMF) is challenging. In this work, reductive amination of C=O in HMF was firstly studied, in which HMF can be converted into 5-hydroxymethyl furfurylamine (HMFA) with a 99.5 % yield over Raney Co catalyst. BAMF was then directly synthesized with 82.3 % yield from HMF over Raney Ni catalyst at 160 °C for 12 h. An even higher yield of 88.3 % could be obtained through a stepwise reductive amination process, in which the reaction started at 120 °C for the first 2 h over Raney Co mainly for amination of C=O and then continued at 160 °C for another 10 h over Raney Ni mainly for amination of C-OH. Under optimized reaction conditions, the catalyst could be reused four times without obvious loss in catalytic performance. XRD and XPS characterization of the reused catalyst indicated that the formation of Ni3 N and the adsorption of alkyl amines could be the main reasons for the deactivation of the catalyst. Moreover, plausible reaction pathways were proposed to originate the detected by-products according to the kinetic profiles.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Yuran Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Kuo Zhou
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Yue Zeng
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - En Yao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Qing Li
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| |
Collapse
|
7
|
Weng R, Lu X, Ji N, Fukuoka A, Shrotri A, Li X, Zhang R, Zhang M, Xiong J, Yu Z. Taming the butterfly effect: modulating catalyst nanostructures for better selectivity control of the catalytic hydrogenation of biomass-derived furan platform chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01708j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This minireview highlights versatile routes for catalyst nanostructure modulation for better hydrogenation selectivity control of typical biomass-derived furan platform chemicals to tame the butterfly effect on the catalytic selectivity.
Collapse
Affiliation(s)
- Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou 350118, P.R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangdong 510275, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Ming Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
8
|
Vieira JL, Almeida-Trapp M, Mithöfer A, Plass W, Gallo JMR. Rationalizing the conversion of glucose and xylose catalyzed by a combination of Lewis and Brønsted acids. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Wei J, Wang T, Tang P, Tang X, Sun Y, Zeng X, Lin L. Chemoselective Hydrogenation of Biomass-derived 5-hydroxymethylfurfural into Furanyl Diols. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190802095801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lignocellulosic biomass can be converted to significant platform molecule 5-
hydroxymethylfurfural (HMF), from which one can envision a number of biofuels and
chemicals through either chemical or biological conversions. Chemoselective hydrogenation
is one of the important pathways for the upgrading of HMF into furanyl diols consisting
of 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-bis(hydroxymethyl)tetrahydrofuran
(BHMTHF). BHMF and BHMTHF are all-purpose intermediates for the manufacture of
chemicals, fuels, and functional materials. In this context, we comprehensively summarized
the studies on the chemoselective hydrogenation of HMF into furanyl diols in terms
of different H-donors, including molecular H2, alcohols, formic acid, and other alternative
H-donors. Through the systematic survey of the previous works, a feasible research direction
is discussed for the production of furanyl diols.
Collapse
Affiliation(s)
- Junnan Wei
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Ting Wang
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Peifeng Tang
- CMC Department, Elpiscience (Suzhou) Biopharma, Ltd. 218 Sangtian St, Jiangsu 215123, China
| | - Xing Tang
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Xianhai Zeng
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Lu Lin
- Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Aljammal N, Jabbour C, Thybaut JW, Demeestere K, Verpoort F, Heynderickx PM. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213064] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Pyo SH, Sayed M, Hatti-Kaul R. Batch and Continuous Flow Production of 5-Hydroxymethylfurfural from a High Concentration of Fructose Using an Acidic Ion Exchange Catalyst. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Mahmoud Sayed
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
12
|
Pal P, Saravanamurugan S. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. CHEMSUSCHEM 2019; 12:145-163. [PMID: 30362263 DOI: 10.1002/cssc.201801744] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/24/2018] [Indexed: 06/08/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is one of the versatile platform molecules that can be derived from biomass, and a promising starting substrate for producing 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). DFF is a platform chemical with applications in pharmaceuticals, macrocyclic ligands, and functional polymeric materials. Importantly, FDCA is being considered as a potential alternative to replace terephthalic acid for producing the bioplastic polyethylene furanoate, instead of polyethylene terephthalate, by blending with ethylene glycol. A significant number of studies have focused on the oxidation of HMF to FDCA with metal-containing heterogeneous catalysts in both aqueous and organic media in the presence of peroxides/air/molecular oxygen as the oxidant. In this regard, articles have recently been published related to HMF oxidation with base (nonprecious)-metal-containing catalysts that exhibit appealing activity towards DFF or FDCA in terms of yield. Thus, this Minireview focuses on recent developments in efficient transformations of HMF to DFF and FDCA with base-metal-containing heterogeneous catalysts in aqueous and organic media. This review further focuses on the direct transformation of glucose/fructose to DFF and/or FDCA with nonprecious-metal-containing catalysts in various solvents. Photocatalytic approaches for HMF oxidation with nonprecious metal- containing catalysts are also briefly discussed.
Collapse
Affiliation(s)
- Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-, 140 306, Punjab, India
| |
Collapse
|
13
|
Serum EM, Sutton CA, Renner AC, Dawn D, Sibi MP. New AB type monomers from lignocellulosic biomass. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of renewable novel bicyclic AB type polyester precursors have been prepared in good overall yield from lignocellulosic biomass. These advancements take full advantage of the differing oxidation states of functional groups in 5-(hydroxymethyl)furfural by chemoselective preparation of furanic hydroxy esters and applying benzyne-Diels–Alder cycloaddition/aromatization strategies.
Collapse
Affiliation(s)
- Eric M. Serum
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo, ND 58108 , USA
- Center for Sustainable Materials Science, North Dakota State University , Dept. 2735, PO Box 6050 , Fargo, ND 58108 , USA
| | - Catherine A. Sutton
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo, ND 58108 , USA
- Center for Sustainable Materials Science, North Dakota State University , Dept. 2735, PO Box 6050 , Fargo, ND 58108 , USA
| | - Anna C. Renner
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo, ND 58108 , USA
- Center for Sustainable Materials Science, North Dakota State University , Dept. 2735, PO Box 6050 , Fargo, ND 58108 , USA
| | - Dyuti Dawn
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo, ND 58108 , USA
- Center for Sustainable Materials Science, North Dakota State University , Dept. 2735, PO Box 6050 , Fargo, ND 58108 , USA
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo, ND 58108 , USA
- Center for Sustainable Materials Science, North Dakota State University , Dept. 2735, PO Box 6050 , Fargo, ND 58108 , USA , Tel.: +1-701-231-8251, Fax: +1-701-231-8831
| |
Collapse
|
14
|
Abstract
Chemocatalytic transformation of lignocellulosic biomass to value-added chemicals has attracted global interest in order to build up sustainable societies. Cellulose, the first most abundant constituent of lignocellulosic biomass, has received extensive attention for its comprehensive utilization of resource, such as its catalytic conversion into high value-added chemicals and fuels (e.g., HMF, DMF, and isosorbide). However, the low reactivity of cellulose has prevented its use in chemical industry due to stable chemical structure and poor solubility in common solvents over the cellulose. Recently, homogeneous or heterogeneous catalysis for the conversion of cellulose has been expected to overcome this issue, because various types of pretreatment and homogeneous or heterogeneous catalysts can be designed and applied in a wide range of reaction conditions. In this review, we show the present situation and perspective of homogeneous or heterogeneous catalysis for the direct conversion of cellulose into useful platform chemicals.
Collapse
|
15
|
Hu L, Xu J, Zhou S, He A, Tang X, Lin L, Xu J, Zhao Y. Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03530] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Hu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Shouyong Zhou
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Yijiang Zhao
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
16
|
Xia H, Xu S, Hu H, An J, Li C. Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Adv 2018; 8:30875-30886. [PMID: 35548764 PMCID: PMC9085621 DOI: 10.1039/c8ra05308a] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
5-hydroxymethylfurfural (HMF) is a very important versatile platform compound derived from renewable biomass.
Collapse
Affiliation(s)
- Haian Xia
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass
- China
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Siquan Xu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass
- China
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Hong Hu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass
- China
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Jiahuan An
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass
- China
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Changzhi Li
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
17
|
Fan W, Queneau Y, Popowycz F. The synthesis of HMF-based α-amino phosphonatesviaone-pot Kabachnik–Fields reaction. RSC Adv 2018; 8:31496-31501. [PMID: 35548197 PMCID: PMC9085609 DOI: 10.1039/c8ra05983g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
The first use of biomass-derived HMF in the one-pot Kabachnik–Fields reaction is reported here. A wide range of furan-based α-amino phosphonates were prepared in moderate to excellent yields under mild, effective and environmentally-benign conditions: iodine as a non-metal catalyst, biobased 2-MeTHF as the solvent and room or moderate temperature. The hydroxymethyl group of HMF persists in the Kabachnik–Fields products, widening the scope of further modification and derivatization compared to those arising from furfural. Issues involving the diastereoselectivity and double Kabachnik–Fields condensation were also faced. A mild and efficient one-pot protocol for the synthesis of α-amino phosphonates directly from 5-HMF was described.![]()
Collapse
Affiliation(s)
- Weigang Fan
- Université de Lyon
- INSA Lyon
- ICBMS
- UMR 5246
- CNRS – Université Lyon 1 – CPE Lyon
| | - Yves Queneau
- Université de Lyon
- INSA Lyon
- ICBMS
- UMR 5246
- CNRS – Université Lyon 1 – CPE Lyon
| | - Florence Popowycz
- Université de Lyon
- INSA Lyon
- ICBMS
- UMR 5246
- CNRS – Université Lyon 1 – CPE Lyon
| |
Collapse
|
18
|
Selective transformation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran via catalytic transfer hydrogenation over magnetic zirconium hydroxides. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0238-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Duan Y, Zhang J, Li D, Deng D, Ma LF, Yang Y. Direct conversion of carbohydrates to diol by the combination of niobic acid and a hydrophobic ruthenium catalyst. RSC Adv 2017. [DOI: 10.1039/c7ra03939e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A variety of carbohydrates were converted to tetrahydro-2,5-furandimethanol in one step by the combination of Ru/SiO2-TM and Nb2O5-FP.
Collapse
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Material
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Jun Zhang
- Henan Key Laboratory of Function-Oriented Porous Material
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Dongmi Li
- Henan Key Laboratory of Function-Oriented Porous Material
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Dongsheng Deng
- Henan Key Laboratory of Function-Oriented Porous Material
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Lu-Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Material
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Material
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| |
Collapse
|