1
|
Ren J, Li Q, Zhu Z, Qiu Y, Yu F, Zhou T, Yang X, Ye K, Wang Y, Ma J, Zhao J. Highly Selective Recovery of Gold by In Situ Magnetic Field-Assisted Fe/Co-MOF@PDA/NdFeB Double Network Gel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404241. [PMID: 39206614 DOI: 10.1002/smll.202404241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
There are enormous economic benefits to conveniently increasing the selective recovery capacity of gold. Fe/Co-MOF@PDA/NdFeB double-network organogel (Fe/Co-MOF@PDA NH) is synthesized by aggregation assembly strategy. The package of PDA provides a large number of nitrogen-containing functional groups that can serve as adsorption sites for gold ions, resulting in a 21.8% increase in the ability of the material to recover gold. Fe/Co-MOF@PDA NH possesses high gold recovery capacity (1478.87 mg g-1) and excellent gold selectivity (Kd = 5.71 mL g-1). With the assistance of an in situ magnetic field, the gold recovery capacity of Fe/Co-MOF@PDA NH is increased from 1217.93 to 1478.87 mg g-1, and the recovery rate increased by 24.7%. The above excellent performance is attributed to the efficient reduction of gold by FDC/FC+, Co2+/Co3+ double reducing couple, and the optimization of the reduction reaction by the magnetic field. After the samples are calcined, high-purity gold (95.6%, 22K gold) is recovered by magnetic separation. This study proposes a forward-looking in situ energy field-assisted strategy to enhance precious metal recovery, which has a guiding role in the development of low-carbon industries.
Collapse
Affiliation(s)
- Jianran Ren
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qiang Li
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhiliang Zhu
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanling Qiu
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Tao Zhou
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xue Yang
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Kang Ye
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Yabo Wang
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Jie Ma
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jianfu Zhao
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Sun S, Li X, Zhang C, Wang X, Wang J, Wang C, Xu ZJ, Cheng Z, Bai Y. Magnetic Field-induced Disordered Phase of Spinel Oxides for High Battery Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405876. [PMID: 38935407 DOI: 10.1002/adma.202405876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The disordered phase of spinel LiMn1.5Ni0.5O4 (LNMO) is more appealing as high-voltage cathode due to its superior electrochemical performance compared to its ordered counterpart. Various methods are developed to induce a phase transition. However, the resulting materials often suffer from capacity degradation due to the adverse influence of accompanying Mn3+ ions. This study presents the utilization of local magnetic fields generated by a magnetic Fe3O4 shell to induce a disordered phase transition in LNMO at lower temperature, transitioning it from an order state without significantly increasing the Mn3+ content. The pivotal role played by the local magnetic fields is evidenced through comparisons with samples with nonmagnetic Al2O3 shell, samples subjected to sole heat treatment, and samples heat-treated within magnetic fields. The key finding is that magnetic fields can initiate a radical pair mechanism, enabling the induction of order-disorder phase transition even at lower temperatures. The disordered spinal LNMO with a magnetic Fe3O4 shell exhibits excellent cycling stability and kinetic properties in electrochemical characterization as a result. This innovation not only unravels the intricate interplay between the disordered phase and Mn3+ content in the cathode spinel but also pioneers the use of magnetic field effects for manipulating material phases.
Collapse
Affiliation(s)
- Shuwei Sun
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| | - Xiaoning Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Chu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuefeng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianli Wang
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Chinwei Wang
- Neutron Group, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhenxiang Cheng
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Ying Bai
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Mitra K, Adalder A, Mandal S, Ghorai UK. Enhancing Electrochemical Reactivity with Magnetic Fields: Unraveling the Role of Magneto-Electrochemistry. SMALL METHODS 2024; 8:e2301132. [PMID: 38221715 DOI: 10.1002/smtd.202301132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Indexed: 01/16/2024]
Abstract
Electrocatalysis performs a vital role in numerous energy transformation and repository mechanics, including power cells, Electric field-assisted catalysis, and batteries. It is crucial to investigate new methods to improve electrocatalytic performance if effective and long-lasting power systems are developed. The modulation of catalytic activity and selectivity by external magnetic fields over electrochemical processes has received a lot of interest lately. How the use of various magnetic fields in electrocatalysis has great promise for building effective and selective catalysts, opening the door for the advancement of sophisticated energy conversion is discussed. Furthermore, the challenges and possibilities of incorporating magnetic fields into electrocatalytic systems and suggestions for future research areas are discussed.
Collapse
Affiliation(s)
- Koushik Mitra
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - Ashadul Adalder
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - Sumit Mandal
- Department of Physics, Vidyasagar College, Kolkata, 700006, India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| |
Collapse
|
4
|
Mingoes CJ, Schroeder BC, Jorge Sobrido AB. Electron Spin Selective Iridium Electrocatalysts for the Oxygen Evolution Reaction. ACS MATERIALS AU 2024; 4:204-213. [PMID: 38496043 PMCID: PMC10941284 DOI: 10.1021/acsmaterialsau.3c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 03/19/2024]
Abstract
Highly efficient electrocatalysts for water electrolysis are crucial to the widespread commercialization of the technology and an important step forward toward a sustainable energy future. In this study, an alternative method for boosting the electrocatalytic activity toward the oxygen evolution reaction (OER) of a well-known electrocatalyst (iridium) is presented. Iridium nanoparticles (2.1 ± 0.2 nm in diameter) functionalized with chiral molecules were found to markedly enhance the activity of the OER when compared to unfunctionalized and achiral functionalized iridium nanoparticles. At a potential of 1.55 V vs Reference Hydrogen Electrode (RHE), chiral functionalized iridium nanoparticles exhibited an average 85% enhancement in activity with respect to unfunctionalized iridium nanoparticles compared to an average 13% enhancement for the achiral functionalized iridium nanoparticle. This activity enhancement is attributed to a spin-selective electron transfer mechanism taking place on the chiral functionalized catalysts, a characteristic induced by the chirality of the ligand. This alternative path for the OER drastically reduces the production of hydrogen peroxide, which was confirmed via a colorimetric method.
Collapse
Affiliation(s)
- Carlos J. Mingoes
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Bob C. Schroeder
- Chemistry
Department, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Ana B. Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
5
|
Bai H, Feng J, Liu D, Zhou P, Wu R, Kwok CT, Ip WF, Feng W, Sui X, Liu H, Pan H. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205638. [PMID: 36417556 DOI: 10.1002/smll.202205638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Rucheng Wu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, 400054, China
| | - Xulei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
6
|
Jiang X, Chen Y, Zhang X, You F, Yao J, Yang H, Xia BY. Magnetic Field-Assisted Construction and Enhancement of Electrocatalysts. CHEMSUSCHEM 2022; 15:e202201551. [PMID: 36193685 DOI: 10.1002/cssc.202201551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Driven by the energy crisis and environmental pollution, developing sustainable clean energy is an effective strategy to realize carbon neutrality. Electrocatalytic reactions are crucial to sustainable energy conversion and storage technologies, and advanced electrocatalysts are required to improve the sluggish electrocatalytic reactions. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the construction of electrocatalysts and enhancement of electrocatalysis. In this Review, the recent progress of magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis is comprehensively summarized. Originating from the structure-activity-performance relationship of electrocatalysts, the fundamentals of the magnetic field-induced construction of electrocatalysts, including the magnetocaloric effect, nucleation and growth, and phase regulation, have been illustrated. In addition, the magnetic effect on the electrocatalytic reaction, namely, the magnetothermal, magnetohydrodynamic and micro magnetohydrodynamic, Maxwell stress, Kelvin force, and spin selection effects, are discussed. Finally, the perspective and challenges for magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis are proposed.
Collapse
Affiliation(s)
- Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
Affiliation(s)
- Chiara Biz
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - José Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| | - Mauro Fianchini
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
8
|
Do VH, Lee JM. Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS NANO 2022; 16:17847-17890. [PMID: 36314471 DOI: 10.1021/acsnano.2c08919] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past few decades, development of electrocatalysts for energy applications has extensively transitioned from trial-and-error methodologies to more rational and directed designs at the atomic levels via either nanogeometric optimization or modulating electronic properties of active sites. Regarding the modulation of electronic properties, nonprecious transition metal-based materials have been attracting large interest due to the capability of versatile tuning d-electron configurations expressed through the flexible orbital occupancy and various possible degrees of spin polarization. Herein, recent advances in tailoring electronic properties of the transition-metal atoms for intrinsically enhanced electrocatalytic performances are reviewed. We start with discussions on how orbital occupancy and spin polarization can govern the essential atomic level processes, including the transport of electron charge and spin in bulk, reactive species adsorption on the catalytic surface, and the electron transfer between catalytic centers and adsorbed species as well as reaction mechanisms. Subsequently, different techniques currently adopted in tuning electronic structures are discussed with particular emphasis on theoretical rationale and recent practical achievements. We also highlight the promises of the recently established computational design approaches in developing electrocatalysts for energy applications. Lastly, the discussion is concluded with perspectives on current challenges and future opportunities. We hope this review will present the beauty of the structure-activity relationships in catalysis sciences and contribute to advance the rational development of electrocatalysts for energy conversion applications.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
9
|
Zhang CY, Zhang C, Sun GW, Pan JL, Gong L, Sun GZ, Biendicho JJ, Balcells L, Fan XL, Morante JR, Zhou JY, Cabot A. Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium‐Sulfur Batteries under External Magnetic Field. Angew Chem Int Ed Engl 2022; 61:e202211570. [DOI: 10.1002/anie.202211570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yue Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Chaoqi Zhang
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Guo Wen Sun
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Jiang Long Pan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Li Gong
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Geng Zhi Sun
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Jordi Jacas Biendicho
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Lluís Balcells
- Institut de Ciència de Materials de Barcelona Campus de la UAB 08193 Bellaterra Catalonia Spain
| | - Xiao Long Fan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Joan Ramon Morante
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Jin Yuan Zhou
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
- School of Physics and Electronic Information Engineering Qinghai Normal University Xining 810008 China
| | - Andreu Cabot
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
- Catalan Institution for Research and Advanced Studies, ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
10
|
Abstract
Controlled reduction of oxygen is important for developing clean energy technologies, such as fuel cells, and is vital to the existence of aerobic organisms. The process starts with oxygen in a triplet ground state and ends with products that are all in singlet states. Hence, spin constraints in the oxygen reduction must be considered. Here, we show that the electron transfer efficiency from chiral electrodes to oxygen (oxygen reduction reaction) is enhanced over that from achiral electrodes. We demonstrate lower overpotentials and higher current densities for chiral catalysts versus achiral ones. This finding holds even for electrodes composed of heavy metals with large spin-orbit coupling. The effect results from the spin selectivity conferred on the electron current by the chiral assemblies, the chiral-induced spin selectivity effect.
Collapse
|
11
|
Abstract
Developing new strategies to advance the fundamental understanding of electrochemistry is crucial to mitigating multiple contemporary technological challenges. In this regard, magnetoelectrochemistry offers many strategic advantages in controlling and understanding electrochemical reactions that might be tricky to regulate in conventional electrochemical fields. However, the topic is highly interdisciplinary, combining concepts from electrochemistry, hydrodynamics, and magnetism with experimental outcomes that are sometimes unexpected. In this Review, we survey recent advances in using a magnetic field in different electrochemical applications organized by the effect of the generated forces on fundamental electrochemical principles and focus on how the magnetic field leads to the observed results. Finally, we discuss the challenges that remain to be addressed to establish robust applications capable of meeting present needs.
Collapse
Affiliation(s)
- Songzhu Luo
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Kamal Elouarzaki
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Nanyang Environment and Water Research Institute (NEWRI)Interdisciplinary Graduate School1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Zhichuan J. Xu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Nanyang Environment and Water Research Institute (NEWRI)Interdisciplinary Graduate School1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Energy Research Institute @ Nanyang Technological University, ERI@NInterdisciplinary Graduate School50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
12
|
Luo S, Elouarzaki K, Xu ZJ. Electrochemistry in Magnetic Fields. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Songzhu Luo
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Kamal Elouarzaki
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Nanyang Environment and Water Research Institute (NEWRI) Interdisciplinary Graduate School 1 Cleantech Loop, CleanTech One Singapore 637141 Singapore
| | - Zhichuan J. Xu
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Nanyang Environment and Water Research Institute (NEWRI) Interdisciplinary Graduate School 1 Cleantech Loop, CleanTech One Singapore 637141 Singapore
- Energy Research Institute @ Nanyang Technological University, ERI@N Interdisciplinary Graduate School 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
13
|
Aoki M, Takeda M. Study on the Effect of Magnetic Field on Seawater Electrolysis using a Channel Flow Cell to Simulate a Linear-type Seawater Magnetohydrodynamic Power Generator. CHEM LETT 2022. [DOI: 10.1246/cl.220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Aoki
- Graduate School of Maritime Sciences, Kobe University, Higashinada-ku, Kobe, Hyogo 658-0022, Japan
| | - Minoru Takeda
- Graduate School of Maritime Sciences, Kobe University, Higashinada-ku, Kobe, Hyogo 658-0022, Japan
| |
Collapse
|
14
|
Magnetic-Field-Induced Strain Enhances Electrocatalysis of FeCo Alloys on Anode Catalysts for Water Splitting. METALS 2022. [DOI: 10.3390/met12050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In water splitting, the oxygen evolution reaction (OER) performance of transition metal alloy catalysts needs to be further improved. To solve this problem, the method of an external magnetic field was used to improve the OER catalytic performance of the alloy catalyst. In this paper, FeCo alloys with different composition ratios were prepared by an arc melting method, and OER catalysts with different compositions were obtained by annealing treatment. Under the action of a magnetic field, all three groups of catalysts showed a better catalytic performance than those without a magnetic field. The overpotentials of Fe35Co65, Fe22Co78 and Fe15Co85 at a current density of 20 mA cm−2 were reduced by 12 mV, 6 mV and 2 mV, respectively. It is found that, due to the magnetostrictive properties of FeCo alloys, the catalyst itself will generate strain under the action of a magnetic field, and the existence of strain may be the main reason for the enhanced OER performance of the magnetic field. Therefore, this work provides a new idea for the development of magnetic material catalysts and a magnetic field to improve the performance of catalysts.
Collapse
|
15
|
Abstract
With the consensus on carbon peak and neutrality around the globe, renewables, especially wind and solar PV will grow fast. Correspondingly, the batteries for renewables would be scheduled to meet the requirements of performance, lifetime, cost, safety, and environment. Rechargeable zinc-air battery is a promising candidate for energy storage. However, the lifetime and power density of zinc-air batteries remain unresolved. Here we propose a concept of magnetic zinc-air batteries to achieve the demand of the next generation energy storage. Firstly, an external magnetic field can effectively inhibit dendrite growth of the zinc depositing layer and expel H2 or O2 bubbles away from the electrode’s surface, extending the battery life. Secondly, magnetic fields can promote electrons, ions, and O2 transfer, enhancing power density of zinc-air batteries. Lastly, four schemes to generate magnetic fields for zinc-air batteries are exhibited to fulfill battery energy storage demand of high performance and long service life.
Collapse
|
16
|
Naaman R, Paltiel Y, Waldeck DH. Chiral Induced Spin Selectivity and Its Implications for Biological Functions. Annu Rev Biophys 2021; 51:99-114. [PMID: 34932912 DOI: 10.1146/annurev-biophys-083021-070400] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chirality in life has been preserved throughout evolution. It has been assumed that the main function of chirality is its contribution to structural properties. In the past two decades, however, it has been established that chiral molecules possess unique electronic properties. Electrons that pass through chiral molecules, or even charge displacements within a chiral molecule, do so in a manner that depends on the electron's spin and the molecule's enantiomeric form. This effect, referred to as chiral induced spin selectivity (CISS), has several important implications for the properties of biosystems. Among these implications, CISS facilitates long-range electron transfer, enhances bio-affinities and enantioselectivity, and enables efficient and selective multi-electron redox processes. In this article, we review the CISS effect and some of its manifestations in biological systems. We argue that chirality is preserved so persistently in biology not only because of its structural effect, but also because of its important function in spin polarizing electrons. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel;
| | - Yossi Paltiel
- Applied Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David H Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
17
|
Affiliation(s)
- Yuanmiao Sun
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Gao Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- The Cambridge Center for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore 138602, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Science A*Star, 1 Pesek Road, Singapore 627833, Singapore
| | - Zhichuan J. Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- The Cambridge Center for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore 138602, Singapore
- Energy Research Institute @ NTU, ERI@N, Interdisciplinary Graduate School, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
18
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
19
|
|
20
|
Hughes JP, Rowley-Neale S, Banks C. Enhancing the efficiency of the hydrogen evolution reaction utilising Fe 3P bulk modified screen-printed electrodes via the application of a magnetic field. RSC Adv 2021; 11:8073-8079. [PMID: 35423332 PMCID: PMC8695104 DOI: 10.1039/d0ra10150h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
We report the fabrication and optimisation of Fe3P bulk modified screen-printed electrochemical platforms (SPEs) for the hydrogen evolution reaction (HER) within acidic media. We optimise the achievable current density towards the HER of the Fe3P SPEs by utilising ball-milled Fe3P variants and increasing the mass percentage of Fe3P incorporated into the SPEs. Additionally, the synergy of the application of a variable weak (constant) external magnetic field (330 mT to 40 mT) beneficially augments the current density output by 56%. This paper not only highlights the benefits of physical catalyst optimisation but also demonstrates a methodology to further enhance the cathodic efficiency of the HER with the facile application of a weak (constant) magnetic field.
Collapse
Affiliation(s)
- Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Samuel Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Craig Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
21
|
Yan J, Wang Y, Zhang Y, Xia S, Yu J, Ding B. Direct Magnetic Reinforcement of Electrocatalytic ORR/OER with Electromagnetic Induction of Magnetic Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007525. [PMID: 33336466 DOI: 10.1002/adma.202007525] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Indexed: 05/26/2023]
Abstract
Designing stable and efficient electrocatalysts for both oxygen reduction and evolution reactions (ORR/OER) at low-cost is challenging. Here, a carbon-based bifunctional catalyst of magnetic catalytic nanocages that can direct enhance the oxygen catalytic activity by simply applying a moderate (350 mT) magnetic field is reported. The catalysts, with high porosity of 90% and conductivity of 905 S m-1 , are created by in situ doping metallic cobalt nanodots (≈10 nm) into macroporous carbon nanofibers with a facile electrospinning method. An external magnetic field makes the cobalt magnetized into nanomagnets with high spin polarization, which promote the adsorption of oxygen-intermediates and electron transfer, significantly improving the catalytic efficiency. Impressively, the half wave-potential is increased by 20 mV for ORR, and the overpotential at 10 mA cm-2 is decreased by 15 mV for OER. Compared with the commercial Pt/C+IrO2 catalysts, the magnetic catalyzed Zn-air batteries deliver 2.5-fold of capacities and exhibit much longer durability over 155 h. The findings point out a very promising strategy of using electromagnetic induction to boost oxygen catalytic activity.
Collapse
Affiliation(s)
- Jianhua Yan
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Wang
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Zhang
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, China
| | - Shuhui Xia
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
22
|
Wang Q, Cai C, Dai M, Fu J, Zhang X, Li H, Zhang H, Chen K, Lin Y, Li H, Hu J, Miyauchi M, Liu M. Recent Advances in Strategies for Improving the Performance of CO
2
Reduction Reaction on Single Atom Catalysts. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiyou Wang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Chao Cai
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Minyang Dai
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 Hunan P. R. China
| | - Junwei Fu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Xiaodong Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Huangjingwei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hang Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Kejun Chen
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Yiyang Lin
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hongmei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 Hunan P. R. China
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology Tokyo 152‐8503 Japan
| | - Min Liu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
23
|
Biz C, Fianchini M, Polo V, Gracia J. Magnetism and Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange Interactions in Pt 3M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111) Alloys. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50484-50494. [PMID: 33124822 DOI: 10.1021/acsami.0c15353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bimetallic Pt-based alloys have drawn considerable attention in the last decades as catalysts in proton-exchange membrane fuel cells (PEMFCs) because they closely fulfill the two major requirements of high performance and good stability under operating conditions. Pt3Fe, Pt3Co, and Pt3Ni stand out as major candidates, given their good activity toward the challenging oxygen reduction reaction (ORR). The common feature across catalysts based on 3d-transition metals and their alloys is magnetism. Ferromagnetic spin-electron interactions, quantum spin-exchange interactions (QSEIs), are one of the most important energetic contributions in allowing milder chemisorption of reactants onto magnetic catalysts, in addition to spin-selective electron transport. The understanding of the role played by QSEIs in the properties of magnetic 3d-metal-based alloys is important to design and develop novel and effective electrocatalysts based on abundant and cheap metals. We present a detailed theoretical study (via density functional theory) on the most experimentally explored bimetallic alloys Pt3M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111). The investigation starts with a thorough structural study on the composition of the layers, followed by a comprehensive physicochemical description of their resistance toward segregation and their chemisorption capabilities toward hydrogen and oxygen atoms. Our study demonstrates that Pt3Fe(111), Pt3Co(111), and Pt3Ni(111) possess the same preferential multilayered structural organization, known for exhibiting specific magnetic properties. The specific role of QSEIs in their catalytic behavior is justified via comparison between spin-polarized and non-spin-polarized calculations.
Collapse
Affiliation(s)
- Chiara Biz
- Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón de la Plana, Spain
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Technology, Avgda Països Catalans 16, 43007 Tarragona, Spain
| | - Victor Polo
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
24
|
Westsson E, Picken S, Koper G. The Effect of Magnetic Field on Catalytic Properties in Core-Shell Type Particles. Front Chem 2020; 8:163. [PMID: 32232025 PMCID: PMC7082754 DOI: 10.3389/fchem.2020.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Magnetic field effects can provide a handle on steering chemical reactions and manipulating yields. The presence of a magnetic field can influence the energy levels of the active species by interacting with their spin states. Here we demonstrate the effect of a magnetic field on the electrocatalytic processes taking place on platinum-based nanoparticles in fuel cell conditions. We have identified a shift in the potentials representing hydrogen adsorption and desorption, present in all measurements recorded in the presence of a magnetic field. We argue that the changes in electrochemical behavior are a result of the interactions between the magnetic field and the unpaired spin states of hydrogen.
Collapse
Affiliation(s)
- Emma Westsson
- Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | - Stephen Picken
- Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | - Ger Koper
- Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
25
|
Pan H, Jiang X, Wang X, Wang Q, Wang M, Shen Y. Effective Magnetic Field Regulation of the Radical Pair Spin States in Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2020; 11:48-53. [PMID: 31821005 DOI: 10.1021/acs.jpclett.9b03146] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulation of the radical pair spin states allows effective optimization of the electrocatalytic CO2 reduction reaction. This study for the first time reports an experimental observation of significantly boosting the catalytic activity of tin nanoparticle catalysts by an external magnetic field for electrocatalytic CO2 reduction to formate/formic acid. We reveal that enhancing the amount of singlet radical pairs via magnetic field-facilitated triplet → singlet spin evolution can significantly increase the catalytic activity toward an efficient overall electrochemical CO2 reduction reaction. When a common Sn nanoparticle electrode was used as an example, in a constant applied magnetic field (about 0.9 T), the yield of formic acid can be nearly doubled compared to that of zero magnetic field. This finding suggests the merits of radical pair spin states in the electron-transfer process and paves the way toward high formate production in electrocatalytic reduction of CO2.
Collapse
Affiliation(s)
- Haiping Pan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
- School of Physics and Optoelectronic Engineering , Foshan University , Foshan , Guangdong 528000 , China
| | - XingXing Jiang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xikui Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Qinglong Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
26
|
|
27
|
Lu X, Li M, Wang H, Wang C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00799g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We highlight the recent developments of electrospun nanomaterials with controlled morphology, composition and architecture for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Meixuan Li
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering
- Nanling Campus
- Jilin University
- Changchun 130025
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
28
|
Zhang W, Chavez J, Zeng Z, Bloom B, Sheardy A, Ji Z, Yin Z, Waldeck DH, Jia Z, Wei J. Antioxidant Capacity of Nitrogen and Sulfur Codoped Carbon Nanodots. ACS APPLIED NANO MATERIALS 2018; 1:2699-2708. [PMID: 36938561 PMCID: PMC10022828 DOI: 10.1021/acsanm.8b00404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Carbon nanodots (CNDs) have shown potential for antioxidative activity at the cellular level. Here we applied a facile hydrothermal method to prepare fluorescent nitrogen and sulfur (N,S-)codoped CNDs using α-lipoic acid, citric acid, and urea as precursor molecules. This work describes a comprehensive study for exploring their antioxidation activity using UV-vis absorption and electrochemistry measurements of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), as well as a lucigenin chemiluminescence (lucigenin-CL) assay. The lucigenin-CL assay detects superoxide anion radicals, i.e., reactive oxygen species (ROS) produced through the xanthine/xanthine oxidase (XO) reaction. The electrochemically derived relationship between the unreacted nitrogen-centered DPPH• and CND concentrations agrees with that obtained from UV-vis measurements. A reaction pathway for the ROS antioxidative reaction of N,S-codoped CNDs is proposed. These findings should aid in the development of N,S-codoped CNDs for practical use in biomedical applications.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Brian Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alex Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - David H. Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
29
|
Li XC, She FS, Shen D, Liu CP, Chen LH, Li Y, Deng Z, Chen ZH, Wang HE. Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Adv 2018; 8:28625-28631. [PMID: 35542476 PMCID: PMC9084347 DOI: 10.1039/c8ra04256j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Cost-effective and efficient electrocatalysts for the oxygen reduction reaction (ORR) are crucial for fuel cells and metal–air batteries.
Collapse
Affiliation(s)
- Xue-Cheng Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Fa-Shuang She
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Dong Shen
- Department of Chemistry and Center of Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- China
| | - Chao-Ping Liu
- Department of Physics
- City University of Hong Kong
- China
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhao Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhen-Hua Chen
- Shanghai Synchrotron Radiation Facility (SSRF)
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Hong-En Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|