1
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
2
|
Derflinger C, Kamm B, Paulik C, Meissner G, Spod H. Efficient and Selective Aerobic Oxidation of 5‐hydroxymethylfurfural to 2,5‐diformylfuran at Moderate Reaction Conditions with Design of Experiments Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Derflinger
- Wood K plus - Competence Center for Wood Composites & Wood Chemistry Kompetenzzentrum Holz GmbH Austria
- Institute for Chemical Technology of Organic Materials Johannes Kepler University Linz Altenberger Str., 69 4040 Linz Austria
| | - Birgit Kamm
- Wood K plus - Competence Center for Wood Composites & Wood Chemistry Kompetenzzentrum Holz GmbH Austria
- Brandenburg University of Technology Cottbus-Senftenberg Faculty of Environment and Natural Sciences Cottbus Germany
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials Johannes Kepler University Linz Altenberger Str., 69 4040 Linz Austria
| | - Gisa Meissner
- Heraeus Precious Metals, Heraeus Deutschland GmbH & Co. KG Hanau Germany
| | - Hendrik Spod
- Heraeus Precious Metals, Heraeus Deutschland GmbH & Co. KG Hanau Germany
| |
Collapse
|
3
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Ventura M, Puyol D, Melero J. The synergy of catalysis and biotechnology as a tool to modulate the composition of biopolymers (polyhydroxyalkanoates) with lignocellulosic wastes. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Raja D, Philips A, Sundaramurthy D, Chandru Senadi G. Sustainable Synthesis of 2-Hydroxymethylbenzimidazoles using D-Fructose as a C 2 Synthon. Chem Asian J 2021; 16:3754-3759. [PMID: 34549532 DOI: 10.1002/asia.202100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Indexed: 12/11/2022]
Abstract
D-fructose, a biomass-derived carbohydrate has been identified as an environmentally benign C2 synthon in the preparation of synthetically useful 2-hydroxymethylbenzimidazole derivatives by coupling with 1,2-phenylenediamines. Proof of concept was established by synthesizing 23 examples using BF3 .OEt2 (20 mol%), TBHP (5.5 M, decane) (1.0 equiv.) in CH3 CN at 90 °C for 1 h. The pivotal features of this method include metal-free conditions, short time, good functional group tolerance, gram scale feasibility and the synthesis of benzimidazole fused 1,4-oxazine. Control studies with conventional C2 synthons did not produce the desired product, thus suggesting a new reaction pathway from D-fructose.
Collapse
Affiliation(s)
- Dineshkumar Raja
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| | - Abigail Philips
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| | - Devikala Sundaramurthy
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| | - Gopal Chandru Senadi
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| |
Collapse
|
6
|
Philips A, Raja D, Arumugam A, Lin W, Chandru Senadi G. Copper‐Catalyzed Oxidative C−C Cleavage of Carbohydrates: An Efficient Access to Quinazolinone Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abigail Philips
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Dineshkumar Raja
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| | - Wei‐Yu Lin
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 80708 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| |
Collapse
|
7
|
Song Y, Waterhouse GIN, Han F, Li Y, Ai S. CeO
2
@N/C@TiO
2
Core‐shell Nanosphere Catalyst for the Aerobic Oxidation of 5‐Hydroxymethylfurfural to 5‐Hydroxymethyl‐2‐Furancarboxylic Acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Song
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong P. R. China
| | | | - Feng Han
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong P. R. China
| | - Yan Li
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong P. R. China
| |
Collapse
|
8
|
Wan Y, Lee JM. Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05419] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Wan
- School of Chemical and Biomedical Engineering, Nangyang Technological University, Singapore 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nangyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
9
|
Verma M, Mandyal P, Singh D, Gupta N. Recent Developments in Heterogeneous Catalytic Routes for the Sustainable Production of Succinic Acid from Biomass Resources. CHEMSUSCHEM 2020; 13:4026-4034. [PMID: 32406118 DOI: 10.1002/cssc.202000690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Succinic acid is a "hot molecule" identified by United States Department of Energy as a substitute for petrochemicals with great scope for its production from biomass. It is used as an intermediate for the production of a huge variety of everyday consumer products with an addressable market share of billions of dollars. Succinic acid and its derivatives are mainly used as pharmaceuticals, adhesives, solvents, intermediates for polymer synthesis, and food additives. Succinic acid is commercially produced from petrochemicals and there is a deficiency of economically viable catalytic processes for its large-scale production from biomass. Recently, a lot of biochemical routes have been devised to enhance its production from biomass resources, but such processes are time-consuming and involve tedious separation procedures. Therefore, this Review focuses on metal-based and metal-free heterogeneous catalytic routes for the synthesis of succinic acid from biomass derived products. The presence of uniform channels, cavities, active sites of various strengths, and the unique surface structure of the heterogeneous catalysts are a few of the interesting features that promote their use in industrial processes.
Collapse
Affiliation(s)
- Minal Verma
- School of Chemistry, Faculty of Sciences, Shoolini University, Bajhol, Solan, HP, India
| | - Parteek Mandyal
- School of Chemistry, Faculty of Sciences, Shoolini University, Bajhol, Solan, HP, India
| | - Dilbag Singh
- Department of Environment Science, Central University of Himachal Pradesh, Dharamshala, Kangra, HP, India
| | - Neeraj Gupta
- School of Chemistry, Faculty of Sciences, Shoolini University, Bajhol, Solan, HP, India
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, HP, India
| |
Collapse
|
10
|
|
11
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
12
|
Ayude MA, Doumic LI, Cassanello MC, Nigam KDP. Clean Catalytic Oxidation for Derivatization of Key Biobased Platform Chemicals: Ethanol, Glycerol, and Hydroxymethyl Furfural. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Alejandra Ayude
- INTEMA, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| | - Lucila I. Doumic
- INTEMA, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| | - Miryan C. Cassanello
- Departamento de Industrias and ITAPROQ, Universidad de Buenos Aires, Int. Güiraldes 2620, Buenos Aires, C1428BGA, Argentina
| | - Krishna D. P. Nigam
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey Avenida, Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, México
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
13
|
Wang Z, Guan A, Kung MC, Peng A, Kung HH, Lv X, Zheng G, Qian L. In situ formed Co clusters in selective oxidation of α-C H bond: Stabilizing effect from reactants. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Wang H, Zhu C, Liu Q, Tan J, Wang C, Liang Z, Ma L. Selective Conversion of Cellulose to Hydroxyacetone and 1-Hydroxy-2-Butanone with Sn-Ni Bimetallic Catalysts. CHEMSUSCHEM 2019; 12:2154-2160. [PMID: 30767387 DOI: 10.1002/cssc.201900172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The high-value-added chemicals hydroxyacetone (HA) and 1-hydroxy-2-butanone (HB) were produced from agricultural waste over a Ni3 Sn4 -SnOx catalyst. The Sn-Ni intermetallic compound and SnOx acted as the active sites for HA and HB production by selectively cleaving the target C-C and C-O bonds. Approximately 70 % of the total HA and HB yield was obtained by selective hydrogenolysis of cellulose. This strategy expands the application of cellulose towards renewable production of high-value C3 and C4 keto-alcohols from cellulosic biomass.
Collapse
Affiliation(s)
- Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, P.R. China
| | - Jin Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Zheng Liang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| |
Collapse
|
15
|
Nocito F, Ventura M, Aresta M, Dibenedetto A. Selective Oxidation of 5-(Hydroxymethyl)furfural to DFF Using Water as Solvent and Oxygen as Oxidant with Earth-Crust-Abundant Mixed Oxides. ACS OMEGA 2018; 3:18724-18729. [PMID: 31458437 PMCID: PMC6643482 DOI: 10.1021/acsomega.8b02839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 06/10/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) can be considered a prominent building block: because of the presence of the alcohol and aldehyde moieties, it can be used to generate useful molecules as chemicals of industrial interest with high added value, monomers for polymers, and even fuels. This article shows how building up mixed oxides of different complexities and properties may drive the selectivity toward one of the possible products generated from 5-HMF. In particular, mixed oxides based on cerium and other metals abundant on the earth-crust perform the selective oxidation of 5-HMF to 2,5-diformylfuran (94%), using oxygen as oxidant and water as solvent. The roles of the reaction conditions (temperature, reaction time, oxygen pressure, concentration of the substrate), the chemical composition, the acidic/basic properties, and redox properties of the catalysts are discussed.
Collapse
Affiliation(s)
- Francesco Nocito
- Department
of Chemistry, University of Bari, Campus Universitario, 70126 Bari, Italy
| | | | | | - Angela Dibenedetto
- Department
of Chemistry, University of Bari, Campus Universitario, 70126 Bari, Italy
- CIRCC, Via Celso Ulpiani,
27, 70126 Bari, Italy
| |
Collapse
|
16
|
Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Overview. Catalysts 2018. [DOI: 10.3390/catal8120637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biomass is a plentiful renewable source of energy, food, feed and chemicals. It fixes about 1–2% of the solar energy received by the Earth through photosynthesis in both terrestrial and aquatic plants like macro- and microalgae. As fossil resources deplete, biomass appears a good complement and eventually a good substitute feedstock, but still needs the development of relatively new catalytic processes. For this purpose, catalytic transformations, whether alone or combined with thermal ones and separation operations, have been under study in recent years. Catalytic biorefineries are based on dehydration-hydrations, hydrogenations, oxidations, epimerizations, isomerizations, aldol condensations and other reactions to obtain a plethora of chemicals, including alcohols, ketones, furans and acids, as well as materials such as polycarbonates. Nevertheless, there is still a need for higher selectivity, stability, and regenerability of catalysts and of process intensification by a wise combination of operations, either in-series or combined (one-pot), to reach economic feasibility. Here we present a literature survey of the latest developments for obtaining value-added products using hexoses and pentoses derived from lignocellulosic material, as well as algae as a source of carbohydrates for subsequent transformations.
Collapse
|