1
|
Pratap Singh B, Kumar A, Bal R, Srivastava R. Catalytic Hydrogenation of Lignin Ethers and Bio-Oil Using Non-Noble Cobalt Catalysts. CHEMSUSCHEM 2025:e2402714. [PMID: 40214132 DOI: 10.1002/cssc.202402714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/10/2025] [Indexed: 05/01/2025]
Abstract
The conversion of lignocellulosic biomass into lignin bio-oil and its subsequent upgrading into saturated cyclic products holds considerable promise for applications in the aviation industry. This study reports the synthesis of a defect-enriched monometallic CoOx/Co-350-30 catalyst, which is utilized for hydrogenating lignin-derived molecules and lignin bio-oil obtained via reductive catalytic fractionation (RCF) of wheat straw. Under optimized conditions (180 °C, 2 MPa H2, 2 h), benzyl phenyl ether (BPE) affords complete conversion, yielding ≈99% cyclohexanol and ≈98% methylcyclohexane. RCF of wheat straw (conducted at 230 °C and 3 MPa H2 for 6 h) affords lignin bio-oil containing ≈43% alkyl-substituted phenols. Hydrogenation of the bio-oil using the CoOx/Co-350-30 catalyst (at 250 °C for 2 h at 3 MPa H2) results in ≈98% yield of cyclic aliphatic alcohols. Comparative studies with commercial 5%Ru/C reveal that the CoOx/Co-350-30 catalyst produced products with lower oxygen functionalities and fewer native lignin linkages. Comprehensive catalyst characterizations and activity tests were conducted to propose a plausible reaction mechanism for BPE hydrogenation. The cobalt-based catalyst, devoid of noble metals, provides a sustainable and cost-effective method for biomass conversion into fuel-range products, addressing the growing industry demand for more efficient catalytic processes.
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Atul Kumar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Rajaram Bal
- Nanocatalysis Area Conversion and Catalysis Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
2
|
Wang S, Li X, Ma R, Song G. Catalytic Hydrogenolysis of Lignin into Serviceable Products. Acc Chem Res 2025; 58:529-542. [PMID: 39908014 DOI: 10.1021/acs.accounts.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
ConspectusLignin, a major component of lignocellulosic biomass, accounts for nearly 30% of organic carbon on Earth, making it the most abundant renewable source of aromatic carbon. The valorization of lignin beyond low-value heat and power has been one of the foremost challenges for a long time. On the other hand, aromatic compounds, constituting a substantial segment of the chemical industry and projected to reach a market value of $382 billion by 2030, are predominantly derived from fossil resources, contributing to increased CO2 emissions. Integrating lignin into the aromatic chemical supply chain will offer a promising strategy to reduce the carbon footprint and boost the economic viability of biorefineries. Thus, depolymerizing lignin biopolymers into aromatic chemicals suitable for downstream processing is an important starting point for its valorization. However, owing to lignin's complexity and heterogeneity, achieving efficient and selective depolymerization that yields desirable, isolable aromatic monomers remains a significant scientific challenge.The structure of lignins varies significantly in terms of subunits and linkages across plant species, leading to considerable differences in their reactivity, in the distribution of resulting monomers, and in their subsequent utilization. In this context, this Account highlights our recent studies on the catalytic hydrogenolysis of lignin into serviceable products for preparing valuable materials, fuels, and chemicals. First, we designed a series of catalytic systems for lignin hydrogenolysis specifically tailored to the structural features of lignin from wood, grass, and certain seed coats. To reduce reliance on expensive commercial catalysts like Pd/C, Ru/C, and Pt/C, we advanced heterogeneous metal catalysts by shifting from high-loaded nanostructured metals to low-loaded, atomically dispersed metals and replacing precious metals with nonprecious alternatives. This approach significantly reduces the cost of catalysts, enhances their atomic economy, and improves their catalytic activity and/or selectivity. Then, using the developed catalysts, phenolic monomers tethering a distinct side chain were selectively generated from the hydrogenolysis of lignin (from various plants), achieving yields close to the theoretical maximum. The high selectivity allowed the separation and purification of monomeric phenols from lignin reaction mixtures readily. To gain deeper insights into the cleavage of lignin C-O bonds, we designed deuterium-incorporated β-O-4 mimics (dimers and one polymer) for a mechanistic study, which excluded the pathways involving the loss of linkage protons and led to the proposal of a concerted hydrogenolysis process for β-O-4 cleavage. Finally, to enable the utilization of depolymerized lignin phenolic monomers, unconventional feedstocks in the current chemical industry, we developed a series of methods to transform them into valuable bioactive molecules, functional materials, and high-energy fuels. Overall, these contributions opened new avenues for converting lignin into serviceable products, encompassing upstream processing and downstream applications.
Collapse
Affiliation(s)
- Shuizhong Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiancheng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rumin Ma
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guoyong Song
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
4
|
Medarević D, Čežek M, Knežević A, Turković E, Barudžija T, Samardžić S, Maksimović Z. From Field to Pharmacy: Isolation, Characterization and Tableting Behaviour of Microcrystalline Cellulose from Wheat and Corn Harvest Residues. Pharmaceutics 2024; 16:1090. [PMID: 39204435 PMCID: PMC11359045 DOI: 10.3390/pharmaceutics16081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
A lack of strategies for the utilization of harvest residues (HRs) has led to serious environmental problems due to an accumulation of these residues or their burning in the field. In this study, wheat and corn HRs were used as feedstock for the production of microcrystalline cellulose (MCC) by treatment with 2-8% sodium hydroxide, 10% hydrogen peroxide and further hydrolysis with 1-2 M hydrochloric acid. The changes in the FT-IR spectra and PXRD diffractograms after chemical treatment confirmed the removal of most of the lignin, hemicellulose and amorphous fraction of cellulose. A higher degree of crystallinity was observed for MCC obtained from corn HRs, which was attributed to a more efficient removal of lignin and hemicellulose by a higher sodium hydroxide concentration, which facilitates the dissolution of amorphous cellulose during acid hydrolysis. MCC obtained from HRs exhibited lower bulk density and poorer flow properties but similar or better tableting properties compared to commercial MCC (CeolusTM PH101). The lower ejection and detachment stress suggests that MCC isolated from HRs requires less lubricant compared to commercial MCC. This study showed that MCC isolated from wheat and corn HRs exhibits comparable tableting behaviour like commercial sample, further supporting this type of agricultural waste utilization.
Collapse
Affiliation(s)
- Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Maša Čežek
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandar Knežević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia;
| | - Erna Turković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Tanja Barudžija
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Belgrade, Serbia
| | - Stevan Samardžić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
5
|
Biswas B, Sakhakarmy M, Rahman T, Jahromi H, Adhikari S, Krishna BB, Bhaskar T, Baltrusaitis J, Eisa M, Kouzehkanan SMT, Oh TS. Selective production of phenolic monomer via catalytic depolymerization of lignin over cobalt-nickel-zirconium dioxide catalyst. BIORESOURCE TECHNOLOGY 2024; 398:130517. [PMID: 38437961 DOI: 10.1016/j.biortech.2024.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether β-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.
Collapse
Affiliation(s)
- Bijoy Biswas
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Manish Sakhakarmy
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Tawsif Rahman
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Hossein Jahromi
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Sushil Adhikari
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA.
| | - Bhavya B Krishna
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Pennsylvania 18015, USA
| | - Mohamed Eisa
- Department of Chemical and Biomolecular Engineering, Lehigh University, Pennsylvania 18015, USA
| | | | - Tae-Sik Oh
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
BAKER MT, OGUNTOYE OS. Physical and Spectroscopic Characterization of the Microcrystalline Cellulose Derivatives from Corn Cob and Daniella Oliveri Wastes. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellulose was extracted from wood dust waste samples of Daniella oliveri and corn cobs by acetic acid and alkaline pretreatment methods, while microcrystalline cellulose (MCC) derivative was produced by acid hydrolysis in 2 M HCl. The samples were tested for pH, moisture content, swelling capacities and ash contents. The data obtained were compared with those of commercial MCCs found in the literature. The functional groups in the microcrystalline cellulose derivatives was confirmed by the Fourier transform infrared (FTIR) spectroscopic method with characteristic absorption bands of;–OH stretching at 3416 cm-1; C-H stretching at 2918 cm-1; -OH bending at 1377 cm-1; 1159 cm-1; and C-O-C pyranose ring skeletal vibrations at 1026-1033 cm-1. The crystallinity absorption bands appeared at 1436 and 850 cm-1. The characteristic morphological features were established by scanning electron microscopy (SEM). Furthermore, the crystallinity of the microcrystalline cellulose was further confirmed using the X-ray powder diffraction (X-RD) technique, which showed three main reflections at 2θ=14.70°, 22.09°, and 34.24°.These results supported that microcrystalline cellulose derivative as cellulose I type and the acid pretreatment did not affect the structure of the MCC. The crystallinity indices were 69.3 and 73.2%, respectively. Daniella Oliveri and corn cob microcrystalline cellulose are, therefore, potential materials for further processing.
Collapse
|
7
|
Hossain MA, Saelee T, Tulaphol S, Rahaman MS, Phung TK, Maihom T, Praserthdam P, Praserthdam S, Yelle DJ, Sathitsuksanoh N. Catalytic hydrogenolysis of lignin into phenolics by internal hydrogen over Ru catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Thanh Khoa Phung
- Vietnam National University Ho Chi Minh City University of Science: University of Science Science and Technology VIET NAM
| | | | | | | | - Daniel J. Yelle
- Department of Agriculture Forest Biopolymer Science and Engineering UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
8
|
Song W, Du Q, Li X, Wang S, Song G. Sustainable Production of Bioactive Molecules from C-Lignin-Derived Propenylcatechol. CHEMSUSCHEM 2022; 15:e202200646. [PMID: 35548878 DOI: 10.1002/cssc.202200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Catechyl lignin (C-lignin) is a naturally occurring linear homogeneous biopolymer composed solely of caffeyl alcohol subunits with cleavable benzodioxane linkages. The inherent structural features of propenylcatechol, a direct depolymerized product of castor seed coats C-lignin, render it a sustainable and promising platform for the synthesis of bioactive molecules. Herein, diversified transformations of propenylcatechol, including C=C bond difunctionalization, β-modification, β,γ-rearrangement, and γ-methyl derivatization, were reported based on known or developed methods. A series of functional molecular skeletons involved in the current synthetic routes for the preparation of pharmaceuticals and bioactive molecules were obtained. Starting from castor seed coats, annuloline (natural product) and CC-5079 (antitumor) were synthesized using facile and inexpensive reagents in only four- and five-sequence reactions, respectively, thereby demonstrating a superior step-efficiency to that of reported synthetic routes. Almost all atoms in the C-lignin biopolymer were incorporated into the final products owing to the intrinsic structures of naturally occurring C-lignin. Bioactive molecules produced from C-lignin integrate a low-carbon footprint with high-quality and economical manufacture of pharmaceuticals.
Collapse
Affiliation(s)
- Weihong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- Institute of Drug Discovery Technology Institution, Ningbo University, Ningbo, 315000, P. R. China
| | - Qinglian Du
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiancheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
Miroshnikova AV, Kazachenko AS, Kuznetsov BN, Taran OP. Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Su S, Xiao LP, Chen X, Wang S, Chen XH, Guo Y, Zhai SR. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. CHEMSUSCHEM 2022; 15:e202200365. [PMID: 35438245 DOI: 10.1002/cssc.202200365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Lignin-first depolymerization of lignocellulosic biomass into aromatics is of great significance to sustainable biorefinery. However, it remains a challenge, owing to the variance between lignin sources and structures. In this study, ruthenium supported on carbon nanotubes (Ru/CNT) exhibits efficient catalytic activity toward lignin hydrogenolysis to exclusively afford monophenols in high yields. Catalytic tests indicate that the yields of aromatic monomers are related to lignin sources and decrease in the order: hardwoods > herbaceous plants > softwoods. Experimental results demonstrate that the scission of C-O bonds and the high selectivity to monomeric aromatic compounds over the Ru/CNT catalyst are enhanced by avoiding side condensation. Furthermore, the fabricated Ru/CNT shows good reusability and recyclability, applicability, and biomass feedstock compatibility, rendering it a promising candidate for lignin valorization. These findings pave the way for rational design of highly active and stable catalysts to potentially address challenges in lignin chemistry.
Collapse
Affiliation(s)
- Shihao Su
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xue Chen
- Department of Life Science and Engineering, Jining University, Jining, 273155, P. R. China
| | - Shuizhong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiao-Hong Chen
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shang-Ru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
11
|
Wu Y, Huang Z, Lv K, Rao Y, Chen Z, Zhang J, Long J. Producing Methyl p-Coumarate from Herbaceous Lignin via a "Clip-Off" Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5624-5633. [PMID: 35473308 DOI: 10.1021/acs.jafc.1c08353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the most abundant renewable aromatic resource on Earth, lignin is a preferred starting material for producing bulk chemicals via a sustainable route. In this study, we provide a novel and efficient "clip-off" approach for producing methyl p-coumarate, an important and versatile fine chemical by selective cleavage of the ester linkage in herbaceous lignin in the presence of commercial metal chlorides. When bagasse lignin was depolymerized at 155 °C for 4 h, a 12.7% yield of aromatic chemicals was obtained in the presence of CuCl2, 71.7% of which was identified as methyl p-coumarate (the yield was 9.1%). Further investigation of the structural evolution of lignin revealed that the ester linkages in lignin were efficiently broken via intensive transesterification with methanol accompanied by the simultaneous weakening of the inter-/intramolecular hydrogen bonds. Moreover, this observation of selective cleavage of ester linkages could be further confirmed by the conversion of model compounds with characteristic bonds under identical reaction conditions. Therefore, this work provides a new insight into the production of value-added chemicals from renewable resources.
Collapse
Affiliation(s)
- Yuanhao Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhechao Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaiqi Lv
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinan Rao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China
| | - Jiaheng Zhang
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Li P, Ren J, Jiang Z, Huang L, Wu C, Wu W. Review on the preparation of fuels and chemicals based on lignin. RSC Adv 2022; 12:10289-10305. [PMID: 35424980 PMCID: PMC8972114 DOI: 10.1039/d2ra01341j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Lignin is by far the most abundant natural renewable aromatic polymer in nature, and its reserves are second only to cellulose. In addition to the rich carbon content, the structure of lignin contains functional groups such as benzene rings, methoxyl groups, and phenolic hydroxyl groups. Lignin degradation has become one of the high value, high quality and high efficiency methods to convert lignin, which is of great significance to alleviating the current energy shortage and environmental crisis. This article introduces the hydrolysis methods of lignin in acidic, alkaline, ionic liquids and supercritical fluids, reviews the heating rate, the source of lignin species and the effects of heating rate on the pyrolysis of lignin, and briefly describes the metal catalysis, oxidation methods such as electrochemical degradation and photocatalytic oxidation, and degradation reduction methods using hydrogen and hydrogen supply reagents. The lignin degradation methods for the preparation of fuels and chemicals are systematically summarized. The advantages and disadvantages of different methods, the selectivity under different conditions and the degradation efficiency of different catalytic combination systems are compared. In this paper, a new approach to improve the degradation efficiency is envisioned in order to contribute to the efficient utilization and high value conversion of lignin.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Zhengwei Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Lijing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
13
|
Ding T, Wu Y, Zhu X, Lin G, Hu X, Sun H, Huang Y, Zhang S, Zhang H. Promoted Production of Phenolic Monomers from Lignin-First Depolymerization of Lignocellulose over Ru Supported on Biochar by N,P- co-Doping. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:2343-2354. [DOI: 10.1021/acssuschemeng.1c06335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tao Ding
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yishuang Wu
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xun Zhu
- Department of Chemistry, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Guiying Lin
- College of Urban and Environmental Sciences, Hubei Normal University, No.1, Cihu Road 1, Huangshi 430052, Hubei, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shu Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Hong Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
14
|
Chen X, Zhu J, Song W, Xiao LP. Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Front Bioeng Biotechnol 2022; 9:803138. [PMID: 35004655 PMCID: PMC8733694 DOI: 10.3389/fbioe.2021.803138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022] Open
Abstract
A novel cascade biorefinery strategy toward phenolic monomers and carbon quantum dots (CQDs) is proposed here via coupling catalytic hydrogenolysis and hydrothermal treatment. Birch wood was first treated with catalytic hydrogenolysis to afford a high yield of monomeric phenols (44.6 wt%), in which 4-propanol guaiacol (10.2 wt%) and 4-propanol syringol (29.7 wt%) were identified as the two major phenolic products with 89% selectivity. An available carbohydrate pulp retaining 82.4% cellulose and 71.6% hemicellulose was also obtained simultaneously, which was further used for the synthesis of CQDs by a one-step hydrothermal process. The as-prepared CQDs exhibited excellent selectivity and detection limits for several heavy metal cations, especially for Fe3+ ions in an aqueous solution. Those cost-efficient CQDs showed great potential in fluorescent sensor in situ environmental analyses. These findings provide a promising path toward developing high-performance sensors on environmental monitoring and a new route for the high value-added utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Xue Chen
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Jiubin Zhu
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Wenlu Song
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.,Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Gao W, Wang K, Wu Y, Zhu X, Wu Y, Zhang S, Li B, Huang Y, Zhang S, Zhang H. Catalytic hydrogenolysis of lignin to phenolic monomers over Ru supported N,S-co-doped biochar: The importance of doping atmosphere. Front Chem 2022; 10:1022779. [PMID: 36176895 PMCID: PMC9513433 DOI: 10.3389/fchem.2022.1022779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] Open
Abstract
Doping of heteroatoms into carbon materials is a popular method to modify their physicochemical structures and has been widely used in the fields of energy conversion and storage. This study aims to investigate the effect of doping atmosphere on the catalytic performance of nitrogen and sulfur co-doped biochar supported Ru in the production of phenolic monomers from lignin hydrogenolysis. The results showed that the catalyst prepared under CO2 atmosphere (Ru@CNS-CO2) was able to produce phenolic monomers from corncob lignin with a yield up to 36.41 wt%, which was significantly higher than that from the run over N2-prepared catalyst (Ru@CNS-N2). The characterization of the catalysts demonstrated that the CNS-CO2 support had a larger specific surface area, richer C=S and C-S groups, and higher oxygen content than CNS-N2, resulting in finer Ru particles and more Ru0 content on the CNS-CO2 support. The Ru@CNS-CO2 catalyst exhibited high activity in hydrogenation and fragmentation of β-O-4 linkages.
Collapse
Affiliation(s)
- Wenran Gao
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ke Wang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yishuang Wu
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xun Zhu
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong, China
| | - Yinlong Wu
- Hefei Debo Bioenergy Science & Technology Co., Ltd., Hefei, Anhui, China
| | - Shoujun Zhang
- Hefei Debo Bioenergy Science & Technology Co., Ltd., Hefei, Anhui, China
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
- *Correspondence: Yong Huang, ; Shu Zhang,
| | - Shu Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
- *Correspondence: Yong Huang, ; Shu Zhang,
| | - Hong Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Ahorsu R, Constanti M, Medina F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Richard Ahorsu
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Magda Constanti
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Francesc Medina
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| |
Collapse
|
17
|
Wang Z, Deuss PJ. Catalytic Hydrogenolysis of Lignin: The Influence of Minor Units and Saccharides. CHEMSUSCHEM 2021; 14:5186-5198. [PMID: 34398518 PMCID: PMC9293178 DOI: 10.1002/cssc.202101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The precise elucidation of native lignin structures plays a vital role for the development of "lignin first" strategies such as reductive catalytic fractionation. The structure of lignin and composition of the starting material has a major impact on the product yield and distribution. Here, the differences in structure of lignin from birch, pine, reed, and walnut shell were investigated by combining detailed analysis of the whole cell wall material, residual enzyme lignin, and milled wood lignin. The results of the 2D heteronuclear single quantum coherence NMR analysis could be correlated to the product from Ru/C-catalyzed hydrogenolysis if monomeric products from ferulate and p-coumaryl and its analogous units were also appropriately considered. Notably, residual polysaccharide constituents seemed to influence the selectivity towards hydroxy-containing monomers. The results reinforced the importance of adequate structural characterization and compositional analysis of the starting materials as well as distinct (dis)advantages of specific types of structural characterization and isolation methods for guiding valorization potential of different biomass feedstocks.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
18
|
Kuznetsov B, Sharypov V, Baryshnikov S, Miroshnikova A, Taran O, Yakovlev V, Lavrenov A, Djakovitch L. Catalytic hydrogenolysis of native and organosolv lignins of aspen wood to liquid products in supercritical ethanol medium. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Jose A, Pai SDKR, Pinheiro D, Kasinathan K. Visible light photodegradation of organic dyes using electrochemically synthesized MoO 3/ZnO. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52202-52215. [PMID: 34003439 DOI: 10.1007/s11356-021-14311-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, flake-like MoO3-ZnO composite was prepared using a simple and robust electrochemical setup. The composite was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, photoluminescence, zeta potential analysis, and electrochemical impedance study. The modified ZnO shows a remarkable catalytic activity towards the photodegradation of three potentially hazardous dyes, malachite green, crystal violet, and methylene blue. More than 95% of both malachite green and crystal violet degraded within 140 min under visible light irradiation. Scavenger studies reveal that OH· radicals produced by the photo-separated charges on MoO3-ZnO are responsible for the degradation of all three dyes. The photoactive charge carriers show less recombination rate as evidenced by the photoluminescence spectrum due to the interparticle charge migration process. This work suggests a new versatile procedure for the synthesis of MoO3-ZnO composites and establishes its photocatalytic efficacy under visible light with three common pollutant dyes found in wastewater.
Collapse
Affiliation(s)
- Ajay Jose
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | | | - Dephan Pinheiro
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Karthik Kasinathan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| |
Collapse
|
20
|
Gong X, Sun J, Xu X, Wang B, Li H, Peng F. Molybdenum-catalyzed hydrogenolysis of herbaceous biomass: A procedure integrated lignin fragmentation and components fractionation. BIORESOURCE TECHNOLOGY 2021; 333:124977. [PMID: 33872998 DOI: 10.1016/j.biortech.2021.124977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, a low-cost MoO2/C catalyst was prepared for the reductive catalytic fractionation (RCF) of various herbaceous biomass feedstocks (Miscanthus, Triarrhena, Floridulus, Sorghum stem and Corncob). Phenolic monomers from the hydrogenolysis of lignin component were obtained in up to 26.4 wt%, with high selectivity towards methyl coumarate (33%) and methyl ferulate (24%). The RCF left solid carbohydrate pulps with high retentions (up to 87%), which were suitable for enzymatic hydrolysis. The reaction conditions, including temperature, time, H2 pressure, and sawdust size were examined in terms of monophenols yield, selectivity, delignification and sugar retention. This study showed that MoO2/C could function as an excellent catalyst for lignin fragmentation as well as the fractionation of herbaceous biomass components.
Collapse
Affiliation(s)
- Xue Gong
- College of Science, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jiankui Sun
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Tangshan 063210, People's Republic of China
| | - Xiangya Xu
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, People's Republic of China
| | - Bo Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
21
|
Zhang K, Sun Q, Wei L, Sun J, Li K, Zhang J, Zhai S, An Q. Characterization of lignin streams during ionic liquid/hydrochloric acid/formaldehyde pretreatment of corn stalk. BIORESOURCE TECHNOLOGY 2021; 331:125064. [PMID: 33812746 DOI: 10.1016/j.biortech.2021.125064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This work investigated the role of formaldehyde (FA) in lignin anti-condensation during corn stalk pretreatment based on 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)/hydrochloric acid (HCl). As a result of the aldolization reactions between FA and lignin, the condensation of lignin fragments was inhibited, and lignin remained in soluble fragmental molecules. Characterizations on the compositional and structural changes of lignin and its degraded products during pretreatment (80 °C-100 °C, 2-5 h) with FA addition in comparison with those in DO/HCl/FA or [C4C1im]Cl/HCl were conducted. Results revealed that the structural features of lignin were affected by FA addition and solvent type. In the [C4C1im]Cl/HCl/FA system, FA stabilization was unfavorable for the cleavage of β-O-4' bonds and lignin with low S/G ratio (3.4) and high molecular weight (Mw = 9920 g·mol-1) was extracted. The compositions of degraded products were considerably affected by FA addition.
Collapse
Affiliation(s)
- Kaili Zhang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China
| | - Qingqin Sun
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China
| | - Ligang Wei
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China
| | - Jian Sun
- School of Life Sciences, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China.
| | - Kunlan Li
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China
| | - Junwang Zhang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China
| | - Shangru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China
| | - Qingda An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Light Industry Court, Ganjingzi District, Dalian 116034, PR China.
| |
Collapse
|
22
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
23
|
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr Polym 2021; 261:117884. [PMID: 33766371 DOI: 10.1016/j.carbpol.2021.117884] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Due to over-consumption of fossil resources and environmental problems, lignocellulosic biomass as the most abundant and renewable materials is considered as the best candidate to produce biomaterials, biochemicals, and bioenergy, which is of strategic significance and meets the theme of Green Chemistry. Highly efficient and green fractionation of lignocellulose components significantly boosts the high-value utilization of lignocellulose and the biorefinery development. However, heterogeneity of lignocellulosic structure severely limited the lignocellulose fractionation. This paper offers the summary and perspective of the extensive investigation that aims to give insight into the lignocellulose prior-fractionation. Based on the role and structure of lignocellulose component in the plant cell wall, lignocellulose prior-fractionation can be divided into cellulose-first strategy, hemicelluloses-first strategy, and lignin-first strategy, which realizes the selective dissociation and transformation of a component in lignocellulose. Ultimately, the challenges and opportunities of lignocellulose prior-fractionation are proposed on account of the existing problems in the biorefining valorization.
Collapse
Affiliation(s)
- Xiaojun Shen
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
24
|
Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Flourat AL, Combes J, Bailly-Maitre-Grand C, Magnien K, Haudrechy A, Renault JH, Allais F. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production? CHEMSUSCHEM 2021; 14:118-129. [PMID: 33058548 DOI: 10.1002/cssc.202002141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Indexed: 06/11/2023]
Abstract
p-Hydroxycinnamic acids (i. e., p-coumaric, ferulic, sinapic, and caffeic acids) are phenolic compounds involved in the biosynthesis pathway of lignin. These naturally occurring molecules not only exhibit numerous attractive properties, such as antioxidant, anti-UV, and anticancer activities, but they also have been used as building blocks for the synthesis of tailored monomers and functional additives for the food/feed, cosmetic, and plastics sectors. Despite their numerous high value-added applications, the sourcing of p-hydroxycinnamic acids is not ensured at the industrial scale except for ferulic acid, and their production cost remains too high for commodity applications. These compounds can be either chemically synthesized or extracted from lignocellulosic biomass, and recently their production through bioconversion emerged. Herein the different strategies described in the literature to produce these valuable molecules are discussed.
Collapse
Affiliation(s)
- Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Jeanne Combes
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | | | - Kévin Magnien
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Arnaud Haudrechy
- Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, F-51097, REIMS Cedex, France
| | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, F-51097, REIMS Cedex, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| |
Collapse
|
26
|
Sun Z, Cheng J, Wang D, Yuan TQ, Song G, Barta K. Downstream Processing Strategies for Lignin-First Biorefinery. CHEMSUSCHEM 2020; 13:5199-5212. [PMID: 32748524 DOI: 10.1002/cssc.202001085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Indexed: 05/14/2023]
Abstract
The lignin-first strategy has emerged as one of the most powerful approaches for generating novel platform chemicals from lignin by efficient depolymerization of native lignin. Because of the emergence of this novel depolymerization method and the definition of viable platform chemicals, future focus will soon shift towards innovative downstream processing strategies. Very recently, many interesting approaches have emerged that describe the production of valuable products across the whole value chain, including bulk and fine chemical building blocks, and several concrete examples have been developed for the production of polymers, pharmaceutically relevant compounds, or fuels. This Minireview provides an overview of these recent advances. After a short summary of catalytic systems for obtaining aromatic monomers, a comprehensive discussion on their separation and applications is given. This Minireview will fill the gap in biorefinery between deriving high yields of lignin monomers and tapping into their potential for making valuable consumer products.
Collapse
Affiliation(s)
- Zhuohua Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Jinling Cheng
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Dingsheng Wang
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Tong-Qi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Katalin Barta
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 TC, Groningen (The, Netherlands
| |
Collapse
|
27
|
|
28
|
Li H, Song G. Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated β-O-4 Mimics. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02339] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Helong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
| |
Collapse
|
29
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. CHEMSUSCHEM 2020; 13:4296-4317. [PMID: 32662564 PMCID: PMC7540457 DOI: 10.1002/cssc.202001213] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Indexed: 05/05/2023]
Abstract
The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Florent P. Bouxin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jiajun Fan
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Vitaliy L. Budarin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
| | - James H. Clark
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
30
|
Wang S, Li WX, Yang YQ, Chen X, Ma J, Chen C, Xiao LP, Sun RC. Unlocking Structure-Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. CHEMSUSCHEM 2020; 13:4548-4556. [PMID: 32419330 DOI: 10.1002/cssc.202000785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Lignin depolymerization into aromatic monomers with high yields and selectivity is essential for the economic feasibility of biorefinery. However, the relationship between lignin structure and its reactivity for upgradeability is still poorly understood, in large part owing to the difficulty in quantitative characterization of lignin structural properties. To overcome these shortcomings, advanced NMR technologies [2D HSQC (heteronuclear single quantum coherence) and 31 P] were used to accurately quantify lignin functionalities. Diverse lignin samples prepared from Eucalyptus grandis with varying β-O-4 linkages were subjected to Pd/C-catalyzed hydrogenolysis for efficient C-O bond cleavage to achieve theoretical monomer yields. Strong correlations were observed between the yield of monomeric aromatic compounds and the structural features of lignin, including the contents of β-O-4 linkages and phenolic hydroxyl groups. Notably, a combined yield of up to 44.1 wt % was obtained from β-aryl ether rich in native lignin, whereas much lower yields were obtained from technical lignins low in β-aryl ether content. This work quantitatively demonstrates that the lignin reactivity for acquiring aromatic monomer yields varies depending on the lignin fractionation processes.
Collapse
Affiliation(s)
- Shuizhong Wang
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Wen-Xin Li
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yue-Qin Yang
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaohong Chen
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiliang Ma
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Changzhou Chen
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Ling-Ping Xiao
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Run-Cang Sun
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
31
|
Li ZM, Long JX, Zeng Q, Wu YH, Cao ML, Liu SJ, Li XH. Production of Methyl p-Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhang-min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jin-xing Long
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuan-hao Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ming-long Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Si-jie Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xue-hui Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
32
|
Korányi TI, Fridrich B, Pineda A, Barta K. Development of 'Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass. Molecules 2020; 25:E2815. [PMID: 32570887 PMCID: PMC7356833 DOI: 10.3390/molecules25122815] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/20/2023] Open
Abstract
Currently, valorization of lignocellulosic biomass almost exclusively focuses on the production of pulp, paper, and bioethanol from its holocellulose constituent, while the remaining lignin part that comprises the highest carbon content, is burned and treated as waste. Lignin has a complex structure built up from propylphenolic subunits; therefore, its valorization to value-added products (aromatics, phenolics, biogasoline, etc.) is highly desirable. However, during the pulping processes, the original structure of native lignin changes to technical lignin. Due to this extensive structural modification, involving the cleavage of the β-O-4 moieties and the formation of recalcitrant C-C bonds, its catalytic depolymerization requires harsh reaction conditions. In order to apply mild conditions and to gain fewer and uniform products, a new strategy has emerged in the past few years, named 'lignin-first' or 'reductive catalytic fractionation' (RCF). This signifies lignin disassembly prior to carbohydrate valorization. The aim of the present work is to follow historically, year-by-year, the development of 'lignin-first' approach. A compact summary of reached achievements, future perspectives and remaining challenges is also given at the end of the review.
Collapse
Affiliation(s)
- Tamás I. Korányi
- Surface Chemistry and Catalysis Department, Centre for Energy Research, Konkoly Thege M. u. 29-33, 1121 Budapest, Hungary
| | - Bálint Fridrich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (B.F.); (K.B.)
| | - Antonio Pineda
- Department of Organic Chemistry, University of Cordoba, Ed. Marie Curie (C 3), Campus of Rabanales, Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain;
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (B.F.); (K.B.)
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
33
|
Li Y, Pascal K, Jin XJ. Ni–Mo modified metal–organic frameworks for high-performance supercapacitance and enzymeless H 2O 2 detection. CrystEngComm 2020. [DOI: 10.1039/d0ce00666a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The growth process for A(B)-NixMoy-MOFs@AAC hybrids.
Collapse
Affiliation(s)
- Yue Li
- Beijing Forestry University
- Beijing
- China
| | - Kamdem Pascal
- School of Packaging Michigan State University
- East Lansing
- USA
| | | |
Collapse
|
34
|
Chen X, Zhang K, Xiao LP, Sun RC, Song G. Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:2. [PMID: 31921351 PMCID: PMC6943948 DOI: 10.1186/s13068-019-1644-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lignocellulosic biomass, which is composed of cellulose, hemicellulose and lignin, represents the most abundant renewable carbon source with significant potential for the production of sustainable chemicals and fuels. Current biorefineries focus on cellulose and hemicellulose valorization, whereas lignin is treated as a waste product and is burned to supply energy to the biorefineries. The depolymerization of lignin into well-defined mono-aromatic chemicals suitable for downstream processing is recognized increasingly as an important starting point for lignin valorization. In this study, conversion of all three components of Eucalyptus grandis into the corresponding monomeric chemicals was investigated using solid and acidic catalyst in sequence. RESULTS Lignin was depolymerized into well-defined monomeric phenols in the first step using a Pd/C catalyst. The maximum phenolic monomers yield of 49.8 wt% was achieved at 240 °C for 4 h under 30 atm H2. In the monomers, 4-propanol guaiacol (12.9 wt%) and 4-propanol syringol (31.9 wt%) were identified as the two major phenolic products with 90% selectivity. High retention of cellulose and hemicellulose pulp was also obtained, which was treated with FeCl3 catalyst to attain 5-hydroxymethylfurfural, levulinic acid and furfural simultaneously. The optimal reaction condition for the co-conversion of hemicellulose and cellulose was established as 190 °C and 100 min, from which furfural and levulinic acid were obtained in 55.9% and 73.6% yields, respectively. Ultimately, 54% of Eucalyptus sawdust can be converted into well-defined chemicals under such an integrated biorefinery method. CONCLUSIONS A two-step process (reductive catalytic fractionation followed by FeCl3 catalysis) allows the fractionation of all the three biopolymers (cellulose, hemicellulose, and lignin) in Eucalyptus biomass, which provides a promising strategy to make high-value chemicals from sustainable biomass.
Collapse
Affiliation(s)
- Xue Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Kaili Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Ling-Ping Xiao
- Center for Lignocellulose Science and Engineering, Liaoning Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, Liaoning Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
35
|
Zhang K, Li H, Xiao LP, Wang B, Sun RC, Song G. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. BIORESOURCE TECHNOLOGY 2019; 285:121335. [PMID: 31003204 DOI: 10.1016/j.biortech.2019.121335] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 05/11/2023]
Abstract
Reductive catalytic fractionation (RCF) has emerged as a new biorefinery paradigm for the fractionation and sequential utilization of entire components of biomass. Herein, we investigated the RCF of bamboo, a highly abundant herbaceous feedstock, in the presence of Pd/C catalyst. The lignin fraction in bamboo was preferentially depolymerized into well-defined low-molecular-weight phenols, with leaving carbohydrates pulp as a solid residue. In the soluble fraction, four major phenolic compounds, e.g., methyl coumarate/ferulate derived from hydroxycinnamic units and propanol guaiacol/syringol derived from β-O-4 units, were generated up to 41.7 wt% yield based on original lignin content. In the insoluble fraction, the carbohydrates of bamboo were recovered with high retentions of cellulose (68%) and hemicellulose (49%), which upon treatment with enzyme gave glucose (90%) and xylose (85%). Overall, the three major components of bamboo could efficient to be fractionated and converted into useful platform chemicals on the basis of this study.
Collapse
Affiliation(s)
- Kaili Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ling-Ping Xiao
- Center for Lignocellulose Science and Engineering, Liaoning Key Laboratory of Pulp and Papermaking Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Bo Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, Liaoning Key Laboratory of Pulp and Papermaking Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Abstract
Obtaining renewable fuels and chemicals from lignin is an important challenge in the use of biomass to achieve sustainability and energy goals. At present, acid-based catalysts for lignin depolymerization are considered to be a potential but challenging way to produce low-molecular-mass aromatic chemicals. The main concerns with the use of Lewis acids and zeolite catalysts are the corrosive nature of the acids, the possible formation of unwanted byproducts, and the possible formation of harsh reaction conditions. We achieved high-yield conversion using phosphotungstic acid (PTA) polyoxometalate catalysts in ethanol/water under different reaction conditions with little formation of bio-char. The monomeric products were mainly composed of various types of aromatic compounds. Our method does not require the use of precious metals and harsh reaction conditions—it only requires relatively mild reaction conditions and homogeneous catalysis—thereby greatly reducing operating costs and increasing the yields. Therefore, this PTA catalyst, which has excellent performance in bulrush lignin catalysis, would be a good alternative to the traditional catalysts used in lignin depolymerization and have wide application in biomass use.
Collapse
|
37
|
Li H, Song G. Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
38
|
Renders T, Van den Bossche G, Vangeel T, Van Aelst K, Sels B. Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Curr Opin Biotechnol 2019; 56:193-201. [PMID: 30677700 DOI: 10.1016/j.copbio.2018.12.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023]
Abstract
Reductive catalytic fractionation (RCF) of lignocellulose is an emerging biorefinery scheme that combines biomass fractionation with lignin depolymerisation. Central to this scheme is the integration of heterogeneous catalysis, which overcomes the tendency of lignin to repolymerise. Ultimately, this leads to a low-Mw lignin oil comprising a handful of lignin-derived monophenolics in close-to-theoretical yield, as well as a carbohydrate pulp. Both product streams are considered to be valuable resources for the bio-based chemical industry. This Opinion article sheds light on recently achieved milestones and consequent research opportunities. More specifically, mechanistic studies have established a general understanding of the elementary RCF steps, which include (i) lignin extraction, (ii) solvolytic and catalytic depolymerisation and (iii) stabilisation. This insight forms the foundation for recently developed flow-through RCF. Compared to traditional batch, flow-through RCF has the advantage of (i) separating the solvolytic steps from the catalytic steps and (ii) being a semi-continuous process; both of which are beneficial for research purposes and for industrial operation. Although RCF has originally been developed for 'virgin' biomass, researchers have just begun to explore alternative feedstocks. Low-value biomass sources such as agricultural residues, waste wood and bark, are cheap and abundant but are also often more complex. On the other side of the feedstock spectrum are high-value bio-engineered crops, specifically tailored for biorefinery purposes. Advantageous for RCF are feedstocks designed to (i) increase the total monomer yield, (ii) extract lignin more easily, and/or (iii) yield unconventional, high-value products (e.g. alkylated catechols derived from C-lignin). Taking a look at the bigger picture, this Opinion article highlights the multidisciplinary nature of RCF. Collaborative efforts involving chemists, reactor engineers, bioengineers and biologists working closer together are, therefore, strongly encouraged.
Collapse
Affiliation(s)
- Tom Renders
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Gil Van den Bossche
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thijs Vangeel
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Korneel Van Aelst
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bert Sels
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
39
|
Pu L, Wang X, Shang K, Cao Q, Gao S, Han Y, Sun G, Li Y, Zhou J. Glass bead-catalyzed depolymerization of poplar wood lignin into low-molecular-weight products. NEW J CHEM 2019. [DOI: 10.1039/c8nj04388d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kind of non-precious glass bead catalyst was prepared by a subcritical water treatment method for the depolymerisation of poplar lignin.
Collapse
Affiliation(s)
- Lei Pu
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Xing Wang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Kaiping Shang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Qiping Cao
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Si Gao
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Ying Han
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Guangwei Sun
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| |
Collapse
|