1
|
Fiore AM, Ciciriello R, Blasi D, Cotugno P, Punzi A, Farinola GM. Infrared Irradiation-Assisted Green Approach for Pd-Catalyzed Buchwald-Hartwig Amination. Chemistry 2025; 31:e202500557. [PMID: 40192434 PMCID: PMC12080305 DOI: 10.1002/chem.202500557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
We report a novel and green approach for Pd-catalyzed Buchwald-Hartwig amination, assisted by Infrared (IR) irradiation under quasi-solvent-free conditions, in a nonanhydrous environment, and without the exclusion of air. The C-N coupling reactions, performed with a stoichiometric amount of cyclopentyl methyl ether, proceed with moderate-to-good yields using aryl iodides and bromides bearing both electron-donating and electron-withdrawing groups, along with a variety of secondary and primary amines.
Collapse
Affiliation(s)
- Ambra Maria Fiore
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroVia Edoardo Orabona 4Bari70126Italy
| | - Riccardo Ciciriello
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroVia Edoardo Orabona 4Bari70126Italy
| | - Davide Blasi
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroVia Edoardo Orabona 4Bari70126Italy
| | - Pietro Cotugno
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroVia Edoardo Orabona 4Bari70126Italy
| | - Angela Punzi
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroVia Edoardo Orabona 4Bari70126Italy
| | - Gianluca Maria Farinola
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroVia Edoardo Orabona 4Bari70126Italy
| |
Collapse
|
2
|
Xie H, Cheng H, Kumar P, Wang Y, Liang H, Cai T, Zhao F, Cao Z, Cavallo L, Ma Z, Li Q, Ming J. Thermodynamic and Kinetic Behaviors of Electrolytes Mediated by Intermolecular Interactions Enabling High-Performance Lithium-Ion Batteries. ACS NANO 2024; 18:22503-22517. [PMID: 39110878 DOI: 10.1021/acsnano.4c07986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electrolyte solvation chemistry regulated by lithium salts, solvents, and additives has garnered significant attention since it is the most effective strategy for designing high-performance electrolytes in lithium-ion batteries (LIBs). However, achieving a delicate balance is a persistent challenge, given that excessively strong or weak Li+-solvent coordination markedly undermines electrolyte properties, including thermodynamic redox stability and Li+-desolvation kinetics, limiting the practical applications. Herein, we elucidate the crucial influence of solvent-solvent interactions in modulating the Li+-solvation structure to enhance electrolyte thermodynamic and kinetic properties. As a paradigm, by combining strongly coordinated propylene carbonate (PC) with weakly coordinated cyclopentylmethyl ether (CPME), we identified intermolecular interactions between PC and CPME using 1H-1H correlation spectroscopy. Experimental and computational findings underscore the crucial role of solvent-solvent interactions in regulating Li+-solvent/anion interactions, which can enhance both the thermodynamic (i.e., antireduction capability) and kinetic (i.e., Li+-desolvation process) aspects of electrolytes. Additionally, we introduced an interfacial model to reveal the intricate relationship between solvent-solvent interactions, electrolyte properties, and electrode interfacial behaviors at a molecular scale. This study provides valuable insights into the critical impact of solvent-solvent interactions on electrolyte properties, which are pivotal for guiding future efforts in functionalized electrolyte engineering for metal-ion batteries.
Collapse
Affiliation(s)
- Hongliang Xie
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haoran Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pushpendra Kumar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yuqi Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Honghong Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Cao
- Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zheng Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qian Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
4
|
Mukherjee S, Rogers A, Creech G, Hang C, Ramirez A, Dummeldinger M, Brueggemeier S, Mapelli C, Zaretsky S, Huang M, Black R, Peddicord MB, Cuniere N, Kempson J, Pawluczyk J, Allen M, Parsons R, Sfouggatakis C. Process Development of a Macrocyclic Peptide Inhibitor of PD-L1. J Org Chem 2024; 89:6651-6663. [PMID: 38663026 DOI: 10.1021/acs.joc.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).
Collapse
Affiliation(s)
- Subha Mukherjee
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Amanda Rogers
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Gardner Creech
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chao Hang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael Dummeldinger
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Shawn Brueggemeier
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Claudio Mapelli
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Serge Zaretsky
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Masano Huang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Regina Black
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael B Peddicord
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Nicolas Cuniere
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Joseph Pawluczyk
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Martin Allen
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Rodney Parsons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
5
|
Carraro M, Are C, Azzena U, De Luca L, Gaspa S, Satta G, Holzer W, Pace V, Pisano L. Electronic Effects in a Green Protocol for (Hetero)Aryl-S Coupling. Molecules 2024; 29:1714. [PMID: 38675533 PMCID: PMC11051792 DOI: 10.3390/molecules29081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Aryl and heteroaryl iodides have been efficiently converted into the corresponding thioacetates in cyclopentyl methyl ether (CPME), a green solvent, under Cu catalysis. The chemoselectivity of the reaction is mainly controlled by electronic factors, enabling the conversion of both electron-rich and electron-deficient substrates into the corresponding thioacetates in good to excellent yields. The products can be easily deprotected to the corresponding thiolates to carry out additional synthetic transformations in situ. Surprisingly, despite CPME's relatively low dielectric constant, the reaction rate significantly increased when conducted under microwave irradiation conditions. This synthetic methodology exhibits a remarkable tolerance to functional groups, mild reaction conditions, and a wide substrate scope, utilizing a safe and inexpensive CuI pre-catalyst in the green solvent CPME. A non-aqueous workup allowing for the complete recovery of both catalyst and solvent makes this approach an environmentally sustainable protocol for C(sp2) sulfur functionalization. Additionally, the reaction shows selective cross-coupling with iodides in competition with chlorides and bromides, allowing its use in multistep syntheses. To demonstrate the potential of this methodology, it was applied to the high-yield synthesis of a photochromic dithienylethene, where a selective synthesis had not been reported before.
Collapse
Affiliation(s)
- Massimo Carraro
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| | - Camillo Are
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| | - Ugo Azzena
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| | - Lidia De Luca
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| | - Silvia Gaspa
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| | - Giuseppe Satta
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| | - Wolfgang Holzer
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| | - Vittorio Pace
- Dipartimento di Chimica, Università di Torino, Via Giuria 7, 10125 Torino, Italy;
| | - Luisa Pisano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (M.C.); (L.D.L.); (S.G.)
| |
Collapse
|
6
|
Dadiotis E, Cui M, Gerasi M, Mitsis V, Melliou E, Makriyannis A, Logothetis DE, Magiatis P. A Simple Chiral 1H NMR Method for the Discrimination of ( R)- and ( S)-Cannabichromene in Complex Natural Mixtures and Their Effects on TRPA1 Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:77-84. [PMID: 38158562 DOI: 10.1021/acs.jnatprod.3c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In recent years, the enantiomeric ratio of cannabichromene (CBC) within the cannabis plant has attracted significant attention. Cannabichromene is one of the well-known cannabinoids found in cannabis, along with THC (tetrahydrocannabinol) and CBD (cannabidiol). Cannabichromene exists as a scalemic mixture, meaning it has two enantiomers, (S)-cannabichromene and (R)-cannabichromene, with the ratio between these enantiomers varying among different cannabis strains and even within individual plants. This study presents an accurate and robust chiral NMR method for analyzing cannabichromene's enantiomeric ratio, a well-investigated cannabinoid with numerous pharmacological targets. The use of Pirkle's alcohol as the chiral solvating agent (CSA) or, alternatively, the use of (S)-ibuprofen as a chiral derivatizing agent (CDA) facilitated this analysis. Moreover, the chiral NMR method proves to be a user-friendly tool, easily applicable within any NMR facility, and an expanded investigation of cannabichromene chirality may provide insights into the origin, cultivation, treatment, and processing of Cannabis sativa plants. This study also undertakes a pharmacological examination of the (R)- and (S)-cannabichromenes concerning their most extensively studied pharmacological target, the TRPA1 channels, with the two enantiomers showing the same strong agonistic effect as the racemic mixture.
Collapse
Affiliation(s)
- Evangelos Dadiotis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Maria Gerasi
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115, United States
| | | | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115, United States
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115, United States
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| |
Collapse
|
7
|
Malik M, Senatore R, Castiglione D, Roller-Prado A, Pace V. Highly chemoselective homologative assembly of the α-substituted methylsulfinamide motif from N-sulfinylamines. Chem Commun (Camb) 2023; 59:11065-11068. [PMID: 37644820 DOI: 10.1039/d3cc03326k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
α-Substituted methylsulfinamide are prepared through the homologation of electrophilic N-sulfinylamines with Li-CHXY reagents. The transformation takes place under full chemocontrol and exhibits good flexibility for preparing both N-aryl and N-alkyl analogues. Various sensitive functionalities can be accommodated on the starting materials, thus documenting a wide reaction scope.
Collapse
Affiliation(s)
- Monika Malik
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Raffaele Senatore
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Davide Castiglione
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| | - Alexander Roller-Prado
- Department of Inorganic Chemistry - Functional Materials, University of Vienna, Waehringerstrasse 42, 1090, Vienna, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| |
Collapse
|
8
|
Salam MA, Imdadulhaq ES, Al-Romaizan AN, Saleh TS, Mostafa MMM. Ultrasound-Assisted 1,3-Dipolar Cycloadditions Reaction Utilizing Ni-Mg-Fe LDH: A Green and Sustainable Perspective. Catalysts 2023. [DOI: 10.3390/catal13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Ultrasound-assisted synthesis of novel pyrazoles using Ni-Mg-Fe LDH as a catalyst in cyclopentyl methyl ether (CPME) is introduced. Different LDHs were tested as a catalyst for the synthesis of pyrazoles via a 1,3-dipolar cycloaddition reaction. Among them, Ni-Mg-Fe LDH was the superior catalyst for this reaction. This protocol offered high yields, a short reaction time, and a green solvent, and with the reuse of this catalyst six times with the same activity, it could be regarded as an ecofriendly, greener process. The NiMgFe LDH catalyst with the smallest particle size (29 nm) and largest surface area showed its superior efficacy for the 1,3 dipolar cycloaddition rection and can be successfully used in up to six catalytic cycles with little loss of catalytic activity. A plausible mechanism for this reaction over the Ni-Mg-Fe LDH is proposed.
Collapse
|
9
|
Arnodo D, De Nardo E, Ghinato S, Baldino S, Blangetti M, Prandi C. A Mild, Efficient and Sustainable Tetrahydropyranylation of Alcohols Promoted by Acidic Natural Deep Eutectic Solvents. CHEMSUSCHEM 2023; 16:e202202066. [PMID: 36459165 DOI: 10.1002/cssc.202202066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A straightforward protocol to promote the tetrahydropyranylation of alcohols, using for the first time bioinspired acidic natural deep eutectic solvents (NADESs) as non-innocent reaction media under mild reaction conditions, was reported. This approach enables the preparation of several tetrahydropyranyl (THP) ethers starting from primary, secondary and tertiary alcohols in short reaction times and with high levels of chemoselectivity, working under air and without the need of additional catalyst. The sustainability of the methodology was further highlighted by its scalability and the easy recyclability of the NADES, allowing multigram preparations of THP ethers without any loss of the catalytic activity of the reaction media up to ten recycling steps. Telescoped, one-pot tetrahydropyranylation/nucleophilic acyl substitution transformations using the same eutectic mixture were also demonstrated.
Collapse
Affiliation(s)
- Davide Arnodo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Eugenio De Nardo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Simone Ghinato
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Salvatore Baldino
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| |
Collapse
|
10
|
Green Solvents for Eco-Friendly Synthesis of Dimethindene: A Forward-Looking Approach. Molecules 2022; 27:molecules27217594. [DOI: 10.3390/molecules27217594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Dimethindene is a selective histamine H1 antagonist and is commercially available as a racemate. Upon analyzing the synthetic pathways currently available for the industrial preparation of dimethindene, we set up a sustainable approach for the synthesis of this drug, switching from petroleum-based volatile organic compounds (VOCs) to eco-friendly solvents, such as 2-methyltetrahydrofuran (2-MeTHF) and cyclopentyl methyl ether (CPME) belonging to classes 3 and 2, respectively. Beyond decreasing the environmental impact of the synthesis (E-factor: 24.1–54.9 with VOCs; 12.2–22.1 with 2-MeTHF or CPME), this switch also improved the overall yield of the process (from 10% with VOCs to 21–22% with 2-MeTHF or CPME) and remarkably simplified the manual operations, working under milder conditions. Typical metrics applied at the first and second pass, according to the CHEM21 metrics toolkit, were also calculated for the whole synthetic procedure of dimethindene, and the results were compared with those of the classical procedure.
Collapse
|
11
|
Miele M, Pillari V, Pace V, Alcántara AR, de Gonzalo G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules 2022; 27:molecules27196701. [PMID: 36235236 PMCID: PMC9570574 DOI: 10.3390/molecules27196701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The necessity of more sustainable conditions that follow the twelve principles of Green Chemistry have pushed researchers to the development of novel reagents, catalysts and solvents for greener asymmetric methodologies. Solvents are in general a fundamental part for developing organic processes, as well as for the separation and purification of the reaction products. By this reason, in the last years, the application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents. These solvents must present some properties, such as a low vapor pressure and toxicity, high boiling point and biodegradability, and must be obtained from renewable sources. In the present revision, the recent application of these biobased solvents in the synthesis of optically active compounds employing different catalytic methodologies, including biocatalysis, organocatalysis and metal catalysis, will be analyzed to provide a novel tool for carrying out more ecofriendly organic processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
| | - Veronica Pillari
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Vittorio Pace
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Gonzalo de Gonzalo
- Department of Organic Chemistry, University of Seville, c/ Profesor García González 1, 41014 Seville, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| |
Collapse
|
12
|
Paparella AN, Messa F, Dilauro G, Troisi L, Perrone S, Salomone A. A Glycerol‐Based Deep Eutectic Solvent as Natural Medium and Organic Reductant for Homocoupling of (Hetero)Aryl Chlorides: a Green Route to 2,2’‐Bipyridine and Biaryl Scaffolds. ChemistrySelect 2022. [DOI: 10.1002/slct.202203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrea Nicola Paparella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento Prov.le Lecce-Monteroni I-73100 Lecce Italy
| | - Francesco Messa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento Prov.le Lecce-Monteroni I-73100 Lecce Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari ‘‘Aldo Moro'' Via E. Orabona 4 I-70125 Bari Italy
| | - Luigino Troisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento Prov.le Lecce-Monteroni I-73100 Lecce Italy
| | - Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento Prov.le Lecce-Monteroni I-73100 Lecce Italy
| | - Antonio Salomone
- Dipartimento di Chimica Università deli Studi di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S. Via Orabona, 4 I-70125 Bari Italy
| |
Collapse
|
13
|
Annunziata F, Contente ML, Anzi V, Donzella S, Conti P, Molinari F, Martino PA, Meroni G, Sora VM, Tamborini L, Pinto A. Enzymatic continuous-flow preparation of nature-inspired phenolic esters as antiradical and antimicrobial agents. Food Chem 2022; 390:133195. [PMID: 35594770 DOI: 10.1016/j.foodchem.2022.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/30/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
A collection of nature-inspired lipophilic phenolic esters have been prepared by an enzymatic synthesis under flow conditions, using the immobilized lipase B from Candida antarctica (Novozyme 435®) as a catalyst in cyclopentyl methyl ether (CPME), a non-conventional and green solvent. Their antimicrobial activity against four selected bacterial strains together with their efficiency as radical scavengers were evaluated. The obtained compounds were characterized by enhanced lipophilicity in comparison with the parent non-esterified compounds, which increased the possibility of their use as additives in the food industry.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Martina L Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Valentina Anzi
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), One Health Unit, University of Milan, via Pascal 36, 20133 Milan, Italy
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), One Health Unit, University of Milan, via Pascal 36, 20133 Milan, Italy
| | - Valerio Massimo Sora
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), One Health Unit, University of Milan, via Pascal 36, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy.
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
14
|
Ghinato S, De Nardi F, Bolzoni P, Antenucci A, Blangetti M, Prandi C. Chemo‐ and Regioselective Anionic Fries Rearrangement Promoted by Lithium Amides under Aerobic Conditions in Sustainable Reaction Media. Chemistry 2022; 28:e202201154. [DOI: 10.1002/chem.202201154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Simone Ghinato
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Federica De Nardi
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Paola Bolzoni
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Achille Antenucci
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Marco Blangetti
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Cristina Prandi
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| |
Collapse
|
15
|
Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Edible oil extraction is a large and well-developed sector based on solvent assisted extraction using volatile organic compounds such as hexane. The extraction of oil from oilseeds generates large volumes of oilseed by-products rich in proteins, fibres, minerals and secondary metabolites that can be valued. This work reviews the current status and the bio-macro-composition of oilseeds, namely soybean, rapeseed, sunflower and flaxseed, and the refining process, comprising the extraction of oil, the valorisation and separation of valuable secondary metabolites such as phenolic compounds, and the removal of anti-nutritional factors such as glucosinolates, while retaining the protein in the oilseed meal. It also provides an overview of alternative solvents and some of the unconventional processes used as a replacement to the conventional extraction of edible oil, as well as the solvents used for the extraction of secondary metabolites and anti-nutritional factors. These biologically active compounds, including oils, are primordial raw materials for several industries such as food, pharmaceutical or cosmetics.
Collapse
|
16
|
Salameh N, Anastasiou I, Ferlin F, Minio F, Chen S, Santoro S, Liu P, Gu Y, Vaccaro L. Heterogeneous palladium-catalysed intramolecular C(sp3) H α-arylation for the green synthesis of oxindoles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Spöring JD, Graf von Westarp W, Kipp CR, Jupke A, Rother D. Enzymatic Cascade in a Simultaneous, One-Pot Approach with In Situ Product Separation for the Asymmetric Production of (4 S,5 S)-Octanediol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jan-Dirk Spöring
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | | | - Carina Ronja Kipp
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Dörte Rother
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
18
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
19
|
Takamura Y, Morishita KI, Kikuzawa S, Watanabe M, Kakuta H. Development of Scaled-Up Synthetic Method for Retinoid X Receptor Agonist NEt-3IB Contributing to Sustainable Development Goals. Chem Pharm Bull (Tokyo) 2022; 70:146-154. [PMID: 35110435 DOI: 10.1248/cpb.c21-00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small-molecular drugs, which are generally inexpensive compared with biopharmaceuticals and can often be taken orally, may contribute to the Sustainable Development Goals (SDGs) adopted by the United Nations. We previously reported the retinoid X receptor (RXR) agonist 4-(ethyl(3-isobutoxy-4-isopropylphenyl)amino)benzoic acid (NEt-3IB, 1) as a small-molecular drug candidate to replace biopharmaceuticals for the treatment of inflammatory bowel disease. The previous synthetic method to 1 required a large amount of organic solvent and extensive purification. In line with the SDGs, we aimed to develop an environmentally friendly, inexpensive method for the large-scale synthesis of 1. The developed method requires only a hydrophobic ether and EtOH as reaction and extraction solvents. The product was purified by recrystallization twice to afford 99% pure 1 at 100 mmol scale in about 30% yield. The optimized process showed a 35-fold improvement of the E-factor (an index of environmental impact) compared to the original method. This work, which changes the solvent used to environmentally preferable ones based on the existing synthetic method for 1, illustrates how synthetic methods for small-molecular drugs can be adapted and improved to contribute to the SDGs.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ken-Ichi Morishita
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shota Kikuzawa
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
20
|
Quivelli AF, Marinò M, Vitale P, García‐Álvarez J, Perna FM, Capriati V. Ligand-Free Copper-Catalyzed Ullmann-Type C-O Bond Formation in Non-Innocent Deep Eutectic Solvents under Aerobic Conditions. CHEMSUSCHEM 2022; 15:e202102211. [PMID: 34762333 PMCID: PMC9299726 DOI: 10.1002/cssc.202102211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Indexed: 05/17/2023]
Abstract
An efficient and novel protocol was developed for a Cu-catalyzed Ullmann-type aryl alkyl ether synthesis by reacting various (hetero)aryl halides (Cl, Br, I) with alcohols as active components of environmentally benign choline chloride-based eutectic mixtures. Under optimized conditions, the reaction proceeded under mild conditions (80 °C) in air, in the absence of additional ligands, with a catalyst [CuI or CuII species] loading up to 5 mol% and K2 CO3 as the base, providing the desired aryloxy derivatives in up to 98 % yield. The potential application of the methodology was demonstrated in the valorization of cheap, easily available, and naturally occurring polyols (e. g., glycerol) for the synthesis of some pharmacologically active aryloxypropanediols (Guaiphenesin, Mephenesin, and Chlorphenesin) on a 2 g scale in 70-96 % yield. Catalyst, base, and deep eutectic solvent could easily and successfully be recycled up to seven times with an E-factor as low as 5.76.
Collapse
Affiliation(s)
- Andrea Francesca Quivelli
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Manuela Marinò
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Paola Vitale
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Joaquín García‐Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos)Departamento de Química Orgánica e Inorgánica (IUQOEM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Oviedo33071OviedoSpain
| | - Filippo M. Perna
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Vito Capriati
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| |
Collapse
|
21
|
Xiong L, He SQ, Pan J, Yu B. Metal-/catalyst-free one-pot three-component thioamination of 1,4-naphthoquinone in a sustainable solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj05741c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-/catalyst-free protocol for the direct thioamination of 1,4-naphthoquinone with thiophenols and amines using air as an oxidant in a green solvent has been developed. This environmentally friendly strategy was...
Collapse
|
22
|
Ramos-Martín M, Lecuna R, Cicco L, Vitale P, Capriati V, Ríos-Lombardía N, González-Sabín J, Presa Soto A, García-Álvarez J. A one-pot two-step synthesis of tertiary alcohols combining the biocatalytic laccase/TEMPO oxidation system with organolithium reagents in aerobic aqueous media at room temperature. Chem Commun (Camb) 2021; 57:13534-13537. [PMID: 34850798 DOI: 10.1039/d1cc06460f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-pot/two-step combination of enzymes and polar organometallic chemistry in aqueous media is for the first time presented as a proof-of-concept study. The unprecedented combination of the catalytic oxidation of secondary alcohols by the system laccase/TEMPO with the ultrafast addition (3 s reaction time) of polar organometallic reagents (RLi/RMgX) to the in situ formed ketones, run under air at room temperature, allows the straightforward and chemoselective synthesis of tertiary alcohols with broad substrate scope and excellent conversions (up to 96%).
Collapse
Affiliation(s)
- Marina Ramos-Martín
- Departamento de Química Orgánica e Inorgánica (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain.
| | - Ramón Lecuna
- Departamento de Química Orgánica e Inorgánica (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain.
| | - Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari ''Aldo Moro'', Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari I-70125, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari ''Aldo Moro'', Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari I-70125, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari ''Aldo Moro'', Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari I-70125, Italy
| | - Nicolás Ríos-Lombardía
- EntreChem SL, Vivero Ciencias de la Salud. Santo Domingo de Guzmán, Oviedo, 33011, Spain.
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud. Santo Domingo de Guzmán, Oviedo, 33011, Spain.
| | - Alejandro Presa Soto
- Departamento de Química Orgánica e Inorgánica (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain.
| | - Joaquín García-Álvarez
- Departamento de Química Orgánica e Inorgánica (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain.
| |
Collapse
|
23
|
Kamitani M. Chemically robust and readily available quinoline-based PNN iron complexes: application in C-H borylation of arenes. Chem Commun (Camb) 2021; 57:13246-13258. [PMID: 34812447 DOI: 10.1039/d1cc04877e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron catalysts have been used for over a century to produce ammonia industrially. However, the use of iron catalysts generally remained quite limited until relatively recently, when the abundance and low toxicity of iron spurred the development of a variety of iron catalysts. Despite the fact that iron catalysts are being developed as alternatives to precious metal catalysts, their reactivities and stabilities are quite different because of their unique electronic structures. In this context, our group previously developed a new family of quinoline-based PNN pincer-type ligands for low- to mid-valent iron catalysts. These chemically robust PNN ligands provide air- and moisture-tolerant iron complexes, which exhibit excellent catalytic performances in the C-H borylation of arenes. This feature article summarises our recent work on PNN iron complexes, including their conception and design, as well as related reports on iron pincer complexes and iron-catalysed C-H borylation reactions.
Collapse
Affiliation(s)
- Masahiro Kamitani
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan.
| |
Collapse
|
24
|
Satta G, Usala E, Solinas A, Römer M, Livesi M, Pira GM, Beccu A, Carboni S, Gaspa S, De Luca L, Pisano L, Azzena U, Carraro M. Nenitzescu Synthesis of 5‐Hydroxyindoles with Zinc, Iron and Magnesium Salts in Cyclopentyl Methyl Ether. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giuseppe Satta
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Elena Usala
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Angelo Solinas
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Melina Römer
- Department of Chemistry, Clemens-Schöpf Institute of Chemistry Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Marco Livesi
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Giovanni Michele Pira
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Andrea Beccu
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Silvia Carboni
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Silvia Gaspa
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Luisa Pisano
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Ugo Azzena
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Massimo Carraro
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
25
|
Bijoy R, Agarwala P, Roy L, Thorat BN. Unconventional Ethereal Solvents in Organic Chemistry: A Perspective on Applications of 2-Methyltetrahydrofuran, Cyclopentyl Methyl Ether, and 4-Methyltetrahydropyran. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rachel Bijoy
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Pratibha Agarwala
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Bhaskar N. Thorat
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| |
Collapse
|
26
|
Cavuoto D, Ravasio N, Scotti N, Gervasini A, Campisi S, Marelli M, Cappelletti G, Zaccheria F. A green solvent diverts the hydrogenation of γ–valerolactone to 1,4 - pentandiol over Cu/SiO2. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Colella M, Musci P, Cannillo D, Spennacchio M, Aramini A, Degennaro L, Luisi R. Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. J Org Chem 2021; 86:13943-13954. [PMID: 34291947 DOI: 10.1021/acs.joc.1c01297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation and functionalization, under continuous flow conditions, of two different lithiated four-membered aza-heterocycles is reported. N-Boc-3-iodoazetidine acts as a common synthetic platform for the genesis of C3-lithiated azetidine and C2-lithiated azetine depending on the lithiation agent. Flow technology enables easy handling of such lithiated intermediates at much higher temperatures compared to batch processing. Flow technology combined with cyclopentylmethyl ether as an environmentally responsible solvent allows us to address sustainability concerns.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Debora Cannillo
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
28
|
Ma X, Guillet SG, Liu Y, Cazin CSJ, Nolan SP. Simple synthesis of [Ru(CO 3)(NHC)( p-cymene)] complexes and their use in transfer hydrogenation catalysis. Dalton Trans 2021; 50:13012-13019. [PMID: 34581364 DOI: 10.1039/d1dt02098f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and facile protocol for the synthesis of a series of [Ru(NHC)(CO3)(p-cymene)] complexes is reported. This family of Ru-NHC complexes was obtained from imidazol(in)ium tetrafluoroborate or imidazolium hydrogen carbonate salts in moderate to excellent yields, employing sustainable weak base. The ruthenium complexes were successfully utilized in the transfer hydrogenation of ketones as highly active multifunctional catalysts.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Sébastien G Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Yaxu Liu
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Andresini M, Spennacchio M, Colella M, Losito G, Aramini A, Degennaro L, Luisi R. Sulfinimidate Esters as an Electrophilic Sulfinimidoyl Motif Source: Synthesis of N-Protected Sulfilimines from Grignard Reagents. Org Lett 2021; 23:6850-6854. [PMID: 34387503 DOI: 10.1021/acs.orglett.1c02413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we investigated, for the first time, the reactivity of sulfinimidate esters as an electrophilic sulfinimidoyl motif source. The reaction of such sulfinimidate esters with Grignard reagents enables the preparation of protected sulfilimines in high yields and with a remarkable structural variability. Moreover, the transformation can be performed in CPME (cyclopentyl methyl ether) as a green solvent under environmentally responsible conditions.
Collapse
Affiliation(s)
- Michael Andresini
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Mauro Spennacchio
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Marco Colella
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Gianluca Losito
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila I-67100, Italy
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| |
Collapse
|
30
|
Di JQ, Wang HJ, Cui ZS, Hu JY, Zhang ZH. Catalyst-free Synthesis of Aminomethylphenol Derivatives in Cyclopentyl Methyl Ether via Petasis Borono-Mannich Reaction. Curr Org Synth 2021; 18:294-300. [PMID: 33327919 DOI: 10.2174/1570179417666201216161143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Aminomethylphenol molecules have wider applications in pharmaceuticals, agrochemicals, plant protection and promising functional materials. The development of an efficient and practical method to prepare this class of compound is highly desirable from both environmental and economical points of view. MATERIALS AND METHODS In order to establish an effective synthetic method for preparing aminomethylphenol derivatives, the Petasis borono-Mannich reaction of salicylaldehyde, phenylboronic acid and 1,2,3,4- tetrahydroisoquinoline was selected as a model reaction. A variety of reaction conditions are investigated, including solvent and temperature. The generality and limitation of the established method were also evaluated. RESULTS AND DISCUSSION It was found that model reaction can be carried out in cyclopentyl methyl ether at 80 oC under catalyst-free conditions. This protocol, with broad substrate applicability, the reaction of various arylboronic acid, secondary amine and salicylaldehyde proceeded smoothly under optimal reaction conditions to afford various aminomethylphenol derivatives in high yields. A practical, scalable, and high-yielding synthesis of aminomethylphenol derivatives was successfully accomplished. CONCLUSION A catalyst-free practical method for the synthesis of minomethylphenol derivatives based on Petasis borono-Mannich (PBM) reaction of various arylboronic acid, secondary amine and salicylaldehyde in cyclopentyl methyl ether has been developed. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvents, use of cyclopentyl methyl ether as the reaction medium, clean reaction profiles, easy operation, and high to excellent yield.
Collapse
Affiliation(s)
- Jia-Qi Di
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao-Jie Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhen-Shui Cui
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jin-Yong Hu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
31
|
Sarmah BK, Konwar M, Das A. Site-Selective Deoxygenative Amination of Azine N-Oxides with Carbodiimides under Catalyst-, Activator-, Base-, and Solvent-Free Conditions. J Org Chem 2021; 86:10762-10772. [PMID: 34260234 DOI: 10.1021/acs.joc.1c00741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple method for synthesizing 2-amino azines via [3+2] dipolar cycloaddition of azine N-oxide with carbodiimide has been demonstrated. The reaction can proceed smoothly under simple heating conditions without any transition metal catalyst, activator, base, and solvent. This transformation demonstrates a broad substrate scope and produces CO2 as the only co-product. The applicability of this method is highlighted by the late-stage modification of bioactive molecules, including quinine, (±)-α-tocopherol, and tryptamine modified quinoline.
Collapse
Affiliation(s)
- Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
32
|
Multistep batch-flow hybrid synthesis of a terbinafine precursor. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA three-step batch-flow hybrid process has been developed for an expeditious synthesis of the enynol key intermediate of antifungal terbinafine. This procedure involves consecutive organometallic steps without the necessity of any in-line purification: after a metalation by n-butyllithium, a selective addition of the lithium salt was elaborated followed by a Grignard reaction resulting in a high yield of 6,6-dimethylhept-1-en-4-yn-3-ol. Moreover, as an alternative to tetrahydrofuran, cyclopentyl methyl ether was used as solvent implementing a safe, sustainable, yet selective synthetic process. Even on a laboratory-scale, the optimized batch-flow hybrid process had a theoretical throughput of 41 g/h. Furthermore, the newly developed process provides an efficient synthesis route to the key-intermediate, while making acrolein obsolete, minimizing side-products, and enabling safe and convenient scale-up.
Collapse
|
33
|
García‐Garrido SE, Presa Soto A, Hevia E, García‐Álvarez J. Advancing Air‐ and Moisture‐Compatible s‐Block Organometallic Chemistry Using Sustainable Solvents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sergio E. García‐Garrido
- Laboratorio de Compuestos Organometálicos y Catálisis Departamento de Química Orgánica e Inorgánica (IUQOEM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Química Universidad de Oviedo 33071 Oviedo Spain
| | - Alejandro Presa Soto
- Laboratorio de Compuestos Organometálicos y Catálisis Departamento de Química Orgánica e Inorgánica (IUQOEM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Química Universidad de Oviedo 33071 Oviedo Spain
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie (DCBP) Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Joaquín García‐Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis Departamento de Química Orgánica e Inorgánica (IUQOEM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Química Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
34
|
Kobayashi S. Cyclopentyl Methyl Ether (CPME) and 4-Methyltetrahydropyran (4-MeTHP) : Basic Chemical Properties and Applications as Next Generation Reaction Solvents. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shoji Kobayashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| |
Collapse
|
35
|
Dilauro G, Azzollini CS, Vitale P, Salomone A, Perna FM, Capriati V. Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angew Chem Int Ed Engl 2021; 60:10632-10636. [PMID: 33605516 DOI: 10.1002/anie.202101571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Pd-catalyzed Negishi cross-coupling reactions between organozinc compounds and (hetero)aryl bromides have been reported when using bulk water as the reaction medium in the presence of NaCl or the biodegradable choline chloride/urea eutectic mixture. Both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings have been found to proceed smoothly, with high chemoselectivity, under mild conditions (room temperature or 60 °C) in air, and in competition with protonolysis. Additional benefits include very short reaction times (20 s), good to excellent yields (up to 98 %), wide substrate scope, and the tolerance of a variety of functional groups. The proposed novel protocol is scalable, and the practicability of the method is further highlighted by an easy recycling of both the catalyst and the eutectic mixture or water.
Collapse
Affiliation(s)
- Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Claudia S Azzollini
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Salomone
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
36
|
Dilauro G, Azzollini CS, Vitale P, Salomone A, Perna FM, Capriati V. Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Claudia S. Azzollini
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Antonio Salomone
- Dipartimento di Chimica Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Filippo M. Perna
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
37
|
Synthesis of stable α-fluoromethyl putative carbanions via a chemoselective reduction-monofluoromethylation sequence of diselenides under sustainable conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Ielo L, Miele M, Pillari V, Senatore R, Mirabile S, Gitto R, Holzer W, Alcántara AR, Pace V. Taking advantage of lithium monohalocarbenoid intrinsic α-elimination in 2-MeTHF: controlled epoxide ring-opening en route to halohydrins. Org Biomol Chem 2021; 19:2038-2043. [PMID: 33599644 DOI: 10.1039/d0ob02407d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intrinsic degradative α-elimination of Li carbenoids somehow complicates their use in synthesis as C1-synthons. Nevertheless, we herein report how boosting such an α-elimination is a straightforward strategy for accomplishing controlled ring-opening of epoxides to furnish the corresponding β-halohydrins. Crucial for the development of the method is the use of the eco-friendly solvent 2-MeTHF, which forces the degradation of the incipient monohalolithium, due to the very limited stabilizing effect of this solvent on the chemical integrity of the carbenoid. With this approach, high yields of the targeted compounds are consistently obtained under very high regiocontrol and, despite the basic nature of the reagents, no racemization of enantiopure materials is observed.
Collapse
Affiliation(s)
- Laura Ielo
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria. and University of Turin - Department of Chemistry, Via P. Giuria 7, 10125, Turin, Italy
| | - Margherita Miele
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Veronica Pillari
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Raffaele Senatore
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Salvatore Mirabile
- University of Messina - Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Palatucci, 13, 98168 Messina, Italy
| | - Rosaria Gitto
- University of Messina - Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Palatucci, 13, 98168 Messina, Italy
| | - Wolfgang Holzer
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Andrés R Alcántara
- Complutense University of Madrid - Department of Chemistry in Pharmaceutical Sciences, Plaza de Ramón y Cajal, s/n, Madrid, Spain.
| | - Vittorio Pace
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria. and University of Turin - Department of Chemistry, Via P. Giuria 7, 10125, Turin, Italy
| |
Collapse
|
39
|
Cicco L, Hernández-Fernández JA, Salomone A, Vitale P, Ramos-Martín M, González-Sabín J, Presa Soto A, Perna FM, Capriati V, García-Álvarez J. Copper-catalyzed Goldberg-type C-N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Org Biomol Chem 2021; 19:1773-1779. [PMID: 33543179 DOI: 10.1039/d0ob02501a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and selective N-functionalization of amides is first reported via a CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Luciana Cicco
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain. and Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Jose A Hernández-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Antonio Salomone
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Marina Ramos-Martín
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, E-33011, Oviedo, Spain
| | - Alejandro Presa Soto
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| |
Collapse
|
40
|
Andresini M, Degannaro L, Luisi R. A sustainable strategy for the straightforward preparation of 2 H-azirines and highly functionalized NH-aziridines from vinyl azides using a single solvent flow-batch approach. Beilstein J Org Chem 2021; 17:203-209. [PMID: 33564330 PMCID: PMC7849244 DOI: 10.3762/bjoc.17.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 02/04/2023] Open
Abstract
The reported flow-batch approach enables the easy preparation of 2H-azirines and their stereoselective transformation into highly functionalized NH-aziridines, starting from vinyl azides and organolithium compounds. The protocol has been developed using cyclopentyl methyl ether (CPME) as an environmentally benign solvent, resulting into a sustainable, safe and potentially automatable method for the synthesis of interesting strained compounds.
Collapse
Affiliation(s)
- Michael Andresini
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| | - Leonardo Degannaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
41
|
Ghinato S, Territo D, Maranzana A, Capriati V, Blangetti M, Prandi C. A Fast and General Route to Ketones from Amides and Organolithium Compounds under Aerobic Conditions: Synthetic and Mechanistic Aspects. Chemistry 2021; 27:2868-2874. [PMID: 33150980 DOI: 10.1002/chem.202004840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/11/2022]
Abstract
We report that the nucleophilic acyl substitution reaction of aliphatic and (hetero)aromatic amides by organolithium reagents proceeds quickly (20 s reaction time), efficiently, and chemoselectively with a broad substrate scope in the environmentally responsible cyclopentyl methyl ether, at ambient temperature and under air, to provide ketones in up to 93 % yield with an effective suppression of the notorious over-addition reaction. Detailed DFT calculations and NMR investigations support the experimental results. The described methodology was proven to be amenable to scale-up and recyclability protocols. Contrasting classical procedures carried out under inert atmospheres, this work lays the foundation for a profound paradigm shift of the reactivity of carboxylic acid amides with organolithiums, with ketones being straightforwardly obtained by simply combining the reagents under aerobic conditions and with no need of using previously modified or pre-activated amides, as recommended.
Collapse
Affiliation(s)
- Simone Ghinato
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Davide Territo
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari Aldo Moro, Consorzio CINMPIS, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125, Torino, Italy
| |
Collapse
|
42
|
Solvent role in the lipase-catalysed esterification of cinnamic acid and derivatives. Optimisation of the biotransformation conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Quivelli AF, D’Addato G, Vitale P, García-Álvarez J, Perna FM, Capriati V. Expeditious and practical synthesis of tertiary alcohols from esters enabled by highly polarized organometallic compounds under aerobic conditions in Deep Eutectic Solvents or bulk water. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Senatore R, Malik M, Touqeer S, Listro R, Collina S, Holzer W, Pace V. Straightforward and direct access to β-seleno- amines and sulfonylamides via the controlled addition of phenylselenomethyllithium (LiCH2SePh) to imines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Ammonium Salts Catalyzed Acetalization Reactions in Green Ethereal Solvents. Catalysts 2020. [DOI: 10.3390/catal10101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclopentyl methyl ether and 2-methyltetrahydrofuran, low impact ethereal solvents forming a positive azeotrope with water, were successfully employed as solvents in the synthesis of a variety of acetals carried out under Dean–Stark conditions in the presence of heterogeneous acidic catalysts. Under these conditions, ammonium salts, either as such or supported on SiO2, performed better or equally well than widely employed homogeneous and heterogeneous acidic catalysts such as p-toluenesulfonic acid, Amberlyst 15®, or Montmorillonite K10. Several examples highlight the advantage of tuning the relative acidities of ammonium salts by appropriately selecting the counterion. Within one of these examples, our protocol clearly outweighs the classic p-toluenesulfonic acid/toluene protocol in terms of chemoselectivity. Silica-supported catalysts were characterized by SEM, TEM, and FTIR spectroscopies, as well as by N2 physisorption. Such a characterization reveals an even distribution of ammonium salts on silica, thus confirming the formation of expected catalytic supports.
Collapse
|
46
|
Cicco L, Salomone A, Vitale P, Ríos-Lombardía N, González-Sabín J, García-Álvarez J, Perna FM, Capriati V. Addition of Highly Polarized Organometallic Compounds to N-tert-Butanesulfinyl Imines in Deep Eutectic Solvents under Air: Preparation of Chiral Amines of Pharmaceutical Interest. CHEMSUSCHEM 2020; 13:3583-3588. [PMID: 32445433 DOI: 10.1002/cssc.202001142] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Highly polarized organometallic compounds of s-block elements are added smoothly to chiral N-tert-butanesulfinyl imines in the biodegradable d-sorbitol/choline chloride eutectic mixture, thereby granting access to enantioenriched primary amines after quantitatively removing the sulfinyl group. The practicality of the method is further highlighted by proceeding at ambient temperature and under air, with very short reaction times (2 min), enabling the preparation of diastereoisomeric sulfinamides in very good yields (74-98 %) and with a broad substrate scope, and the possibility of scaling up the process. The method is demonstrated in the asymmetric syntheses of both the chiral amine side-chain of (R,R)-Formoterol (96 % ee) and the pharmaceutically relevant (R)-Cinacalcet (98 % ee).
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Nicolás Ríos-Lombardía
- EntreChem SL, Vivero Ciencias de la Salud, Colegio Santo Domingo de Guzmán, s/n, 33011, Oviedo, Spain
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Colegio Santo Domingo de Guzmán, s/n, 33011, Oviedo, Spain
| | - Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33071, Oviedo, Spain
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
- Dipartimento di Chimica, Istituto di Chimica dei Composti Organometallici (ICCOM)-CNR, Università di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
47
|
Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules 2020; 25:molecules25133016. [PMID: 32630322 PMCID: PMC7411633 DOI: 10.3390/molecules25133016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023] Open
Abstract
The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents.
Collapse
|
48
|
Maebayashi H, Araki K, Fuchigami T, Gotoh Y, Inoue M. Regioselective reaction of fluorinated aryllithium reagents and carbon disulfide in cyclopentyl methyl ether: Efficient synthesis of dithioesters and liquid crystal compounds having a difluoromethyleneoxy moiety. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Affiliation(s)
- Luigi Vaccaro
- Laboratory of Green S.O.C.; Dipartimento di Chimica; Biologia e Biotecnologie; Università di Perugia; Via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|
50
|
Messa F, Dilauro G, Perna FM, Vitale P, Capriati V, Salomone A. Sustainable Ligand‐Free Heterogeneous Palladium‐Catalyzed Sonogashira Cross‐Coupling Reaction in Deep Eutectic Solvents. ChemCatChem 2020. [DOI: 10.1002/cctc.201902380] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Francesco Messa
- Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversità del Salento Prov.le Lecce-Monteroni I-73100 Lecce Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco Consorzio C.I.N.M.P.I.S.Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 I-70125 Bari Italy
| | - Filippo M. Perna
- Dipartimento di Farmacia-Scienze del Farmaco Consorzio C.I.N.M.P.I.S.Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 I-70125 Bari Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco Consorzio C.I.N.M.P.I.S.Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 I-70125 Bari Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco Consorzio C.I.N.M.P.I.S.Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 I-70125 Bari Italy
- Dipartimento di Chimica Istituto di Chimica dei Composti Organometallici (ICCOM) – CNRUniversità degli Studi di Bari “Aldo Moro” Via E. Orabona 4 I-70125 Bari Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversità del Salento Prov.le Lecce-Monteroni I-73100 Lecce Italy
| |
Collapse
|