1
|
Abidli I, Tangour B, Sayari A. Mechanistic insights into the oxidative degradation of amine-containing CO 2 adsorbents. ENVIRONMENTAL RESEARCH 2025; 275:121445. [PMID: 40122496 DOI: 10.1016/j.envres.2025.121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
One of the most challenging issues for large-scale implementation of amine-containing adsorbents for CO2 capture, is their propensity to oxidative degradation via radical mechanisms. The nature of the early (primary) oxidation species depends on whether the deactivation took place under humid or dry, aerobic or anaerobic conditions. The current theoretical investigation provides new insights into the reaction mechanisms for such degradation products, specifically imine, aldehyde and CO2, depending on the radical species involved, and the deactivation conditions. A common radical to all reactions referred to as αC•, corresponds to the abstraction of a hydrogen atom from the α-position with respect to an amine group. In dry anaerobic environment, imine formation involving organic radicals R• generated thermally, has an activation barrier of 13.54 kcal mol-1. In humid anaerobic environment, the imine formation in the presence of hydroxyl radicals (HO•) corresponded to much lower activation barriers than organic radicals. However, the generation of HO• radicals would be difficult in the absence of oxygen. Hydroperoxyl radicals (HOO•) occur only in the presence of oxygen, but their formation is facilitated in the presence of humidity. Oxidation of amine to aldehyde occurs in two stages, involving oxygen atom implantation on α-carbon, then the formation of aldehyde and ammonia. In dry aerobic conditions, oxygen implantation involving HOO• has a high activation energy of 19.60 kcal mol-1, while the subsequent reaction into aldehyde has a very low barrier of 2.38 kcal mol-1. In contrast, in humid anaerobic environment, both steps occur in the presence of HO• radicals, with a much lower activation barrier for the first step than the latter (1.52 vs. 22.34 kcal mol-1). More importantly, under humid aerobic condition, amine oxidation is accelerated as HO• and HOO• play complementary roles, with the former facilitating oxygen implantation, while the latter is involved in the carbonyl formation.
Collapse
Affiliation(s)
- Imen Abidli
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada; University of Tunis El Manar, Institute for Preparatory Engineering Studies (IPEIEM), Modelization of Fundamental Sciences and Didactics, Tunis, 2092, Tunisia.
| | - Bahoueddine Tangour
- University of Tunis El Manar, Institute for Preparatory Engineering Studies (IPEIEM), Modelization of Fundamental Sciences and Didactics, Tunis, 2092, Tunisia.
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
2
|
Narayanan P, Kim SY, Alhazmi D, Jones CW, Lively RP. Self-Supported Branched Poly(ethylenimine) Monoliths from Inverse Template 3D Printing for Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10696-10709. [PMID: 39931906 PMCID: PMC11843543 DOI: 10.1021/acsami.4c20617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
3D-printed inverse templates are combined with ice templating to develop self-supported branched poly(ethylenimine) monoliths with regular channels of varying channel density and ordered macropores. A maximum uptake of 0.96 mmol of CO2/g of monolith from ambient air containing 45.5% RH is achieved from dynamic breakthrough experiments, which is a 31% increase compared to the CO2 uptake from adsorption under dry conditions for the same duration. The breakthrough experiments show characteristics of internal mass-transfer limitations. The cyclic dynamic breakthrough experiments indicate stable operation without significant loss in CO2 uptake across eight cycles. Moreover, the self-supported monolith shows minimal loss in adsorption capacity (7.7%) upon exposure to air containing 21% oxygen at 110 °C, in comparison to a conventional sorbent consisting of poly(ethylenimine) impregnated on Al2O3 (18.9%). The monoliths exhibit good mechanical stability, contributed by elastic deformation, corresponding to up to 74% strain and lower pressure drop compared to many existing monoliths in the literature.
Collapse
Affiliation(s)
- Pavithra Narayanan
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology,Atlanta, Georgia 30332, United States
| | - Seo-Yul Kim
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology,Atlanta, Georgia 30332, United States
| | - Dema Alhazmi
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology,Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology,Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology,Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Nicotera I, Enotiadis A, Simari C. Quaternized Graphene for High-Performance Moisture Swing Direct Air Capture of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401303. [PMID: 38856002 DOI: 10.1002/smll.202401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Nowadays, moisture-swing adsorption technology still relies on quaternary ammonium resins with limited CO2 capacity under ambient air conditions. In this work, a groundbreaking moisture-driven sorbent is developed starting from commercial graphene flakes and using glycidyltrimethylammonium chloride for incorporation of CO2-sensitive quaternary ammonium functional groups. Boasting an outstanding CO2 capture performance under ultra-diluted conditions (namely, 3.24 mmol g-1 at CO2 400 ppm and 20% RH), the functionalized sorbent (fGO) features clear competitive advantages over current technologies for direct air capture. Notably, fGO demonstrated unprecedented moisture-swing capacity, ease of regenerability, versatility, selectivity, and longevity. These distinctive features position the fGO as an advanced and promising solution, showcasing its potential to outperform existing methods for moisture-swing direct air capture of CO2.
Collapse
Affiliation(s)
- Isabella Nicotera
- Department of Chemistry and Chemical Technology, University of Calabria, Rende, 87036, Italy
| | - Apostolos Enotiadis
- National Centre for Scientific Research "DEMOKRITOS", Ag. Paraskevi Attikis, Athens, 15310, Greece
| | - Cataldo Simari
- Department of Chemistry and Chemical Technology, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
4
|
Wan Z, Hunt R, White C, Gillbanks J, Czapla J, Xiao G, Surin S, Wood C. Facile Synthesis of Self-Supported Solid Amine Sorbents for Direct Air Capture. CHEMSUSCHEM 2024; 17:e202400212. [PMID: 38660930 DOI: 10.1002/cssc.202400212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Conventional usage of tetraethylenepentamine (TEPA) via being supported on porous solid materials for carbon capture is susceptible to oxidative degradation during regeneration cycles. This study reports a novel method to synthesize a TEPA based solid polymer for efficient CO2 removal via direct air capture (DAC). The polymer was obtained through epoxy-amine crosslinking reaction, leading to the transformation of liquid TEPA to a self-supported solid polymer. The synthesis was conducted under ambient conditions via a one-pot process with no waste products, which is aligned with green synthesis. The performance of the solid amine was evaluated in DAC under realistic conditions and compared with TEPA supported on SiO2 and zeolite 13X prepared through the conventional method. The solid TEPA amine exhibited a high CO2 uptake of 6.2 wt.% comparable to the conventional counterparts. More importantly, the solid TEPA amine demonstrated high resistance to oxidation during the accelerated ageing process at 80 °C in air for 24 h, whereas the two supported TEPA samples experienced severe degradation, with zeolite 13X supported TEPA incurring a reduction of 86.5 % in CO2 capturing capacity after the ageing. This work sheds light on the novel usage of TEPA as an efficient solid amine for practical DAC operation.
Collapse
Affiliation(s)
- Zhijian Wan
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, Western Australia, 6151, Australia
| | - Russell Hunt
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, Western Australia, 6151, Australia
| | - Cameron White
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, Western Australia, 6151, Australia
| | - Jeremy Gillbanks
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, Western Australia, 6151, Australia
| | - Jason Czapla
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, Western Australia, 6151, Australia
| | - Gongkui Xiao
- Department of Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Sophia Surin
- Mineral Resources, Commonwealth Scientific Industrial Research Organisation (CSIRO), Waterford, Western Australia, 6152, Australia
| | - Colin Wood
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, Western Australia, 6151, Australia
| |
Collapse
|
5
|
Koch CJ, Goeppert A, Surya Prakash GK. Addition of Imidazolium-Based Ionic Liquid to Improve Methanol Production in Polyamine-Assisted CO 2 Capture and Conversion Systems Using Pincer Catalysts. CHEMSUSCHEM 2024; 17:e202301789. [PMID: 38594207 DOI: 10.1002/cssc.202301789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Ionic liquids have been studied as CO2 capture agents. However, they are rarely used in combined CO2 capture and conversion processes. Utilizing imidazolium-based ionic liquids, the conversion of CO2 to methanol was greatly improved in polyamine assisted systems catalyzed by homogeneous pincer catalysts with Ru and Mn metal centers. Among the ionic liquids tested, [BMIM]OAc was found to perform the best under the given reaction conditions. Among the polyamine tested, pentaethylenehexamine (PEHA) led to the highest conversion rates. Ru-Macho and Ru-Macho-BH were the most active catalysts. Direct air capture utilizing PEHA as the capture material was also demonstrated and produced an 86 % conversion of the captured CO2 to methanol in the presence of [BMIM]OAc.
Collapse
Affiliation(s)
- Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA
| |
Collapse
|
6
|
Kulkarni V, Parthiban J, Singh SK. Nanosilica polyamidoamine dendrimers for enhanced direct air CO 2 capture. NANOSCALE 2024; 16:16571-16581. [PMID: 39158470 DOI: 10.1039/d4nr01744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring efficient systems to recover CO2 from the atmosphere could be a way to address the global carbon emissions issue. Herein, we report the synthesis of nanosilica (NS) functionalized with polyamidoamine (PAMAM) dendrimers (NS-PAMAM) as efficient adsorbents for CO2 capture under simulated direct air capture (DAC) (400 ppm CO2 in helium at 30 °C) and indoor air (≥400 ppm, 50 ± 3% RH at 30 °C) conditions. The results inferred that the 1st (NS-G1.0), 2nd (NS-G2.0), 3rd (NS-G3.0), and 4th (NS-G4.0) generations of the NS-PAMAM dendrimers exhibited excellent performance for CO2 capture. Compared to the other generations, NS-G3.0 demonstrated superior CO2 adsorption capacities of 0.50 mmol g-1 under simulated dry CO2 conditions (400 ppm in He), 1.02 mmol g-1 under indoor air (dry) CO2 conditions (≥400 ppm, 26 ± 3% RH), and 1.54 mmol g-1 under indoor air (humid) CO2 conditions (≥400 ppm, 50 ± 3% RH). The study included the evaluation of CO2 adsorption-desorption performance of the NS-PAMAM dendrimers under varying structural and chemical parameters, kinetics, regeneration at low temperature (80 °C), as well as CO2 adsorption under humid conditions. Additionally, NS-G3.0 displayed a substantially superior performance with stable CO2 capture displayed during ten short temperature swing adsorption (TSA) cycles, making it a promising candidate for CO2 capture from ambient air. Finally, we demonstrated the recovery and reutilization of the captured CO2 for both the synthesis of formate via carbonate hydrogenation and for the production of calcium carbonate pellets.
Collapse
Affiliation(s)
- Vaishnavi Kulkarni
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Jayashree Parthiban
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Sanjay Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| |
Collapse
|
7
|
Wang K, Zhang Z, Wang S, Jiang L, Li H, Wang C. Dual-Tuning Azole-Based Ionic Liquids for Reversible CO 2 Capture from Ambient Air. CHEMSUSCHEM 2024; 17:e202301951. [PMID: 38499466 DOI: 10.1002/cssc.202301951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
A strategy of tuning azole-based ionic liquids for reversible CO2 capture from ambient air was reported. Through tuning the basicity of anion as well as the type of cation, an ideal azole-based ionic liquid with both high CO2 capacity and excellent stability was synthesized, which exhibited a highest single-component isotherm uptake of 2.17 mmol/g at the atmospheric CO2 concentration of 0.4 mbar at 30 °C, even in the presence of water. The bound CO2 can be released by relatively mild heating of the IL-CO2 at 80 °C, which makes it promising for energy-efficient CO2 desorption and sorbent regeneration, leading to excellent reversibility. To the best of our knowledge, these azole-based ionic liquids are superior to other adsorbent materials for direct air capture due to their dual-tunable properties and high CO2 capture efficiency, offering a new prospect for efficient and reversible direct air capture technologies.
Collapse
Affiliation(s)
- Kaili Wang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Zhaowei Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Shenyao Wang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Lili Jiang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Haoran Li
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Congmin Wang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| |
Collapse
|
8
|
Liu J, Wang Z, Liang C, Fang K, Li S, Guo X, Wang T, Fang M. Direct air capture of CO 2 using biochar prepared from sewage sludge: Adsorption capacity and kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174887. [PMID: 39032738 DOI: 10.1016/j.scitotenv.2024.174887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
As an emerging carbon-negative emission technology, carbon dioxide (CO2) capture from the air is an essential safeguard for alleviating global warming. Sludge-activated carbon with excellent mesoporous structure is a potential material for CO2 capture. In this paper, the amino modified sewage sludge materials were used to prepare the porous CO2 adsorbent from air. The effect of preparation conditions on the microstructure of sewage sludge-based activated carbon materials was analyzed by microstructural characterization, and the impacts of activator, pyrolysis temperature, and the concentration of modifier on the CO2 adsorption performance of sewage sludge-based activated carbon materials were also systematically investigated. The results show that the pyrolysis temperature, the type of activator and the modifier concentration significantly affect the adsorption performance of sewage sludge-based CO2 adsorption materials. Among them, the sewage sludge-based CO2 adsorption material prepared with solid NaOH as an activator, with an activation temperature of 600 °C and loading concentration of 20 %, exhibited the best performance, that is the CO2 adsorption capacity reached 1.17 mmol/g, and the half time is about four min, which shows better performance, compared with other adsorbents for CO2 capture from air. The research results can reduce CO2 emissions on the one hand, and on the other hand, realize the resourceful utilization of sewage sludge, which sheds light on "treating the wastes with wastes".
Collapse
Affiliation(s)
- Jun Liu
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Zefan Wang
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Chenyang Liang
- SPIC nuclear power equipment CO., LTD., Yantai 26400,China
| | - Kehao Fang
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Shaokang Li
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xinwei Guo
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Tao Wang
- College of energy engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxiang Fang
- College of energy engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Suhail Z, Koch CJ, Goeppert A, Prakash GKS. Integrated Carbon Dioxide Capture and Conversion to Methanol Utilizing Tertiary Amines over a Heterogenous Cu/ZnO/Al 2O 3 Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5401-5408. [PMID: 38426862 DOI: 10.1021/acs.langmuir.3c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Increasing carbon dioxide emissions has sparked a growing interest in capturing these emissions at the source of their release. For such processes, amines can be used as carbon dioxide capture agents. Herein, CO2 was captured under ambient conditions using solutions of amines and polyamines in ethylene glycol. The captured solutions were then successfully hydrogenated to methanol under hydrogen pressure with a heterogeneous Cu/ZnO/Al2O3 industrial catalyst. An extensive amine scope found that tetramethyl-1,6-hexanediamine, with two tertiary amine sites, provided the highest methanol productivity. This reaction was then optimized to achieve up to 89% methanol yield under relatively mild conditions of 250 °C and 80 bar H2 pressure. The catalyst was shown to be recyclable over five reaction cycles.
Collapse
Affiliation(s)
- Zohaib Suhail
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| |
Collapse
|
10
|
Priyadarshini P, Rim G, Rosu C, Song M, Jones CW. Direct Air Capture of CO 2 Using Amine/Alumina Sorbents at Cold Temperature. ACS ENVIRONMENTAL AU 2023; 3:295-307. [PMID: 37743951 PMCID: PMC10515709 DOI: 10.1021/acsenvironau.3c00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 09/26/2023]
Abstract
Rising CO2 emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO2 from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents' performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO2 adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (-20 °C) under dry and humid conditions. CO2 adsorption capacities at 25 °C and 400 ppm CO2 are highest for 40 wt% TEPA-incorporated γ-Al2O3 samples (1.8 mmol CO2/g sorbent), while 40 wt % PEI-impregnated γ-Al2O3 samples exhibit moderate uptakes (0.9 mmol g-1). CO2 capacities for both PEI- and TEPA-incorporated γ-Al2O3 samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at -20 °C under dry conditions (1.6 and 1.1 mmol g-1, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g-1) across 10 cycles of adsorption-desorption (adsorption at -20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at -20 and 25 °C) improves the CO2 capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO2 uptakes at both temperatures. The results presented here indicate that γ-Al2O3 impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.
Collapse
Affiliation(s)
- Pranjali Priyadarshini
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Guanhe Rim
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Cornelia Rosu
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - MinGyu Song
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
11
|
Li S, Calegari Andrade MF, Varni AJ, Russell-Parks GA, Braunecker WA, Hunter-Sellars E, Marple MAT, Pang SH. Enhanced hydrogen bonding via epoxide-functionalization restricts mobility in poly(ethylenimine) for CO 2 capture. Chem Commun (Camb) 2023; 59:10737-10740. [PMID: 37560785 DOI: 10.1039/d3cc02702c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Free energy sampling, deep potential molecular dynamics, and characterizations provide insights into the impact of epoxide-functionalization on the hydrogen bonding and mobility of poly(ethylenimine), a promising CO2 sorbent. These findings rationalize the anti-degradation effects of epoxide functionalization and open up new avenues for designing more durable CO2 sorbents.
Collapse
Affiliation(s)
- Sichi Li
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | - Anthony J Varni
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Glory A Russell-Parks
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Co 80401, USA
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Wade A Braunecker
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Co 80401, USA
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Elwin Hunter-Sellars
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Maxwell A T Marple
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Simon H Pang
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
12
|
Arango Hoyos BE, Osorio HF, Valencia Gómez EK, Guerrero Sánchez J, Del Canto Palominos AP, Larrain FA, Prías Barragán JJ. Exploring the capture and desorption of CO 2 on graphene oxide foams supported by computational calculations. Sci Rep 2023; 13:14476. [PMID: 37660192 PMCID: PMC10475065 DOI: 10.1038/s41598-023-41683-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
In the last decade, the highest levels of greenhouse gases (GHG) in the atmosphere have been recorded, with carbon dioxide (CO2) being one of the GHGs that most concerns mankind due to the rate at which it is generated on the planet. Given its long time of permanence in the atmosphere (between 100 to 150 years); this has deployed research in the scientific field focused on the absorption and desorption of CO2 in the atmosphere. This work presents the study of CO2 adsorption employing materials based on graphene oxide (GO), such as GO foams with different oxidation percentages (3.00%, 5.25%, and 9.00%) in their structure, obtained via an environmentally friendly method. The characterization of CO2 adsorption was carried out in a closed system, within which were placed the GO foams and other CO2 adsorbent materials (zeolite and silica gel). Through a controlled chemical reaction, production of CO2 was conducted to obtain CO2 concentration curves inside the system and calculate from these the efficiency, obtained between 86.28 and 92.20%, yield between 60.10 and 99.50%, and effectiveness of CO2 adsorption of the materials under study. The results obtained suggest that GO foams are a promising material for carbon capture and the future development of a new clean technology, given their highest CO2 adsorption efficiency and yield.
Collapse
Affiliation(s)
- Bryan E Arango Hoyos
- Energy Engineering, Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
| | - H Franco Osorio
- Electronic Instrumentation Technology Program, Faculty of Basic Science and Technology, Universidad del Quindío, 630001, Armenia, Colombia
| | - E K Valencia Gómez
- Doctoral Program in Physical Sciences, Interdisciplinary Institute of Sciences, Universidad del Quindío, 630004, Armenia, Colombia
| | - J Guerrero Sánchez
- Virtual Materials Modeling Laboratory (LVMM), Center for Nanoscience and Nanotechnology, Universidad Nacional Autónoma de México, Ensenada, 22860, Mexico
| | - A P Del Canto Palominos
- Energy Engineering, Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
| | - Felipe A Larrain
- Energy Engineering, Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
| | - J J Prías Barragán
- Electronic Instrumentation Technology Program, Faculty of Basic Science and Technology, Universidad del Quindío, 630001, Armenia, Colombia.
- Doctoral Program in Physical Sciences, Interdisciplinary Institute of Sciences, Universidad del Quindío, 630004, Armenia, Colombia.
| |
Collapse
|
13
|
Kumar De S, Won DI, Kim J, Kim DH. Integrated CO 2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 2023; 52:5744-5802. [PMID: 37539619 DOI: 10.1039/d2cs00512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Coupling post-combustion CO2 capture with electrochemical utilization (CCU) is a quantum leap in renewable energy science since it eliminates the cost and energy involved in the transport and storage of CO2. However, the major challenges involved in industrial scale implementation are selecting an appropriate solvent/electrolyte for CO2 capture, modeling an appropriate infrastructure by coupling an electrolyser with a CO2 point source and a separator to isolate CO2 reduction reaction (CO2RR) products, and finally selection of an appropriate electrocatalyst. In this review, we highlight the major difficulties with detailed mechanistic interpretation in each step, to find out the underpinning mechanism involved in the integration of electrochemical CCU to achieve higher-value products. In the past decades, most of the studies dealt with individual parts of the integration process, i.e., either selecting a solvent for CO2 capture, designing an electrocatalyst, or choosing an ideal electrolyte. In this context, it is important to note that solvents such as monoethanolamine, bicarbonate, and ionic liquids are often used as electrolytes in CO2 capture media. Therefore, it is essential to fabricate a cost-effective electrolyser that should function as a reversible binder with CO2 and an electron pool capable of recovering the solvent to electrolyte reversibly. For example, reversible ionic liquids, which are non-ionic in their normal forms, but produce ionic forms after CO2 capture, can be further reverted back to their original non-ionic forms after CO2 release with almost 100% efficiency through the chemical or thermal modulations. This review also sheds light on a focused techno-economic evolution for converting the electrochemically integrated CCU process from a pilot-scale project to industrial-scale implementation. In brief, this review article will summarize a state-of-the-art argumentation of challenges and outcomes over the different segments involved in electrochemically integrated CCU to stimulate urgent progress in the field.
Collapse
Affiliation(s)
- Sandip Kumar De
- Department of Chemistry, UPL University of Sustainable Technology, 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
14
|
Miao Y, Wang Y, Ge B, He Z, Zhu X, Li J, Liu S, Yu L. Mixed Diethanolamine and Polyethyleneimine with Enhanced CO 2 Capture Capacity from Air. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207253. [PMID: 37017566 DOI: 10.1002/advs.202207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Supported polyethyleneimine (PEI) adsorbent is one of the most promising commercial direct air capture (DAC) adsorbents with a long research history since 2002. Although great efforts have been input, there are still limited improvements for this material in its CO2 capacity and adsorption kinetics under ultradilute conditions. Supported PEI also suffers significantly reduced adsorption capacities when working at sub-ambient temperatures. This study reports that mixing diethanolamine (DEA) into supported PEI can increase 46% and 176% of pseudoequilibrium CO2 capacities at DAC conditions compared to the supported PEI and DEA, respectively. The mixed DEA/PEI functionalized adsorbents maintain the adsorption capacity at sub-ambient temperatures of -5 to 25 °C. In comparison, a 55% reduction of CO2 capacity is observed for supported PEI when the operating temperature decreases from 25 to -5 °C. In addition, the supported mixed DEA/PEI with a ratio of 1:1 also shows fast desorption kinetics at temperatures as low as 70 °C, resulting in maintaining high thermal and chemical stability over 50 DAC cycles with a high average CO2 working capacity of 1.29 mmol g-1 . These findings suggest that the concept of "mixed amine", widely studied in the solvent system, is also practical to supported amine for DAC applications.
Collapse
Affiliation(s)
- Yihe Miao
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Yaozu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhijun He
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia Li
- The Hong Kong University of Science and Technology (Guangzhou), No.2 Huan Shi Road South, Guangzhou, Nansha, 511458, China
- Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China
| | - Shanke Liu
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Lijun Yu
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
15
|
Abdullatif Y, Sodiq A, Mir N, Bicer Y, Al-Ansari T, El-Naas MH, Amhamed AI. Emerging trends in direct air capture of CO 2: a review of technology options targeting net-zero emissions. RSC Adv 2023; 13:5687-5722. [PMID: 36816069 PMCID: PMC9930410 DOI: 10.1039/d2ra07940b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere has compelled researchers and policymakers to seek urgent solutions to address the current global climate change challenges. In order to keep the global mean temperature at approximately 1.5 °C above the preindustrial era, the world needs increased deployment of negative emission technologies. Among all the negative emissions technologies reported, direct air capture (DAC) is positioned to deliver the needed CO2 removal in the atmosphere. DAC technology is independent of the emissions origin, and the capture machine can be located close to the storage or utilization sites or in a location where renewable energy is abundant or where the price of energy is low-cost. Notwithstanding these inherent qualities, DAC technology still has a few drawbacks that need to be addressed before the technology can be widely deployed. As a result, this review focuses on emerging trends in direct air capture (DAC) of CO2, the main drivers of DAC systems, and the required development for commercialization. The main findings point to undeniable facts that DAC's overall system energy requirement is high, and it is the main bottleneck in DAC commercialization.
Collapse
Affiliation(s)
- Yasser Abdullatif
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
- Qatar Environment and Energy Institute (QEERI) Doha Qatar
| | - Ahmed Sodiq
- Qatar Environment and Energy Institute (QEERI) Doha Qatar
| | - Namra Mir
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | - Yusuf Bicer
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | - Tareq Al-Ansari
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | | | | |
Collapse
|
16
|
Kulkarni V, Panda D, Singh SK. Direct Air Capture of CO 2 over Amine-Modified Hierarchical Silica. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Vaishnavi Kulkarni
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552Madhya Pradesh, India
| | - Debashis Panda
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552Madhya Pradesh, India
| | - Sanjay Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552Madhya Pradesh, India
| |
Collapse
|
17
|
Sen R, Goeppert A, Surya Prakash GK. Homogeneous Hydrogenation of CO 2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022; 61:e202207278. [PMID: 35921247 PMCID: PMC9825957 DOI: 10.1002/anie.202207278] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/11/2023]
Abstract
The traditional economy based on carbon-intensive fuels and materials has led to an exponential rise in anthropogenic CO2 emissions. Outpacing the natural carbon cycle, atmospheric CO2 levels increased by 50 % since the pre-industrial age and can be directly linked to global warming. Being at the core of the proposed methanol economy pioneered by the late George A. Olah, the chemical recycling of CO2 to produce methanol, a green fuel and feedstock, is a prime channel to achieve carbon neutrality. In this direction, homogeneous catalytic systems have lately been a major focus for methanol synthesis from CO2 , CO and their derivatives as potential low-temperature alternatives to the commercial processes. This Review provides an account of this rapidly growing field over the past decade, since its resurgence in 2011. Based on the critical assessment of the progress thus far, the present key challenges in this field have been highlighted and potential directions have been suggested for practically viable applications.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| |
Collapse
|
18
|
Chassé M, Sen R, Goeppert A, Prakash GS, Vasdev N. Polyamine based solid CO2 adsorbents for [11C]CO2 purification and radiosynthesis. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc Natl Acad Sci U S A 2022; 119:e2211544119. [PMID: 36122236 PMCID: PMC9522334 DOI: 10.1073/pnas.2211544119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Direct air capture (DAC) of CO2 from the atmosphere is being pursued to aid in mitigating global CO2 amounts and possibly reaching net negative emissions by 2050. We report that a type of commercialized zeolite, mordenite (MOR)-type zeolite, is a promising adsorbent for DAC because of its high CO2 capacity, high selectivity, fast kinetics, low isosteric heat of adsorption, and high stability under simulated DAC conditions. We demonstrate that the primary site for CO2 adsorption in the MOR-type zeolite is located at the side-pocket and that its size (i.e., the confinement effect) is the key to the performance by comparing its adsorption behavior to those obtained from a number of other zeolites with varying pore space sizes. Engineered systems designed to remove CO2 from the atmosphere need better adsorbents. Here, we report on zeolite-based adsorbents for the capture of low-concentration CO2. Synthetic zeolites with the mordenite (MOR)-type framework topology physisorb CO2 from low concentrations with fast kinetics, low heat of adsorption, and high capacity. The MOR-type zeolites can have a CO2 capacity of up to 1.15 and 1.05 mmol/g for adsorption from 400 ppm CO2 at 30 °C, measured by volumetric and gravimetric methods, respectively. A structure–performance study demonstrates that Na+ cations in the O33 site located in the side-pocket of the MOR-type framework, that is accessed through a ring of eight tetrahedral atoms (either Si4+ or Al3+: eight-membered ring [8MR]), is the primary site for the CO2 uptake at low concentrations. The presence of N2 and O2 shows negligible impact on CO2 adsorption in MOR-type zeolites, and the capacity increases to ∼2.0 mmol/g at subambient temperatures. By using a series of zeolites with variable topologies, we found the size of the confining pore space to be important for the adsorption of trace CO2. The results obtained here show that the MOR-type zeolites have a number of desirable features for the capture of CO2 at low concentrations.
Collapse
|
20
|
Prakash SG, Sen R, Goeppert A. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Surya G. Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| | - Raktim Sen
- University of Southern California Loker Hydrocarbon Res. Inst., and Department box Chemistry UNITED STATES
| | - Alain Goeppert
- University of Southern California Loker Hydrocarbon Res. Inst., and Department of Chemistry UNITED STATES
| |
Collapse
|
21
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
22
|
Abstract
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).
Collapse
Affiliation(s)
- Mihrimah Ozkan
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
- Materials Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Saswat Priyadarshi Nayak
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
| | - Anthony D. Ruiz
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
| | - Wenmei Jiang
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
23
|
Sen R, Goeppert A, Prakash GKS. Integrated Carbon Capture and Utilization to Methanol with Epoxide-functionalized Polyamines under Homogeneous Catalytic Conditions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Rim G, Kong F, Song M, Rosu C, Priyadarshini P, Lively RP, Jones CW. Sub-Ambient Temperature Direct Air Capture of CO 2 using Amine-Impregnated MIL-101(Cr) Enables Ambient Temperature CO 2 Recovery. JACS AU 2022; 2:380-393. [PMID: 35252988 PMCID: PMC8889612 DOI: 10.1021/jacsau.1c00414] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 05/12/2023]
Abstract
Due to the dramatically increased atmospheric CO2 concentration and consequential climate change, significant effort has been made to develop sorbents to directly capture CO2 from ambient air (direct air capture, DAC) to achieve negative CO2 emissions in the immediate future. However, most developed sorbents have been studied under a limited array of temperature (>20 °C) and humidity conditions. In particular, the dearth of experimental data on DAC at sub-ambient conditions (e.g., -30 to 20 °C) and under humid conditions will severely hinder the large-scale implementation of DAC because the world has annual average temperatures ranging from -30 to 30 °C depending on the location and essentially no place has a zero absolute humidity. To this end, we suggest that understanding CO2 adsorption from ambient air at sub-ambient temperatures, below 20 °C, is crucial because colder temperatures represent important practical operating conditions and because such temperatures may provide conditions where new sorbent materials or enhanced process performance might be achieved. Here we demonstrate that MIL-101(Cr) materials impregnated with amines (TEPA, tetraethylenepentamine, or PEI, poly(ethylenimine)) offer promising adsorption and desorption behavior under DAC conditions in both the presence and absence of humidity under a wide range of temperatures (-20 to 25 °C). Depending on the amine loading and adsorption temperature, the sorbents show different CO2 capture behavior. With 30 and 50 wt % amine loadings, the sorbents show weak and strong chemisorption-dominant CO2 capture behavior, respectively. Interestingly, at -20 °C, the CO2 adsorption capacity of 30 wt % TEPA-impregnated MIL-101(Cr) significantly increased up to 1.12 mmol/g from 0.39 mmol/g at ambient conditions (25 °C) due to the enhanced weak chemisorption. More importantly, the sorbents also show promising working capacities (0.72 mmol/g) over 15 small temperature swing cycles with an ultralow regeneration temperature (-20 °C sorption to 25 °C desorption). The sub-ambient DAC performance of the sorbents is further enhanced under humid conditions, showing promising and stable CO2 working capacities over multiple humid small temperature swing cycles. These results demonstrate that appropriately designed DAC sorbents can operate in a weak chemisorption modality at low temperatures even in the presence of humidity. Significant energy savings may be realized via the utilization of small temperature swings enabled by this weak chemisorption behavior. This work suggests that significant work on DAC materials that operate at low, sub-ambient temperatures is warranted for possible deployment in temperate and polar climates.
Collapse
|
25
|
Sen R, Koch CJ, Galvan V, Entesari N, Goeppert A, Prakash GS. Glycol assisted efficient conversion of CO2 captured from air to methanol with a heterogeneous Cu/ZnO/Al2O3 catalyst. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Lai A, Loehde-Woolard HC, McNeary WW, Burger J, Pfeffer R, Weimer AW. Amine-functionalized fumed silica for CO2 capture through particle molecular layer deposition. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Liu RS, Xu S, Hao GP, Lu AH. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Choi W, Park J, Choi M. Cation Effects of Phosphate Additives for Enhancing the Oxidative Stability of Amine-Containing CO 2 Adsorbents. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Woosung Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jongbeom Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Zhao Y, Dong Y, Guo Y, Huo F, Yan F, He H. Recent progress of green sorbents-based technologies for low concentration CO2 capture. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Sen R, Koch CJ, Goeppert A, Prakash GKS. Tertiary Amine-Ethylene Glycol Based Tandem CO 2 Capture and Hydrogenation to Methanol: Direct Utilization of Post-Combustion CO 2. CHEMSUSCHEM 2020; 13:6318-6322. [PMID: 33075206 DOI: 10.1002/cssc.202002285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Carbon dioxide capture using tertiary amines in ethylene glycol solvent was performed under ambient conditions. Subsequently, the CO2 captured as alkyl carbonate salts was successfully hydrogenated to methanol, in the presence of H2 gas and Ru-Macho-BH catalyst. A comprehensive series of tertiary amines were selected for the integrated capture and conversion process. While most of these amines were effective for CO2 capture, tetramethylethylenediamine (TMEDA) and tetramethylbutanediamine (TMBDA) provided the best CH3 OH yields. Deactivation of the base due to side reactions was significantly minimized and substantial base regeneration was observed. The proposed system was also highly efficient for CO2 capture from a gas mixture containing 10 % CO2 , as found in flue gases, followed by tandem conversion to CH3 OH. We postulate that such high boiling tertiary amine-glycol systems as dual capture and hydrogenation solvents are promising for the realization of a sustainable and carbon-neutral methanol economy in a scalable process.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA
| | - Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA
| |
Collapse
|
31
|
Custelcean R, Williams NJ, Wang X, Garrabrant KA, Martin HJ, Kidder MK, Ivanov AS, Bryantsev VS. Dialing in Direct Air Capture of CO 2 by Crystal Engineering of Bisiminoguanidines. CHEMSUSCHEM 2020; 13:6381-6390. [PMID: 33411422 DOI: 10.1002/cssc.202001114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Indexed: 05/27/2023]
Abstract
Direct air capture (DAC) technologies that extract carbon dioxide from the atmosphere via chemical processes have the potential to restore the atmospheric CO2 concentration to an optimal level. This study elucidates structure-property relationships in DAC by crystallization of bis(iminoguanidine) (BIG) carbonate salts. Their crystal structures are analyzed by X-ray and neutron diffraction to accurately measure key structural parameters including molecular conformations, hydrogen bonding, and π-stacking. Experimental measurements of key properties, such as aqueous solubilities and regeneration energies and temperatures, are complemented by first-principles calculations of lattice and hydration free energies, as well as free energies of reactions with CO2, and BIG regenerations. Minor structural modifications in the molecular structure of the BIGs are found to result in major changes in the crystal structures and the aqueous solubilities within the series, leading to enhanced DAC.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Neil J Williams
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Halie J Martin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michelle K Kidder
- Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
32
|
Liu M, Custelcean R, Seifert S, Kuzmenko I, Gadikota G. Hybrid Absorption–Crystallization Strategies for the Direct Air Capture of CO 2 Using Phase-Changing Guanidium Bases: Insights from in Operando X-ray Scattering and Infrared Spectroscopy Measurements. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meishen Liu
- School of Civil and Environmental Engineering, Cornell University, 527 College Avenue, 117 Hollister Hall, Ithaca, New York 14853, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Soenke Seifert
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, 527 College Avenue, 117 Hollister Hall, Ithaca, New York 14853, United States
| |
Collapse
|
33
|
Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X, Lackner KS. Sorbenten zur direkten Gewinnung von CO
2
aus der Umgebungsluft. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoyang Shi
- School of Sustainable Engineering & Built Environment Arizona State University Tempe AZ 85287 USA
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
| | - Hang Xiao
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
| | - Habib Azarabadi
- School of Sustainable Engineering & Built Environment Arizona State University Tempe AZ 85287 USA
| | - Juzheng Song
- ICAM, School of Aerospace Xi'an Jiaotong University Xi'an 710049 China
| | - Xiaolong Wu
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
| | - Xi Chen
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
- School of Chemical Engineering Northwest University Xi'an 710069 China
| | - Klaus S. Lackner
- School of Sustainable Engineering & Built Environment Arizona State University Tempe AZ 85287 USA
| |
Collapse
|
34
|
Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X, Lackner KS. Sorbents for the Direct Capture of CO
2
from Ambient Air. Angew Chem Int Ed Engl 2020; 59:6984-7006. [DOI: 10.1002/anie.201906756] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyang Shi
- School of Sustainable Engineering & Built Environment Arizona State University Tempe AZ 85287 USA
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
| | - Hang Xiao
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
| | - Habib Azarabadi
- School of Sustainable Engineering & Built Environment Arizona State University Tempe AZ 85287 USA
| | - Juzheng Song
- ICAM, School of Aerospace Xi'an Jiaotong University Xi'an 710049 China
| | - Xiaolong Wu
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
| | - Xi Chen
- Earth Engineering Center Center for Advanced Materials for Energy and Environment Department of Earth and Environmental Engineering Columbia University New York NY 10027 USA
- School of Chemical Engineering Northwest University Xi'an 710069 China
| | - Klaus S. Lackner
- School of Sustainable Engineering & Built Environment Arizona State University Tempe AZ 85287 USA
| |
Collapse
|
35
|
Sen R, Goeppert A, Kar S, Prakash GKS. Hydroxide Based Integrated CO2 Capture from Air and Conversion to Methanol. J Am Chem Soc 2020; 142:4544-4549. [DOI: 10.1021/jacs.9b12711] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Sayan Kar
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| |
Collapse
|
36
|
He T, Xiao Y, Zhao Q, Zhou M, He G. Ultramicroporous Metal–Organic Framework Qc-5-Cu for Highly Selective Adsorption of CO2 from C2H4 Stream. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tengjiao He
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yonghou Xiao
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Qidong Zhao
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Mengxue Zhou
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Supercomputing Center, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
37
|
Ethylenediamine Functionalized Metalloporphyrin Loaded Nanofibrous Membrane: A New Strategic Approach to Air filtration. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01410-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Custelcean R, Williams NJ, Garrabrant KA, Agullo P, Brethomé FM, Martin HJ, Kidder MK. Direct Air Capture of CO2 with Aqueous Amino Acids and Solid Bis-iminoguanidines (BIGs). Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Radu Custelcean
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Neil J. Williams
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Pierrick Agullo
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Halie J. Martin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michelle K. Kidder
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|