1
|
Wang L, Zhang W. Recent Advances on Epoxide- and Aziridine-Based [3+2] Annulations. Chem Asian J 2025; 20:e202401936. [PMID: 39962900 DOI: 10.1002/asia.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Abstract
[3+2] Annulations are a powerful method for the synthesis of five-membered heterocyclic compounds. The annulations have concerted cycloaddition and formal (stepwise) cycloaddition reaction pathways. In addition to the well-established O-centered and N-centered ylides, epoxides and aziridines could serve as synthetic equivalent of 1,3-dipoles for [3+2] annulation with dipolarophiles for making functionalized tetrahydrofuran, pyrrolidine, and associated compounds. This review article covers recent development on epoxide- and aziridine-based [3+2] annulation reactions. The reactions are classified based on the ring opening conditions, including acid/base catalysis, organocatalysis, and transitional-metal catalysis.
Collapse
Affiliation(s)
- Liang Wang
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Gehu Road 33, Wujin District, Changzhou, 213164, P. R. China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
2
|
Invernizzi L, Damiano C, Gallo E. A Biocompatible Cinchonine-Based Catalyst for the CO 2 Valorization into Oxazolidin-2-ones Under Ambient Conditions. Chemistry 2025; 31:e202500473. [PMID: 40134351 PMCID: PMC12057589 DOI: 10.1002/chem.202500473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
A metal-free, biocompatible catalyst for the cycloaddition of CO2 to N-alkyl aziridines was easily obtained by protonating the natural and nontoxic alkaloid (+)-cinchonine. This bifunctional catalytic system promoted the synthesis of the desired products under very mild experimental conditions (room temperature and atmospheric CO2 pressure) and without the aid of any cocatalyst. No specific equipment is required, making the procedure practical for application in any laboratory. The high synthetic value of this methodology can be attributed to the combination of excellent regioselectivity in oxazolidinone synthesis and the remarkable chemical stability of the catalyst, which can be recycled and reused for at least three consecutive cycles without any significant loss of activity.
Collapse
Affiliation(s)
- Lucia Invernizzi
- Department of ChemistryUniversity of MilanVia C. Golgi 19Milan20133Italy
| | - Caterina Damiano
- Department of ChemistryUniversity of MilanVia C. Golgi 19Milan20133Italy
| | - Emma Gallo
- Department of ChemistryUniversity of MilanVia C. Golgi 19Milan20133Italy
| |
Collapse
|
3
|
Choi J, Thirupathi A, Kim J, Ha HJ, Ahn KH, Kang EJ. Fe(II)-Iminopyridine Catalyst for the Regioselective Synthesis of Oxazolidinones Using Carbon Dioxide. J Org Chem 2024; 89:18081-18089. [PMID: 39630108 DOI: 10.1021/acs.joc.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study presents the application of a novel Fe-iminopyridine catalyst for the regioselective synthesis of oxazolidinones from carbon dioxide and aziridines. Our findings demonstrate that the Fe-iminopyridine catalyst containing imidazole functional group offers promising efficiency and facilitates a sustainable approach to green chemical synthesis at 50 °C and 10 bar CO2 pressure in a single-component Fe catalyst system. Various aziridines with carboxylic acid-derived substituents were transformed into 5-carbonyl substituted oxazolidinone products. The regioselective synthesis of oxazolidinones followed by the reduction enhances their utility for the pharmaceutically valuable compounds.
Collapse
Affiliation(s)
- Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Annaram Thirupathi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihoon Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
4
|
Alberti M, Dariol A, Panza N, Abbiati G, Caselli A. Ammonium Zincates as Catalysts for the Microwave-Enhanced Synthesis of Symmetric Piperazines by Regioselective Opening of Aziridines. Chem Asian J 2024; 19:e202400688. [PMID: 39136397 PMCID: PMC11581340 DOI: 10.1002/asia.202400688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Indexed: 10/19/2024]
Abstract
2,5-disubstituted N,N'-alkylpiperazines represent an interesting target in organic synthesis both for pharmaceutical or agrochemical applications and as a promising class of ligands in coordination chemistry. We report here a microwave-enhanced synthesis of these compounds starting from non-activated N-alkyl aziridines in the presence of catalytic amounts of simple ammonium metallates. A remarkable TOF of 2787.9 h-1 has been observed in the case of [TBA]2[ZnI4] as the catalyst (catalyst loading 0.1 mol %) and with an almost complete selectivity (up to 97 %) in favor of both diastereoisomers (meso and chiral form) of the target 2,5-disubstituted piperazines, obtained in 1 : 1 ratio. The two isomers are easily separated, because the meso form precipitates in pure from the reaction crude. A stereochemical investigation and the unprecedented isolation of 2,6-disubstituted N,N'-alkylpiperazines allowed us to shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Matteo Alberti
- Department of ChemistryUniversità degli Studi di Milano and CNR-SCITECVia Golgi 1920133MilanoItaly
| | - Andrea Dariol
- Department of ChemistryUniversità degli Studi di Milano and CNR-SCITECVia Golgi 1920133MilanoItaly
| | - Nicola Panza
- Department of ChemistryUniversità degli Studi di Milano and CNR-SCITECVia Golgi 1920133MilanoItaly
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Golgi 1920133MilanoItaly
| | - Alessandro Caselli
- Department of ChemistryUniversità degli Studi di Milano and CNR-SCITECVia Golgi 1920133MilanoItaly
| |
Collapse
|
5
|
Adding Diversity to Diiron Aminocarbyne Complexes with Amine Ligands. INORGANICS 2023. [DOI: 10.3390/inorganics11030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The reactions of the diiron aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Me, 1aNCMe; R = Cy, 1bNCMe), freshly prepared from the tricarbonyl precursors 1a–b, with primary amines containing an additional function (i.e., alcohol or ether) proceeded with the replacement of the labile acetonitrile ligand and formation of [Fe2Cp2(NH2CH2CH2OR’)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Me, R’ = H, 2a; R = Cy, R’ = H, 2b; R = Cy, R’ = Me, 2c) in 81–95% yields. The diiron-oxazolidinone conjugate [Fe2Cp2(NH2OX)(CO)(μ-CO){μ-CN(Me)2}]CF3SO3, 3, was prepared from 1a, 3-(2-aminoethyl)-5-phenyloxazolidin-2-one (NH2OX) and Me3NO, and finally isolated in 96% yield. In contrast, the one pot reactions of 1a-b with NHEt2 in the presence of Me3NO gave the unstable [Fe2Cp2(NHEt2)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Me, 4a; R = Cy, 4b) as unclean products. All diiron complexes were characterized by analytical and spectroscopic techniques; moreover, the behavior of 2a–c and 3 in aqueous media was ascertained.
Collapse
|
6
|
Zaitsev KV, Trubachev AD, Oprunenko YF, Piskun YA, Vasilenko IV, Churakov AV, Kostjuk SV. Aluminum Salen Complexes Modified with Unsaturated Alcohol: Synthesis, Characterization, and Their Activity towards Ring-Opening Polymerization of ε-Caprolactone and D, L-Lactide. Molecules 2023; 28:molecules28031262. [PMID: 36770928 PMCID: PMC9920203 DOI: 10.3390/molecules28031262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A highly efficient one-step approach to the macromonomer synthesis using modified aluminum complexes as catalysts of ring-opening polymerization (ROP) of ε-caprolactone and D,L-lactide was developed. The syntheses, structures, and catalytic activities of a wide range of aluminum salen complexes, 3a-c, functionalized with unsaturated alcohol (HO(CH2)4OCH=CH2) are reported. X-Ray diffraction studies revealed a tetragonal pyramidal structure for 3c. Among the complexes 3a-c, the highest activity in bulk ROP of ε-caprolactone and D,L-lactide was displayed by 3b, affording polyesters with controlled molecular weights at low monomer to initiator ratios (Mn up to 15,000 g mol-1), relatively high polydispersities (Ð~1.8) and high number-average functionalities (Fn up to 85%).
Collapse
Affiliation(s)
- Kirill V. Zaitsev
- Department of Chemistry, Moscow State University, Leninskye Gory 1, 3, Moscow 119991, Russia
- Correspondence: (K.V.Z.); (I.V.V.); (S.V.K.)
| | - Andrey D. Trubachev
- Department of Chemistry, Moscow State University, Leninskye Gory 1, 3, Moscow 119991, Russia
| | - Yuri F. Oprunenko
- Department of Chemistry, Moscow State University, Leninskye Gory 1, 3, Moscow 119991, Russia
| | - Yuliya A. Piskun
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya Str., 14, 220006 Minsk, Belarus
| | - Irina V. Vasilenko
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya Str., 14, 220006 Minsk, Belarus
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str., 14, 220006 Minsk, Belarus
- Correspondence: (K.V.Z.); (I.V.V.); (S.V.K.)
| | - Andrei V. Churakov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr., 31, Moscow 119991, Russia
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya Str., 14, 220006 Minsk, Belarus
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str., 14, 220006 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya Str., Moscow 119992, Russia
- Correspondence: (K.V.Z.); (I.V.V.); (S.V.K.)
| |
Collapse
|
7
|
Zhang CH, Wu ZL, Bai RX, Hu TD, Zhao B. Highly Efficient Conversion of Aziridines and CO 2 Catalyzed by Microporous [Cu 12] Nanocages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1879-1890. [PMID: 36584397 DOI: 10.1021/acsami.2c19614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The conversion of CO2 as a C1 source into value-added products is an attractive alternative in view of the green synthesis. Among the reported approaches, the cyclization reaction of aziridines with CO2 is of great significance since the generated N-containing cyclic skeletons are extensively found in pharmaceutical chemistry and industrial production. However, a low turnover number (TON) and homogeneous catalysts are often involved in this catalytic system. Herein, one novel copper-organic framework {[Cu2(L4-)(H2O)2]·3DMF·2H2O}n (1) (H4L = 2'-fluoro-[1,1':4',1″-Terphenyl]-3,3″,5,5″-tetracarboxylic acid) assembled by nanosized [Cu12] cages was successfully synthesized and structurally characterized, which exhibits high CO2/N2 selectivity due to the strong interactions between CO2 and open Cu(II) sites and ligands in the framework. Catalytic investigations suggest that 1 as a heterogeneous catalyst can effectively catalyze the cyclization of aziridines with CO2, and the TON can reach a record value of 90.5. Importantly, 1 displays excellent chemical stability, which can be recycled at least five times. The combination explorations of nuclear magnetic resonance (NMR), 13C-isotope labeling experiments, and density functional theory (DFT) clearly uncover the mechanism of this aziridine/CO2 coupling reaction system, in which 1 and tetrabutylammonium bromide (TBAB) can highly activate the substrate molecule, and the synergistic catalytic effect between them can greatly reduce the reaction energy barrier from 51.7 to 36.2 kcal/mol.
Collapse
Affiliation(s)
- Cang-Hua Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Lei Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, P. R. China
| | - Run-Xue Bai
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Tian-Ding Hu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Cavalleri M, Damiano C, Manca G, Gallo E. Protonated Porphyrins: Bifunctional Catalysts for the Metal-Free Synthesis of N-Alkyl-Oxazolidinones. Chemistry 2023; 29:e202202729. [PMID: 36194105 PMCID: PMC10100137 DOI: 10.1002/chem.202202729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/12/2022]
Abstract
The protonation of commercially available porphyrin ligands yields a class of bifunctional catalysts able to promote the synthesis of N-alkyl oxazolidinones by CO2 cycloaddition to corresponding aziridines. The catalytic system does not require the presence of any Lewis base or additive, and shows interesting features both in terms of cost effectiveness and eco-compatibility. The metal-free methodology is active even with a low catalytic loading of 1 % mol, and the chemical stability of the protonated porphyrin allowed it to be recycled three times without any decrease in performance. In addition, a DFT study was performed in order to suggest how a simple protonated porphyrin can mediate CO2 cycloaddition to aziridines to yield oxazolidinones.
Collapse
Affiliation(s)
- Matteo Cavalleri
- Department of ChemistryUniversity of MilanVia C. Golgi 1920133MilanItaly
| | - Caterina Damiano
- Department of ChemistryUniversity of MilanVia C. Golgi 1920133MilanItaly
| | - Gabriele Manca
- Istituto di Chimica dei Composti OrganoMetalliciICCOM-CNRVia Madonna del Piano 1050019Sesto FiorentinoItaly
| | - Emma Gallo
- Department of ChemistryUniversity of MilanVia C. Golgi 1920133MilanItaly
| |
Collapse
|
9
|
Barker RE, Guo L, Mota CJA, North M, Ozorio LP, Pointer W, Walberton S, Wu X. General Approach to Silica-Supported Salens and Salophens and Their Use as Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. J Org Chem 2022; 87:16410-16423. [DOI: 10.1021/acs.joc.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Ryan E. Barker
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Liping Guo
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Claudio J. A. Mota
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Escola de Química, 21941-909, Rio de Janeiro, Brazil
- INCT Energia & Ambiente, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Leonardo P. Ozorio
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Escola de Química, 21941-909, Rio de Janeiro, Brazil
- INCT Energia & Ambiente, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - William Pointer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Sarah Walberton
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Xiao Wu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
10
|
Sonzini P, Berthet N, Damiano C, Dufaud V, Gallo E. A metal-free porphyrin heterogenised onto SBA-15 silica: A performant material for the CO2 cycloaddition to epoxides and aziridines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Lindberg A, Vasdev N. Ring-opening of non-activated aziridines with [ 11C]CO 2 via novel ionic liquids. RSC Adv 2022; 12:21417-21421. [PMID: 35975081 PMCID: PMC9345297 DOI: 10.1039/d2ra03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2. The ability of ionic liquids to activate aziridines represents a simple methodology for the synthesis of 11C-carbamates and can be extended for CO2-fixation in organic and radiochemistry. Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2.![]()
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada .,Department of Psychiatry, University of Toronto Toronto ON M5T 1R8 Canada
| |
Collapse
|
12
|
Qiu W, Jin F, Hao Y, Bao X, Yuan D, Yao Y. Amine-catalyzed site- and stereo-selective coupling of epoxy amines and carbon dioxide to construct oxazolidinones. Org Chem Front 2022. [DOI: 10.1039/d2qo00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NEt3 catalyzed the cycloaddition of epoxy amine and CO2, which generated oxazolidinones. Reactions of chiral epoxy amine achieved 100% configuration inversion, enabling the synthesis of linezolid. DFT studies show that NEt3 acted as a nucleophile.
Collapse
Affiliation(s)
- Wenqin Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Chen XC, Yao YQ, Zhao KC, Liu L, Lu Y, Liu Y. Cooperative Catalysis of Ru(III)-Porphyrin in CO 2 -Involved Synthesis of Oxazolidinones. Chem Asian J 2021; 16:2504-2510. [PMID: 34258877 DOI: 10.1002/asia.202100533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Indexed: 01/09/2023]
Abstract
CO2 -transformations into high value-added products have become a fascinating area in green chemistry. Herein, a Ru(III)-porphyrin catalyst (RuCl3 ⋅ 3H2 O-H2 TPP) was found highly efficient in the three-component reaction of CO2 , aliphatic amines and dichloroethane (or its derivative) for synthesis of oxazolidinones in the yields of 71∼91%. It was indicated by means of the control experiments and UV-vis spectra that CO2 was stoichiometrically activated by the involved aliphatic amine substrates to form a stable carbamate salt while 1,2-dichloroethane (or its derivative) was independently activated by the involved Ru(III)-porphyrin catalyst. The combination of CO2 -activation by aliphatic amines with 1,2-dichloroethane activation by Ru(III)-porphyrin catalyst cooperatively contributed to this successful transformation.
Collapse
Affiliation(s)
- Xiao-Chao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yin-Qing Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Kai-Chun Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Lei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
14
|
Sun L, Tang S. Task-specific ionic liquid-grafted mesoporous alumina for chemical fixation of carbon dioxide into cyclic carbonate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Kim JH, Lee SH, Kim NH, Kang EJ. Sustainable synthesis of five-membered heterocycles using carbon dioxide and Fe-iminopyridine catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Bresciani G, Bortoluzzi M, Pampaloni G, Marchetti F. Diethylammonium iodide as catalyst for the metal-free synthesis of 5-aryl-2-oxazolidinones from aziridines and carbon dioxide. Org Biomol Chem 2021; 19:4152-4161. [PMID: 33881440 DOI: 10.1039/d1ob00458a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The catalytic potential of ammonium halide salts was explored in the coupling reaction of a model aziridine with carbon dioxide, highlighting the superior activity of [NH2Et2]I. Then, working at room temperature, atmospheric CO2 pressure and in the absence of solvent, the [NH2Et2]I-catalyzed synthesis of a series of 5-aryl-2-oxazolidinones was accomplished in good to high yields and excellent selectivity, from 2-aryl-aziridines with N-methyl or N-ethyl groups. NMR studies and DFT calculations outlined the pivotal role of both the diethylammonium cation and the iodide anion. The proposed method represents a convenient choice for obtaining a limited number of valuable molecules for which more complex and more expensive catalytic systems have been reported even in recent years.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Marco Bortoluzzi
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy. and University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre (VE), Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| |
Collapse
|
17
|
Bresciani G, Zacchini S, Famlonga L, Pampaloni G, Marchetti F. Trapping carbamates of α-Amino acids: One-Pot and catalyst-free synthesis of 5-Aryl-2-Oxazolidinonyl derivatives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Bresciani G, Zacchini S, Marchetti F, Pampaloni G. Non-precious metal carbamates as catalysts for the aziridine/CO 2 coupling reaction under mild conditions. Dalton Trans 2021; 50:5351-5359. [PMID: 33881087 DOI: 10.1039/d1dt00525a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The catalytic potential of a large series of easily available metal carbamates (based on thirteen different non-precious metal elements) was explored for the first time in the coupling reaction between 2-aryl-aziridines and carbon dioxide, working under solventless and ambient conditions and using tetraalkylammonium halides as co-catalysts. The straightforward synthesis of novel [NbCl3(O2CNEt2)2], NbCl, and [NbBr3(O2CNEt2)2], NbBr, is reported. The niobium complex NbCl, in combination with NBu4I, emerged as the best catalyst of the overall series to convert aziridines with small N-alkyl substituents into the corresponding 5-aryl-oxazolidin-2-ones.
Collapse
Affiliation(s)
- Giulio Bresciani
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy. and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy and Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy. and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy. and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
19
|
Fish H, Hart S, Lamb KJ, North M, Quek SCZ, Whitwood AC, Woods B, Wu X. Structural analysis of five-coordinate aluminium(salen) complexes and its relationship to their catalytic activity. Dalton Trans 2021; 50:587-598. [PMID: 33367409 DOI: 10.1039/d0dt03598j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure of [Al(tBu-salen)]2O·HCl shows major changes compared to that of [Al(tBu-salen)]2O. The additional proton is localized on the bridging oxygen atom, making the aluminium atoms more electron deficient. As a result, a water molecule coordinates to one of the aluminium atoms, which becomes six-coordinate. This pushes the salen ligand associated with the six-coordinate aluminium ion closer to the other salen ligand and results in the geometry around the five-coordinate aluminium atom becoming more trigonal bipyramidal. These results experimentally mirror the predications of DFT calculations on the interaction of [Al(tBu-salen)]2O and related complexes with carbon dioxide. Variable temperature NMR studies of protonated [Al(tBu-salen)]2O complexes revealed that the structures were dynamic and could be explained on the basis of an intramolecular rearrangement in which the non-salen substituent of a five-coordinate aluminium(tBu-salen) unit migrates from one face of a square based pyramidal structure to the other via the formation of structures with trigonal bipyramidal geometries. Protonated [Al(tBu-salen)]2O complexes were shown to have enhanced Lewis acidity relative to [Al(tBu-salen)]2O, coordinating to water, dioxane and 1,2-epoxyhexane. Coordinated epoxyhexane was activated towards ring-opening, to give various species which remained coordinated to the aluminium centers. The protonated [Al(tBu-salen)]2O complexes catalysed the synthesis of cyclic carbonates from epoxides and carbon dioxide both in the presence and absence of tetrabutylammonium bromide as a nucleophilic cocatalyst. The catalytic activity was principally determined by the nature of the nucleophilic species within the catalyst structure rather than by changes to the Lewis acidity of the metal centers.
Collapse
Affiliation(s)
- Heather Fish
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Sam Hart
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Katie J Lamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Michael North
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Sophie C Z Quek
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Barnaby Woods
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Xiao Wu
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
20
|
Limburg B, Cristòfol À, Della Monica F, Kleij AW. Unlocking the Potential of Substrate-Directed CO 2 Activation and Conversion: Pushing the Boundaries of Catalytic Cyclic Carbonate and Carbamate Formation. CHEMSUSCHEM 2020; 13:6056-6065. [PMID: 33022846 DOI: 10.1002/cssc.202002246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The unparalleled potential of substrate-induced reactivity modes in the catalytic conversion of carbon dioxide and alcohol or amine functionalized epoxides is discussed in relation to more conventional epoxide/CO2 coupling strategies. This conceptually new approach allows for a substantial extension of the substitution degree and functionality of cyclic carbonate/carbamate products, which are predominant products in the area of nonreductive CO2 transformations. Apart from the creation of an advanced library of CO2 -based heterocyclic products and intermediates, also the underlying mechanistic reasons for this novel reactivity profile are debated with a prominent role for the design and structure of the involved catalysts.
Collapse
Affiliation(s)
- Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
21
|
Bresciani G, Antico E, Ciancaleoni G, Zacchini S, Pampaloni G, Marchetti F. Bypassing the Inertness of Aziridine/CO 2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions. CHEMSUSCHEM 2020; 13:5586-5594. [PMID: 32902136 DOI: 10.1002/cssc.202001823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The development of sustainable synthetic routes to access valuable oxazolidinones via CO2 fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction features a high activation barrier and thus requires a catalytic system, and may present some other critical issues. Here, the straightforward gram-scale synthesis of a series of 5-aryl-2-oxazolidinones was developed at ambient temperature and atmospheric CO2 pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO2 adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO2 . The reaction mechanism was investigated by NMR spectroscopy and DFT calculations applied to model cases.
Collapse
Affiliation(s)
- Giulio Bresciani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Emanuele Antico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
22
|
Bresciani G, Biancalana L, Pampaloni G, Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020; 25:E3603. [PMID: 32784784 PMCID: PMC7465543 DOI: 10.3390/molecules25163603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Collapse
Affiliation(s)
| | | | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| |
Collapse
|
23
|
Sonzini P, Damiano C, Intrieri D, Manca G, Gallo E. A Metal‐Free Synthesis of
N
‐Aryl Oxazolidin‐2‐Ones by the One‐Pot Reaction of Carbon Dioxide with
N
‐Aryl Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Paolo Sonzini
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| | - Caterina Damiano
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| | - Daniela Intrieri
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti OrganoMetalliciICCOM-CNR Via Madonna del Piano 10 I-50019 Sesto Fiorentino Italy
| | - Emma Gallo
- Department of ChemistryUniversity of Milan Via Golgi 19 I-20133 Milan Italy
| |
Collapse
|
24
|
Lamb KJ, Dowsett MR, North M, Parker RR, Whitwood AC. Unprecedented reductive cyclisation of salophen ligands to tetrahydroquinoxalines during metal complex formation. Chem Commun (Camb) 2020; 56:4844-4847. [PMID: 32236256 DOI: 10.1039/d0cc01192d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel tetrahydroquinoxalines by a metal induced one-electron reductive cyclisation of salophen ligands was found to occur when a salophen ligand was treated with chromium(ii) chloride or decamethylcobaltocene.
Collapse
Affiliation(s)
- Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | | | |
Collapse
|
25
|
Kleij AW. Across the Board: Arjan W. Kleij on Electrosynthesis for Regioselective Carboxylation of Aromatic Alkenes. CHEMSUSCHEM 2020; 13:2098-2100. [PMID: 32141194 DOI: 10.1002/cssc.202000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 06/10/2023]
Abstract
In this series of articles, the board members of ChemSusChem discuss recent research articles that they consider of exceptional quality and importance for sustainability. This entry features Prof. A. W. Kleij, who discusses the use of electrosynthesis to advance the regioselective hydrocarboxylation of low-value olefins to afford high-value carboxylic acids using carbon dioxide as reagent. In particular, in a recent breakthrough contribution a general β-carboxylation of aromatic olefins is displayed and as such significantly expands state-of-the-art carboxylation chemistry.
Collapse
Affiliation(s)
- Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
26
|
Yingcharoen P, Natongchai W, Poater A, D' Elia V. Intertwined chemistry of hydroxyl hydrogen-bond donors, epoxides and isocyanates in the organocatalytic synthesis of oxazolidinones versus isocyanurates: rational catalytic investigation and mechanistic understanding. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00987c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficiency and chemoselectivity of the cycloaddition of isocyanates to epoxides to afford oxazolidinones were investigated using hydroxyl hydrogen-bond donors as organocatalysts.
Collapse
Affiliation(s)
- Prapussorn Yingcharoen
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D' Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| |
Collapse
|