1
|
Arora P, Bhadauriya K, Singh L, Goyal A, Verma S, Singh B, Draksharapu A. 3d-2p-5d Orbital Synergy in Electrocatalytic Hydrazine Oxidation Assisted Water Splitting with Industrial Scale Current Density. Inorg Chem 2025; 64:5069-5076. [PMID: 40023784 DOI: 10.1021/acs.inorgchem.4c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The hydrazine oxidation reaction (HzOR) is a promising alternative to the oxygen evolution reaction (OER) in electrolyzers due to its lower oxidation potential than water, which significantly reduces energy demands and enhances hydrogen production efficiency. Incorporating high-valent 5d metals into 3d metal hydroxides has shown great potential for enhancing water-splitting performance through strong 3d-2p-5d orbital interactions, improving charge transfer, intermediate adsorption, and reducing overpotentials. This study showcases an innovative approach to enhance the electrocatalytic performance of Co(OH)2 through the incorporation of a high-valent 5d metal, tungsten (W6+), using a straightforward electrochemical synthesis method. The incorporation of W6+ into Co(OH)2 led to significant Co3d-O2p-W5d orbital coupling, strengthening the electronic interactions between Co and W. The high-valent W6+ facilitated electron withdrawal from Co2+, promoting easier access to Co3+ sites enhancing the catalytic performance. The W-Co(OH)2 achieved a current density of 100 mA cm-2 at a potential of 1.00 V versus RHE for the HzOR, which is notably lower than the 1.54 V versus RHE required for the OER. In a two-electrode system, substituting OER with HzOR resulted in a significant reduction in cell voltage by 0.50 V.
Collapse
Affiliation(s)
- Pragya Arora
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kiran Bhadauriya
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Labham Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ayusie Goyal
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shalini Verma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Baghendra Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Gayathri A, Ashok V, Jayabharathi J, Thiruvengadam D, Thanikachalam V. Multifunctional iron-cobalt heterostructure (FeCoHS) electrocatalysts: accelerating sustainable hydrogen generation through efficient water electrolysis and urea oxidation. NANOSCALE 2025; 17:3958-3972. [PMID: 39750505 DOI: 10.1039/d4nr04382k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst via a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.48, 0.130, 1.59, 1.23, 1.40, and 1.54 V @ 10 mA cm-2, respectively. Moreover, electrolysers required only 1.40 V at 10 mA cm-2 for energy-saving urea-assisted hydrogen production, which was 190 mV lower than that of the alkaline water electrolyser. The alkaline sewage and seawater purification setup combined with the FeCoHS@NF electrolyzer led to a novel approach of producing pure green hydrogen and water. The ultrastability of the FeCoHS@NF electrocatalyst for industrial applications was confirmed using chronopotentiometry at 10 and 100 mA cm-2 over 110 h for OER, HER, UOR, and overall water splitting. The production of hydrogen using the FeCoHS@NF electrocatalyst in alkaline sewage water and seawater offers multiple benefits, including generation of renewable hydrogen energy, purification of wastewater, reduction of environmental pollutants, and low cost and low electricity consumption of the electrolyser system.
Collapse
Affiliation(s)
- Arunagiri Gayathri
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
| | - Venkatachalam Ashok
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
| | - Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
| | - Dhanasingh Thiruvengadam
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
| | - Venugopal Thanikachalam
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
| |
Collapse
|
3
|
Bhattarai RM, Nguyen L, Le N, Chhetri K, Acharya D, Teke S, Saud S, Nguyen DB, Kim SJ, Mok YS. Cyanide Functionalization and Oxygen Vacancy Creation in Ni-Fe Nano Petals Sprinkled with MIL-88A Derived Metal Oxide Nano Droplets for Bifunctional Alkaline Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410027. [PMID: 39905919 DOI: 10.1002/smll.202410027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
This work investigates novel improvements in FeNi-layered double hydroxide (LDH)/MIL-88A heterocomposite for sustainable seawater electrolysis through a single-step dual functionalization process. The Fe/Ni precursor weight ratio is optimized, resulting in the formation of smaller LDH petals and nano-sized MIL-88A metal-organic framework, which transforms into clusters of Fe2O3 nanospheres within a nitrogen-functionalized carbon matrix over NiFe2O4 nano petals upon calcination. Furthermore, oxygen vacancies, and nitrogen functionalization are attained in a single step by employing thermal ammonia reduction, significantly improving the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities. Particularly the oxygen vacancy and nitrogen functionalization are found to accelerate the O─O coupling step in OER by lowering the activation barrier. Likewise, the dual functionalization promotes destabilizing the hydride intermediates in HER potentially facilitating faster proton-coupled electron transfer. Hence, the optimized electrode achieves current densities of 200 mA cm-2 at overpotentials of 350 and 240 mV for OER and HER respectively. The chronopotentiometry stability tests confirms the electrode's durability over 200 h at 20 mA cm-2 in alkaline seawater electrolyte. The optimized electrode, composed of cost-effective and environmentally friendly materials, demonstrates robustness in alkaline seawater electrolytes, positioning it as a strong candidate for practical and sustainable water electrolysis applications.
Collapse
Affiliation(s)
- Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
- Applied Electrochemistry & Catalysis (ELCAT), University of Antwerp, Wilrijk, 2610, Belgium
| | - Lan Nguyen
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Mississippi, MS, 39762, USA
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sosiawati Teke
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Shirjana Saud
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Vietnam
- Institute of Research and Development, Duy Tan University, Danang, 550000, Vietnam
| | - Duc Ba Nguyen
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Vietnam
- Institute of Research and Development, Duy Tan University, Danang, 550000, Vietnam
| | - Sang Jae Kim
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Sun Mok
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
4
|
Ou W, Li L, Zhou W, Chen M, Zhu C, Zhu X, Yuan K. Developing a Cobalt Phosphide Catalyst with Combined Cobalt Defects and Phosphorus Vacancies to Boost Oxygen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4647. [PMID: 39336389 PMCID: PMC11433320 DOI: 10.3390/ma17184647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Defect engineering, by adjusting the surface charge and active sites of CoP catalysts, significantly enhances the efficiency of the oxygen evolution reaction (OER). We have developed a new Co1-xPv catalyst that has both cobalt defects and phosphorus vacancies, demonstrating excellent OER performance. Under both basic and acidic media, the catalyst incurs a modest overvoltage, with 238 mV and 249 mV needed, respectively, to attain a current density of 10 mA cm-2. In the practical test of alkaline electrocatalytic water splitting (EWS), the Co1-xPv || Pt/C EWS shows a low cell voltage of 1.51 V and superior performance compared to the noble metal-based EWS (RuO2 || Pt/C, 1.66 V). This catalyst's exceptional catalytic efficiency and longevity are mainly attributed to its tunable electronic structure. The presence of cobalt defects facilitates the transformation of Co2+ to Co3+, while phosphorus vacancies enhance the interaction with oxygen species (*OH, *O, *OOH), working in concert to improve the OER efficiency. This strategy offers a new approach to designing transition metal phosphide catalysts with coexisting metal defects and phosphorus vacancies, which is crucial for improving energy conversion efficiency and catalyst performance.
Collapse
Affiliation(s)
| | - Ligui Li
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | | | | | | | | | | |
Collapse
|
5
|
Sun A, Qiu Y, Chen K, Xu H, Liu J. Constructing built-in electric field in oxygen vacancies-enriched Fe 3O 4-FeSe 2 heterojunctions supported on reduced graphene oxide for efficient overall water splitting. J Colloid Interface Sci 2024; 674:1083-1091. [PMID: 39018937 DOI: 10.1016/j.jcis.2024.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Combining interfacial oxygen vacancy engineering with a built-in electric field (BEF) technique is an efficient way to build efficient and practical electrocatalytic water-splitting catalysts. In this study, a Fe3O4-FeSe2 heterojunction catalyst with oxygen vacancies supported on reduced graphene oxide (rGO) was designed and successfully fabricated using a simple two-step hydrothermal method. Owing to the different Fermi levels of Fe3O4 and FeSe2, a BEF was generated at the interface, which enhanced the separation of negative and positive charges, thus optimizing the adsorption of hydrogen/oxygen intermediates on the heterostructures and improving the activity of the catalyst. Experimental results show that Fe3O4-FeSe2/rGO/NF exhibits excellent hydrogen and oxygen evolution performances, with low overpotentials of 234/300 mV at 100 mA⋅cm-2. A water electrolyzer assembled with Fe3O4-FeSe2/rGO/NF as both the anode and cathode requires only a small potential of 1.78 V to reach a current density of 100 mA⋅cm-1. This study provides an innovative approach for constructing a catalyst with excellent electrocatalytic performance for overall water splitting.
Collapse
Affiliation(s)
- Aowei Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Kuiyong Chen
- College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| | - Hezeng Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China; College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| |
Collapse
|
6
|
Xia X, Wang S, Liu D, Wang F, Zhang X, Zhang H, Yu X, Pang Z, Li G, Chen C, Zhao Y, Ji L, Xu Q, Zou X, Lu X. Electronic Modulation in Cu Doped NiCo LDH/NiCo Heterostructure for Highly Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311182. [PMID: 38332446 DOI: 10.1002/smll.202311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs), promising bifunctional electrocatalysts for overall water splitting, are hindered by their poor conductivity and sluggish electrochemical reaction kinetics. Herein, a hierarchical Cu-doped NiCo LDH/NiCo alloy heterostructure with rich oxygen vacancies by electronic modulation is tactfully designed. It extraordinarily effectively drives both the oxygen evolution reaction (151 mV@10 mA cm-2) and the hydrogen evolution reaction (73 mV@10 mA cm-2) in an alkaline medium. As bifunctional electrodes for overall water splitting, a low cell voltage of 1.51 V at 10 mA cm-2 and remarkable long-term stability for 100 h are achieved. The experimental and theoretical results reveal that Cu doping and NiCo alloy recombination can improve the conductivity and reaction kinetics of NiCo LDH with surface charge redistribution and reduced Gibbs free energy barriers. This work provides a new inspiration for further design and construction of nonprecious metal-based bifunctional electrocatalysts based on electronic structure modulation strategies.
Collapse
Affiliation(s)
- Xuewen Xia
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Shujuan Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dan Liu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Fei Wang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueqiang Zhang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xing Yu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chaoyi Chen
- Department of Metallurgical Engineering, College of Materials and Metallurgy, Guizhou University, Guizhou, 550025, China
| | - Yufeng Zhao
- Institute of Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Li Ji
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Kong X, Xu J, Ju Z, Chen C. Durable Ru Nanocrystal with HfO 2 Modification for Acidic Overall Water Splitting. NANO-MICRO LETTERS 2024; 16:185. [PMID: 38687410 PMCID: PMC11061093 DOI: 10.1007/s40820-024-01384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Durable and efficient bi-functional catalyst, that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition, are highly desired for the commercialization of proton exchange membrane water electrolysis. Herein, we report a robust L-Ru/HfO2 heterostructure constructed via confining crystalline Ru nanodomains by HfO2 matrix. When assembled with a proton exchange membrane, the bi-functional L-Ru/HfO2 catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm-2 current density, prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO2 electrolyzer. It is revealed that the synergistic effect of HfO2 modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru. More importantly, this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates. As a result, the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step (*O→*OOH). Both of water adsorption and dissociation (Volmer step) are strengthened, while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure (Tafel step). Consequently, the activity and stability of acidic overall water splitting are simultaneously enhanced.
Collapse
Affiliation(s)
- Xiangkai Kong
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China.
| | - Jie Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Zhicheng Ju
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Changle Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Xu B, Duan M, Shen K, Guo X, Yang X, Zhang M, Yue B, Zhang M, Zhang J, Jin Z. Hydrothermal Hydrolyzation-Driven Topological Transformation of Ni-Co Bimetallic Compounds with Hollow Nanoflower Structure for Optimizing Hydrogen Evolution Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16399-16407. [PMID: 38527861 DOI: 10.1021/acsami.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Composition screening and structure optimization are two critical factors in improving the electrocatalytic performance of hybrid materials. Herein, we present a straightforward hydrothermal hydrolyzation-topological transformation strategy for the synthesis of a range of Ni-Co bimetallic compounds with a hollow nanoflower structure. Among these Ni-Co compounds, Ni2P/Co2P hollow nanoflowers (HNFs) exhibit the most impressive electrocatalytic activity for the hydrogen evolution reaction (HER), necessitating only an 153 mV overpotential to achieve a current density of 10 mA cm-2 under alkaline conditions. Importantly, this performance remains stable for over 48 h, indicating exceptional durability. The exceptional catalytic performance of Ni2P/Co2P HNFs arises from the synergy between the hybrid Ni2P/Co2P components and the hollow nanoflower structure. The former provides abundant catalytic sites, while electron rearrangement at the heterointerfaces enhances the adsorption/desorption of active species and facilitates electron transfer. The latter contributes to the exposure of catalytic sites, shortening mass and charge transfer routes, and bolstering structural stability during prolonged electrocatalysis. This research offers valuable insights into the screening and optimization of advanced hybrid electrocatalysts, holding significant promise for applications in the emerging field of new energy technologies.
Collapse
Affiliation(s)
- Bingrong Xu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Mengting Duan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Kuan Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xingmei Guo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xinran Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Mingming Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Bincheng Yue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Mengjia Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
9
|
Liu L, Liu T, Xu C, Zhao W, Fan J, Liu J, Ma X, Fu W. FeCoCuMnRuB Nanobox with Dual Driving of High-Entropy and Electron-Trap Effects as the Efficient Electrocatalyst for Water Oxidation. NANO LETTERS 2024; 24:2831-2838. [PMID: 38385633 DOI: 10.1021/acs.nanolett.3c04962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
High-entropy borides hold potential as electrocatalysts for water oxidation. However, the synthesis of the tailored nanostructures remains a challenge due to the thermodynamic immiscibility of polymetallic components. Herein, a FeCoCuMnRuB nanobox decorated with a nanosheet array was synthesized for the first time by a "coordination-etch-reduction" method. The FeCoCuMnRuB nanobox has various structural characteristics to express the catalytic performance; meanwhile, it combines the high-entropy effect of multiple components with the electron trap effect induced by electron-deficient B, synergistically regulating its electronic structure. As a result, FeCoCuMnRuB nanobox exhibits enhanced OER activity with a low overpotential (η10 = 233 mV), high TOF value (0.0539 s-1), small Tafel slope (61 mV/dec), and a satisfactory stability for 200 h, outperforming the high-entropy alloy and low-entropy borides. This work develops a high entropy and electron-deficient B-driven strategy for motivating the catalytic performance of water oxidation, which broadens the structural diversity and category of high-entropy materials.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Tinghui Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Can Xu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Wanyi Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Junping Fan
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jing Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xinguo Ma
- School of Science, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
10
|
Yao H, Wang P, Zhu M, Shi XR. Recent progress in hierarchical nanostructures for Ni-based industrial-level OER catalysts. Dalton Trans 2024; 53:2442-2449. [PMID: 38229516 DOI: 10.1039/d3dt03820c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Exploring efficient and low-cost oxygen evolution reaction (OER) electrocatalysts reaching the industrial level current density is crucial for hydrogen production via water electrolysis. In this feature article, we summarize the recent progress in hierarchical nanostructures for the industrial-level OER. The contents mainly concern (i) the design of a hierarchical structure; (ii) a Ni-based hierarchical structure for the industrial current density OER; and (iii) the surface reconstruction of the hierarchical structure during the OER process. The work provides valuable guidance and insights for the manufacture of hierarchical nanomaterials and devices for industrial applications.
Collapse
Affiliation(s)
- Haiyu Yao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Peijie Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Rong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Mu J, Bai P, Wang P, Xie Z, Zhao Y, Jing J, Su Y. An oxygen vacancy-modulated bifunctional S-NiMoO 4 electrocatalyst for efficient alkaline overall water splitting. Chem Commun (Camb) 2024; 60:1313-1316. [PMID: 38197169 DOI: 10.1039/d3cc05444f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
S-doped nickel molybdate nanorods grown on nickel foam (S-NiMoO4/NF) were fabricated by a two-step hydrothermal method. The resultant S-NiMoO4/NF exhibited remarkable bifunctional electrocatalytic activity, with overpotentials of 235 mV for the hydrogen evolution reaction and 150 mV for the oxygen evolution reaction at a current density of 50 mA cm-2. Assembled into the two-electrode S-NiMoO4/NF electrolyzer in alkaline electrolytes for overall water splitting, it required only low cell voltages of 1.55 V and 1.63 V to drive 50 mA cm-2 and 100 mA cm-2, respectively. No significant performance degradation occurred during the water electrolysis process. The experimental results confirmed that S-doping induced the increase of the oxygen vacancies, accelerating the reaction kinetics and thus improving the electrocatalytic performance. Meanwhile, more active sites exposure on the surface of S-NiMoO4/NF enhanced the reactivity. This work may guide the development of efficient bifunctional catalysts in alkaline electrolysis through oxygen vacancy regulation.
Collapse
Affiliation(s)
- Jiarong Mu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Ping Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Peng Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Zhinan Xie
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Yihua Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Jianfang Jing
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| |
Collapse
|
12
|
Song T, Xue H, Sun J, Guo N, Sun J, Hao YR, Wang Q. Incorporating a built-in electric field into a NiFe LDH heterojunction for enhanced oxygen evolution and urea oxidation. Chem Commun (Camb) 2024; 60:972-975. [PMID: 38165772 DOI: 10.1039/d3cc05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Herein, a N-doped carbon-supported Co and NiFe LDH (Co-NC@NiFe LDH) array was developed, which demonstrated superior catalytic activities for both the OER and UOR in an alkaline medium. The intrinsic electron transfer is effectively regulated by the construction of a built-in electric field, which reduces the reaction energy barrier and consequently leads to a significant enhancement in electrocatalytic activity.
Collapse
Affiliation(s)
- Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yi-Ru Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
13
|
Munawar T, Fatima S, Batoo KM, Bashir A, Mukhtar F, Hussain S, Manzoor S, Ashiq MN, Khan SA, Koc M, Iqbal F. Synergistic effect of a bamboo-like Bi 2S 3 covered Sm 2O 3 nanocomposite (Bi 2S 3-Sm 2O 3) for enhanced alkaline OER. Phys Chem Chem Phys 2024; 26:2678-2691. [PMID: 38175550 DOI: 10.1039/d3cp05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The availability of hydrogen energy from water splitting through the electrocatalytic route is strongly dependent on the efficiency, durability, and cost of the electrocatalysts. Herein, a novel Bi2S3-covered Sm2O3 (Bi2S3-Sm2O3) nanocomposite electrocatalyst was developed by a hydrothermal route for the oxygen evolution reaction (OER). The electrochemical properties were studied in 1.00 mol KOH solution after coating the target material on the stainless-steel substrate (SS). Physical analysis via XRD, FTIR, IV, TEM/EDX, and XPS revealed that the Bi2S3-Sm2O3 composite possesses metallic surface states, thereby displaying unconventional electron dynamics and purity of phases. The Bi2S3-Sm2O3 composite shows outstanding OER activity with a low overpotential of 197 mV and a Tafel slope of 74 mV dec-1 at a 10 mA cm-2 current density as compared to pure Bi2S3 and Sm2O3. Meanwhile, the composite catalyst retains high stability even after 100 h of the chronoamperometry test. Thus, this work unveils a new avenue for the speedy flow of electrons, which is attributed to the synergetic effect between Bi2S3 and Sm2O3, as well as enriched interfacial defects, which exhibit greater oxygen adsorption capability with improved electronic assemblies in the active interfacial region. In addition, the introduced porous structure in core-shell Bi2S3-Sm2O3 provides extraordinary electrical properties. Thus, this article offers a realistic framework for electrochemical energy generation.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Saman Fatima
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Khalid Mujasam Batoo
- College of Science, King Saud University, P.O. Box-2455, Riyadh-11451, Saudi Arabia
| | - Ambreen Bashir
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul-05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul-05006, Republic of Korea
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
14
|
Liu Z, Wang J, Kong Q, Tong X, Wu S, Zong N, Xu R, Yang L. Electrolyzing spent cupronickel to fabricate superhydrophilic electrocatalysts for enhanced water splitting. Dalton Trans 2023; 53:333-338. [PMID: 38050430 DOI: 10.1039/d3dt03300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, novel and efficient IF-supported NiCu (NiCu/IF) and NiMn (NiMn/IF) electrocatalysts are successfully deposited on iron foam (IF) via electrolysis of spent cupronickel (SCN), with outstanding performance for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in an alkaline solution, respectively. The physical and electrochemical characterization results demonstrate that the catalysts possess a large active surface area, remarkable performance, and excellent durability.
Collapse
Affiliation(s)
- Zhenwei Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junli Wang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Qingxiang Kong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoning Tong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Song Wu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Naixuan Zong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Rudong Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Linjing Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
15
|
Wan S, Zhang H, Ye K, Li J, He Y, Ge X, Xu T, Cai WB, Lin M, Jiang K. Improving the Efficiencies of Water Splitting and CO 2 Electrolysis by Anodic O 2 Bubble Management. J Phys Chem Lett 2023:11217-11223. [PMID: 38055915 DOI: 10.1021/acs.jpclett.3c02902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study systematically explores the impact of the anodic flow field design on the transport of O2 bubble and subsequent energy efficiency in electrolysis devices. Two distinct configurations, namely a conventional serpentine flow panel and an interdigitated flow panel, are integrated at the anode side of the electrolyzer. The interdigitated flow field exhibits superior performance in both alkaline water splitting and CO2 reduction despite the experience of an increased pressure drop. Numerical simulations reveal that the enhanced convective flow of the O2 bubbles induced by a forced anolyte flow through the porous electrode within the interdigitated panel design resulted in a 3 orders of magnitude increase in the level of the O2 bubble transport compared to the serpentine configuration. These findings not only underscore the significance of flow field design on bubble management but also provide a basis for advancing the electrolysis efficiency at industrial-level current densities.
Collapse
Affiliation(s)
- Shusheng Wan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Huanlei Zhang
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Ye
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieyang Li
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yucheng He
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Ge
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Meng Lin
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Hou R, Yang X, Su L, Cen W, Ye L, Sun D. Accelerating structure reconstruction to form NiOOH in metal-organic frameworks (MOFs) for boosting the oxygen evolution reaction. NANOSCALE 2023; 15:18858-18863. [PMID: 37966341 DOI: 10.1039/d3nr05051c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Structural reconstruction of electrocatalysts to generate metal hydroxide/oxyhydroxide species is critical for an efficient oxygen evolution reaction (OER), but the controllable regulation of the reconstruction process still remains a challenge. Given the designable nature of metal-organic frameworks (MOFs), herein, we have reported a localized structure disordering strategy to accelerate the structural reconstruction of Ni-BDC to generate NiOOH for boosting the OER. The Ni-BDC nanosheets were modified by Fe3+ and urea to form cracks, which could promote the accessibility of the Ni sites by the electrolyte and thus promote the reconstruction to form NiOOH. In addition, the interaction between Ni2+ and Fe3+ allows the electron flow from Ni2+ to Fe3+, further enhancing the NiOOH generation. As a result, the optimized sample exhibits excellent OER activity with a small overpotential of 251 mV at 10 mA cm-2, which is superior to most of the MOF-based OER catalysts reported previously. This work provides a controllable strategy to regulate the structural reconstruction for promoting the OER, which could provide important guidance for the development of more efficient OER electrocatalysts.
Collapse
Affiliation(s)
- Ruiyao Hou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaoxia Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Linghui Su
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| | - Lin Ye
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, P. R. China.
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| |
Collapse
|
17
|
Wang J, Luo Y, Wang J, Yu H, Guo Z, Yang J, Xue Y, Cai N, Li H, Yu F. One-pot self-assembled bimetallic sulfide particle cluster-supported three-dimensional graphene aerogel as an efficient electrocatalyst for the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:26298-26307. [PMID: 37747098 DOI: 10.1039/d3cp02041j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The preparation of an electrocatalyst for the oxygen evolution reaction (OER) with high catalytic activity, good long-term durability and rapid reaction kinetics through interface engineering is of great significance. Herein, we have developed a bimetallic sulfide particle cluster-supported three-dimensional graphene aerogel (FeNiS@GA), which serves as an efficient electrocatalyst for OER, by a one-step hydrothermal method. Profiting from the synergy of the FeNiS particle cluster with high capacitance and GA with its three-dimensional porous nanostructure, FeNiS@GA shows a high specific surface area, large pore volume, low contact resistance, and decreases the electron and ion transport routes. FeNiS@GA exhibits outstanding OER activity (when the current density is 50 mA cm-2, the overpotential is 341 mV), low Tafel slope (63.87 mV dec-1) and remarkable stability in alkaline solutions, outperforming FeNiS, NiS@GA, FeS@GA and RuO2. Due to its simple synthesis process and excellent electrocatalytic performance, FeNiS@GA shows great potential to replace noble metal-based catalysts in practical applications.
Collapse
Affiliation(s)
- Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yu Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jiwei Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Hongliang Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ziyi Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jie Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
- Wuhan Institute of Technology, Liu Fang Campus, No. 206, Guanggu 1st road, Wuhan 430205, Hubei, China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
- Wuhan Institute of Technology, Liu Fang Campus, No. 206, Guanggu 1st road, Wuhan 430205, Hubei, China
| |
Collapse
|
18
|
Xu S, Ni H, Zhang X, Han C, Qian J. Abundant Surface Defects in Cobalt Hydroxides/Oxyhydroxides Induced by Zinc Species Facilitate Water Oxidation. Inorg Chem 2023; 62:14757-14763. [PMID: 37639239 DOI: 10.1021/acs.inorgchem.3c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The complex process of the anodic oxygen evolution reaction (OER) severely hinders overall water splitting, which further limits the large-scale production and application of hydrogen energy. In this work, one type of bimetallic coordination polymer of ZnCoBTC using the MOF-on-MOF strategy has been synthesized where both Co(II) and Zn(II) cations exhibit the same coordination environment. By applying an electric potential, the predesigned bimetallic MOF precursor can be conveniently degraded into CoOxHy as an active species for efficient OER. Owing to the dissolution of ZnOxHy species, in situ formed disordered defects on the external surface of the catalyst increase the specific surface area as well as expose abundant active materials. Therefore, the ZnCoOxHy nanosheet shows excellent OER performance and reaches an overpotential of only 334 mV at 10 mA cm-2 with a Tafel slope of 66.4 mV dec-1, indicating fast reaction kinetics. The results demonstrate that metals with the same coordination environment can undergo in situ replacement or secondary growth on the pristine MOF, and they can be electrochemically degraded into highly efficient catalysts for future energy applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
19
|
Meng D, Peng X, Zheng J, Wang Z. Cold plasma synthesis of phosphorus-doped CoFe 2O 4 with oxygen vacancies for enhanced OER activity. Phys Chem Chem Phys 2023; 25:22679-22688. [PMID: 37602521 DOI: 10.1039/d3cp02979d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Spinel-type metal oxides are promising electrocatalysts for the oxygen evolution reaction (OER) due to their unique electronic structure and low cost. Herein, we induced oxygen vacancies and doped phosphorus into CoFe2O4 using cold plasma. The abundant oxygen vacancies enhanced hydrophilicity and modified the electronic structure of CoFe2O4, while the phosphorus doping formed numerous new active centers. The doped P and formed FeP promoted the charge transfer and improved the conductivity of the catalyst. The phosphorus-doped CoFe2O4 exhibited exceptional OER activity with an overpotential of 180 mV at 10 mA cm-2 and a Tafel slope of 65.8 mV dec-1 in an alkaline electrolyte. DFT calculations confirmed that phosphorus doping can improve the charge distribution near the Fermi level and optimize the d-band center position.
Collapse
Affiliation(s)
- Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Xiangfeng Peng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
20
|
Ravi A, Mulkapuri S, Das SK. Hydroxylated Polyoxometalate with Cu(II)- and Cu(I)-Aqua Complexes: A Bifunctional Catalyst for Electrocatalytic Water Splitting at Neutral pH. Inorg Chem 2023; 62:12650-12663. [PMID: 37233196 DOI: 10.1021/acs.inorgchem.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A sole inorganic framework material [Li(H2O)4][{CuI(H2O)1.5} {CuII(H2O)3}2{WVI12O36(OH)6}]·N2·H2S·3H2O (1) consisting of a hydroxylated polyoxometalate (POM) anion, {WVI12O36(OH)6}6-, a mixed-valent Cu(II)- and Cu(I)-aqua cationic complex species, [{CuI(H2O)1.5}{CuII(H2O)3}2]5+, a Li(I)-aqua complex cation, and three solvent molecules, has been synthesized and structurally characterized. During its synthesis, the POM cluster anion gets functionalized with six hydroxyl groups, i.e., six WVI-OH groups per cluster unit. Moreover, structural and spectral analyses have shown the presence of H2S and N2 molecules in the concerned crystal lattice, formed from "sulfate-reducing ammonium oxidation (SRAO)". Compound 1 functions as a bifunctional electrocatalyst exhibiting oxygen evolution reaction (OER) by water oxidation and hydrogen evolution reaction (HER) by water reduction at the neutral pH. We could identify that the hydroxylated POM anion and copper-aqua complex cations are the functional sites for HER and OER, respectively. The overpotential, required to achieve a current density of 1 mA/cm2 in the case of HER (water reduction), is found to be 443 mV with a Faradaic efficiency of 84% and a turnover frequency of 4.66 s-1. In the case of OER (water oxidation), the overpotential needed to achieve a current density of 1 mA/cm2 is obtained to be 418 mV with a Faradaic efficiency of 80% and turnover frequency of 2.81 s-1. Diverse electrochemical controlled experiments have been performed to conclude that the title POM-based material functions as a true bifunctional catalyst for electrocatalytic HER as well as OER at the neutral pH without catalyst reconstruction.
Collapse
Affiliation(s)
- Athira Ravi
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Sateesh Mulkapuri
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
21
|
Chaitoglou S, Amade R, Ospina R, Bertran-Serra E. Hybrid Nanostructured Compounds of Mo 2C on Vertical Graphene Nanoflakes for a Highly Efficient Hydrogen Evolution Reaction. ACS APPLIED ENERGY MATERIALS 2023; 6:6120-6131. [PMID: 37323206 PMCID: PMC10265661 DOI: 10.1021/acsaem.3c00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Organizing a post-fossil fuel economy requires the development of sustainable energy carriers. Hydrogen is expected to play a significant role as an alternative fuel as it is among the most efficient energy carriers. Therefore, nowadays, the demand for hydrogen production is increasing. Green hydrogen produced by water splitting produces zero carbon emissions but requires the use of expensive catalysts. Therefore, the demand for efficient and economical catalysts is constantly growing. Transition-metal carbides, and especially Mo2C, have attracted great attention from the scientific community since they are abundantly available and hold great promises for efficient performance toward the hydrogen evolution reaction (HER). This study presents a bottom-up approach for depositing Mo carbide nanostructures on vertical graphene nanowall templates via chemical vapor deposition, magnetron sputtering, and thermal annealing processes. Electrochemical results highlight the importance of adequate loading of graphene templates with the optimum amount of Mo carbides, controlled by both deposition and annealing time, to enrich the available active sites. The resulting compounds exhibit exceptional activities toward the HER in acidic media, requiring overpotentials of 82 mV at -10 mA/cm2 and demonstrating a Tafel slope of 56 mV/dec. The high double-layer capacitance and low charge transfer resistance of these Mo2C on GNW hybrid compounds are the main causes of the enhanced HER activity. This study is expected to pave the way for the design of hybrid nanostructures based on nanocatalyst deposition on three-dimensional graphene templates.
Collapse
Affiliation(s)
- Stefanos Chaitoglou
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès,
1, Barcelona, Catalunya 08028, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, Barcelona, Catalunya 08028, Spain
| | - Roger Amade
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès,
1, Barcelona, Catalunya 08028, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, Barcelona, Catalunya 08028, Spain
| | - Rogelio Ospina
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès,
1, Barcelona, Catalunya 08028, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, Barcelona, Catalunya 08028, Spain
- Escuela
de Física, Universidad Industrial
de Santander, Carrera 27 calle 9 Ciudad Universitaria, Bucaramanga 68002, Colombia
| | - Enric Bertran-Serra
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès,
1, Barcelona, Catalunya 08028, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, Barcelona, Catalunya 08028, Spain
| |
Collapse
|
22
|
Deka N, Jones TE, Falling LJ, Sandoval-Diaz LE, Lunkenbein T, Velasco-Velez JJ, Chan TS, Chuang CH, Knop-Gericke A, Mom RV. On the Operando Structure of Ruthenium Oxides during the Oxygen Evolution Reaction in Acidic Media. ACS Catal 2023; 13:7488-7498. [PMID: 37288096 PMCID: PMC10242682 DOI: 10.1021/acscatal.3c01607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/04/2023] [Indexed: 06/09/2023]
Abstract
In the search for rational design strategies for oxygen evolution reaction (OER) catalysts, linking the catalyst structure to activity and stability is key. However, highly active catalysts such as IrOx and RuOx undergo structural changes under OER conditions, and hence, structure-activity-stability relationships need to take into account the operando structure of the catalyst. Under the highly anodic conditions of the oxygen evolution reaction (OER), electrocatalysts are often converted into an active form. Here, we studied this activation for amorphous and crystalline ruthenium oxide using X-ray absorption spectroscopy (XAS) and electrochemical scanning electron microscopy (EC-SEM). We tracked the evolution of surface oxygen species in ruthenium oxides while in parallel mapping the oxidation state of the Ru atoms to draw a complete picture of the oxidation events that lead to the OER active structure. Our data show that a large fraction of the OH groups in the oxide are deprotonated under OER conditions, leading to a highly oxidized active material. The oxidation is centered not only on the Ru atoms but also on the oxygen lattice. This oxygen lattice activation is particularly strong for amorphous RuOx. We propose that this property is key for the high activity and low stability observed for amorphous ruthenium oxide.
Collapse
Affiliation(s)
- Nipon Deka
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Travis E. Jones
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lorenz J. Falling
- Lawrence
Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, United States
| | | | - Thomas Lunkenbein
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Cheng-Hao Chuang
- Department
of Physics, Tamkang University, No. 151, Yingzhuan Rd, New Taipei City 25137, Taiwan
| | - Axel Knop-Gericke
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rik V. Mom
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
23
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
24
|
Ferreira EB, Gibaldi M, Okada R, Kuroda Y, Mitsushima S, Jerkiewicz G. Tunable Method for the Preparation of Layered Double Hydroxide Nanoparticles and Mesoporous Mixed Metal Oxide Electrocatalysts for the Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37236238 DOI: 10.1021/acs.langmuir.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Preparation of high-performance and durable electrocatalysts for anion exchange membrane water electrolysis is a crucial step toward the broad implementation of this technology. Here, we present an easily tunable, one-step hydrothermal method for the preparation of Ni-based (NiX, X = Co, Fe) layered double hydroxide nanoparticles (LDHNPs) for the oxygen evolution reaction (OER), using tris(hydroxymethyl)aminomethane (Tris-NH2) for particle growth control. The LDHNPs are used as building blocks of mesoporous mixed metal oxides (MMOs) with a block copolymer template (Pluronic F127), followed by thermal treatment at 250 °C. NiX MMOs have a significantly larger surface area compared to the analogous LDHNPs. NiX LDHNPs and MMOs exhibit excellent performance and long-term cycling stability, making them promising OER catalysts. Moreover, this versatile method can be easily tailored and scaled up for the preparation of platinum group metal-free electrocatalysts for other reactions of interest, which highlights the relevance of this work to the field of electrocatalysis.
Collapse
Affiliation(s)
- Eduardo B Ferreira
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Marco Gibaldi
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ryuki Okada
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshiyuki Kuroda
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shigenori Mitsushima
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
25
|
Raja A, Son N, Kim YI, Kang M. Hybrid ternary NiCoCu layered double hydroxide electrocatalyst for alkaline hydrogen and oxygen evolution reaction. J Colloid Interface Sci 2023; 647:104-114. [PMID: 37245269 DOI: 10.1016/j.jcis.2023.05.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
This study focuses on the electrochemical properties of layered double hydroxide (LDH), which is a specific structure of NiCoCu LDH, and the active species therein, rather than the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) of ternary NiCoCu LDH materials. Six types of catalysts were synthesized using the reflux condenser method and coated onto a nickel foam support electrode. Compared to bare, binary, and ternary electrocatalysts, the NiCoCu LDH electrocatalyst exhibited higher stability. The double layer capacitance (Cdl) of the NiCoCu LDH (12.3 mF cm-2) is greater than that of the bare and binary electrocatalysts, indicating that the NiCoCu LDH electrocatalyst has a larger electrochemical active surface area. In addition, the NiCoCu LDH electrocatalyst has a lower overpotential of 87 mV and 224 mV for the HER and OER, respectively, indicating its excellent activity with the bare and binary electrocatalysts. Finally, it is demonstrated that the structural characteristics of the NiCoCu LDH contribute to its excellent stability in long-term HER and OER tests.
Collapse
Affiliation(s)
- Annamalai Raja
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Young-Il Kim
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
26
|
Gautam J, Chanda D, Mekete Meshesha M, Jang SG, Lyong Yang B. Manganese cobalt sulfide/molybdenum disulfide nanowire heterojunction as an excellent bifunctional catalyst for electrochemical water splitting. J Colloid Interface Sci 2023; 638:658-671. [PMID: 36774879 DOI: 10.1016/j.jcis.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Heterointerface engineering enhances catalytic active centers and charge transfer capabilities to increase oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) kinetics. In this study, a novel heterostructure of manganese cobalt sulfide-molybdenum disulfide on nickel foam (MnCo2S4-MoS2/NF) was synthesized via a two-step hydrothermal process. The nanowire-shaped MnCo2S4-MoS2 on NF displayed accelerated charge transfer ability and multiple integrated active sites. When tested in one molar (1 M) potassium hydroxide (KOH) electrolyte, it furnished low overpotentials of 105 and 171 mV for the HER and 220 and 300 mV for the OER at the current densities of 20 and 50 mA cm-2, respectively. An electrolyzer based on MnCo2S4-MoS2/NF required low operating potentials of 1.41 and 1.49 V to yield the current densities of 10 and 20 mA cm-2, respectively, surpassing commercial and previously reported catalysts. Density functional theory (DFT) analysis revealed that the MnCo2S4-MoS2 heterostructure possesses the optimal adsorption free energies for the reactants, an extended electroactive surface area, good charge transfer ability, and reasonable density of electronic states close to the Fermi level, all of which contribute to the high activity of catalyst. Thus, heterointerface engineering is a promising strategy for creating efficient catalysts for overall water splitting.
Collapse
Affiliation(s)
- Jagadis Gautam
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Debabrata Chanda
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Mikiyas Mekete Meshesha
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Seok Gwon Jang
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea
| | - Bee Lyong Yang
- School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea; GHS (Green H2 System) Co., Ltd., Gumi-si, Republic of Korea.
| |
Collapse
|
27
|
Synthesis of Hollow Leaf-Shaped Iron-Doped Nickel–Cobalt Layered Double Hydroxides Using Two-Dimensional (2D) Zeolitic Imidazolate Framework Catalyzing Oxygen Evolution Reaction. Catalysts 2023. [DOI: 10.3390/catal13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Layered double hydroxides (LDHs) have been reported as one of the most effective materials for oxygen evolution reaction (OER) catalysts, which are prone to hydrolysis and oxidation under OER conditions. Metal–organic frameworks (MOFs) are porous materials with high crystallinity and internal surface area. The design of LDHs based on MOFs has attracted increasing attention owing to their high surface area, exposed catalysis sites, and fast charge/mass transport kinetics. Herein, we report a novel approach to fabricate a leaf-shaped iron-doped nickel–cobalt LDH (L-Fe-NiCoLDH) derived from a two-dimensional (2D) zeolitic imidazolate framework with a leaf-like morphology (ZIFL). Iron doping played a significant role in enhancing the specific surface area, affecting the OER performance. L-Fe-NiCoLDH showed high OER performance with an overpotential of 243 mV at 10 mA cm−2 and high durability after 20 h. The design of LDHs based on the leaf morphology of MOFs offers tremendous potential for improving OER efficiency.
Collapse
|
28
|
Cheng C, Zou Y, Xu F, Xiang C, Sun L. In Situ Growth of Nickel-Cobalt Metal Organic Frameworks Guided by a Nickel-Molybdenum Layered Double Hydroxide with Two-Dimensional Nanosheets Forming Flower-Like Struc-Tures for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:581. [PMID: 36770541 PMCID: PMC9919709 DOI: 10.3390/nano13030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Metal organic frameworks (MOFs) are a kind of porous coordination polymer supported by organic ligands with metal ions as connection points. They have a controlled structure and porosity and a significant specific surface area, and can be used as functional linkers or sacrificial templates. However, long diffusion pathways, low conductivity, low cycling stability, and the presence of few exposed active sites limit the direct application of MOFs in energy storage applications. The targeted design of MOFs has the potential to overcome these limitations. This study proposes a facile method to grow and immobilize MOFs on layered double hydroxides through an in situ design. The proposed method imparts not only enhanced conductivity and cycling stability, but also provides additional active sites with excellent specific capacitance properties due to the interconnectivity of MOF nanoparticles and layered double hydroxide (LDH) nanosheets. Due to this favorable heterojunction hook, the NiMo-LDH@NiCo-MOF composite exhibits a large specific capacitance of 1536 F·g-1 at 1 A·g-1. In addition, the assembled NiMo-LDH@NiCo-MOF//AC asymmetric supercapacitor can achieve a high-energy density value of 60.2 Wh·kg-1 at a power density of 797 W·kg-1, indicating promising applications.
Collapse
|
29
|
Sari FNI, Tran NTT, Lin YX, Li SY, Shen YH, Ting JM. Electronic Structure Modification Induced Electrochemical Performance Enhancement of bi-Functional Multi-metal Hydroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ahanjan K, Shamsipur M, Taherpour A, Pashabadi A. Catalytic synergism in Mn-heterostructured molybdenum oxysulfide hybridized with transition metal phosphides: A robust amorphous water oxidation catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Effect of Fe doping on Co-S/carbon cloth as bifunctional electrocatalyst for enhanced water splitting. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Pearson’s Principle-Inspired Robust 2D Amorphous Ni-Fe-Co Ternary Hydroxides on Carbon Textile for High-Performance Electrocatalytic Water Splitting. NANOMATERIALS 2022; 12:nano12142416. [PMID: 35889644 PMCID: PMC9316908 DOI: 10.3390/nano12142416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Layered double hydroxide (LDH) is widely used in electrocatalytic water splitting due to its good structural tunability, high intrinsic activity, and mild synthesis conditions, especially for flexible fiber-based catalysts. However, the poor stability of the interface between LDH and flexible carbon textile prepared by hydrothermal and electrodeposition methods greatly affects its active area and cyclic stability during deformation. Here, we report a salt-template-assisted method for the growth of two-dimensional (2D) amorphous ternary LDH based on dip-rolling technology. The robust and high-dimensional structure constructed by salt-template and fiber could achieve a carbon textile-based water splitting catalyst with high loading, strong catalytic activity, and good stability. The prepared 2D NiFeCo-LDH/CF electrode showed overpotentials of 220 mV and 151 mV in oxygen evolution and hydrogen evolution reactions, respectively, and simultaneously had no significant performance decrease after 100 consecutive bendings. This work provides a new strategy for efficiently designing robust, high-performance LDH on flexible fibers, which may have great potential in commercial applications.
Collapse
|
34
|
Malik B, Majumder S, Lorenzi R, Perelshtein I, Ejgenberg M, Paleari A, Nessim GD. Promising Electrocatalytic Water and Methanol Oxidation Reaction Activity by Nickel Doped Hematite/Surface Oxidized Carbon Nanotubes Composite Structures. Chempluschem 2022; 87:e202200036. [PMID: 35499139 DOI: 10.1002/cplu.202200036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Indexed: 11/11/2022]
Abstract
Tailoring the precise construction of non-precious metals and carbon-based heterogeneous catalysts for electrochemical oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) is crucial for energy conversion applications. Herein, this work reports the composite of Ni doped Fe2 O3 (Ni-Fe2 O3 ) with mildly oxidized multi-walled CNT (O-CNT) as an outstanding Mott-Schottky catalyst for OER and MOR. O-CNT acts as a co-catalyst which effectively regulates the charge transfer in Ni-Fe2 O3 and thus enhances the electrocatalytic performance. Ni-Fe2 O3 /O-CNT exhibits a low onset potential of 260 mV and overpotential 310 mV @ 10 mA cm-2 for oxygen evolution. Being a Mott-Schottky catalyst, it achieves the higher flat band potential of -1.15 V with the carrier density of 0.173×1024 cm-3 . Further, in presence of 1 M CH3 OH, it delivers the MOR current density of 10 mA cm-2 at 1.46 V vs. RHE. The excellent electrocatalytic OER and MOR activity of Ni-Fe2 O3 /O-CNT could be attributed to the synergistic interaction between Ni-doped Fe2 O3 and O-CNT.
Collapse
Affiliation(s)
- Bibhudatta Malik
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Sumit Majumder
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Ilana Perelshtein
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Michal Ejgenberg
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Alberto Paleari
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Gilbert Daniel Nessim
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
35
|
Li Y, Tong R, Zhang W, Peng S. Pre-intercalation of phosphate into Ni(OH)2/NiOOH for efficient and stable electrocatalytic oxygen evolution reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Li H, Lin S, Li H, Wu Z, Chen Q, Zhu L, Li C, Zhu X, Sun Y. Magneto-Electrodeposition of 3D Cross-Linked NiCo-LDH for Flexible High-Performance Supercapacitors. SMALL METHODS 2022; 6:e2101320. [PMID: 35032157 DOI: 10.1002/smtd.202101320] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) with outstanding redox activity on flexible current collectors can serve as ideal cathode materials for flexible hybrid supercapacitors in wearable energy storage devices. Electrodeposition is a facile, time-saving, and economical technique to fabricate LDHs. The limited loading mass induced by insufficient mass transport and finite exposure of active sites, however, greatly hinders the improvement of areal capacity. Herein, magneto-electrodeposition (MED) under high magnetic fields up to 9 T is developed to fabricate NiCo-LDH on flexible carbon cloth (CC) as well as Ti3 C2 Tx functionalized CC. Owing to the magneto-hydrodynamic effect induced by magnetic-electric field coupling, the loading mass and exposure of active sites are significantly increased. Moreover, a 3D cross-linked nest-like microstructure is constructed. The MED-derived NiCo-LDH delivers an ultrahigh areal capacity of 3.12 C cm-2 at 1 mA cm-2 and as-fabricated flexible hybrid supercapacitors show an excellent energy density with an outstanding cycling stability. This work provides a novel route to improve electrochemical performances of layered materials through MED technique.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuai Lin
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Han Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ziqiang Wu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qian Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lili Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Changdian Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
37
|
Cheng J, Yue X, Chen C, Shen X, Zeng S, Ji Z, Yuan A, Zhu G. Template-assisted synthesis of accordion-like CoFe(OH) nanosheet clusters on GO sheets for electrocatalytic water oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Wu H, Zhai Q, Ding F, Sun D, Ma Y, Ren YILUN, Wang B, Li F, Bian H, Yang YR, Chen L, Tang S, Meng X. Amorphous FeNiCu-MOF as highly efficient electrocatalysts for oxygen evolution reaction in alkaline medium. Dalton Trans 2022; 51:14306-14316. [DOI: 10.1039/d2dt01838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of low-cost and high-activity oxygen evolution reaction (OER) catalysts is a technical bottleneck in the field of electrolysis of water to produce hydrogen. Amorphous metal-organic frameworks (MOFs) with...
Collapse
|
39
|
Kaneti YV, Benu DP, Xu X, Yuliarto B, Yamauchi Y, Golberg D. Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chem Rev 2021; 122:1000-1051. [PMID: 34730341 DOI: 10.1021/acs.chemrev.1c00233] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borophene, a monolayer of boron, has risen as a new exciting two-dimensional (2D) material having extraordinary properties, including anisotropic metallic behavior and flexible (orientation-dependent) mechanical and optical properties. This review summarizes the current progress in the synthesis of borophene on various metal substrates, including Ag(110), Ag(100), Au(111), Ir(111), Al(111), and Cu(111), as well as heterostructuring of borophene. In addition, it discusses the mechanical, thermal, magnetic, electronic, optical, and superconducting properties of borophene and the effects of elemental doping, defects, and applied mechanical strains on these properties. Furthermore, the promising potential applications of borophene for gas sensing, energy storage and conversion, gas capture and storage applications, and possible tuning of the material performance in these applications through doping, formation of defects, and heterostructures are illustrated based on available theoretical studies. Finally, research and application challenges and the outlook of the whole borophene's field are given.
Collapse
Affiliation(s)
- Yusuf Valentino Kaneti
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Didi Prasetyo Benu
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.,Department of Chemistry, Universitas Timor, Kefamenanu 85613, Indonesia
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Brian Yuliarto
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung (ITB), Bandung 40132, Indonesia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.,JST-ERATO Yamauchi Materials Space-Tectonics Project, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dmitri Golberg
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
40
|
Hermawan A, Septiani NLW, Taufik A, Yuliarto B, Yin S. Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors. NANO-MICRO LETTERS 2021; 13:207. [PMID: 34633560 PMCID: PMC8505593 DOI: 10.1007/s40820-021-00724-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/22/2021] [Indexed: 05/29/2023]
Abstract
Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Ardiansyah Taufik
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
41
|
He X, Liu B, Zhang S, Li H, Liu J, Sun Z, Chang H. Nickel Nitrate Hydroxide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis in Alkaline Condition. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Abdelrazek GM, EL-Deeb MM, Farghali AA, Pérez-Cadenas AF, Abdelwahab A. Design of Self-Supported Flexible Nanostars MFe-LDH@ Carbon Xerogel-Modified Electrode for Methanol Oxidation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5271. [PMID: 34576486 PMCID: PMC8465867 DOI: 10.3390/ma14185271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Layered double hydroxides (LDHs) have emerged as promising electrodes materials for the methanol oxidation reaction. Here, we report on the preparation of different LDHs with the hydrothermal process. The effect of the divalent cation (i.e., Ni, Co, and Zn) on the electrochemical performance of methanol oxidation was investigated. Moreover, nanocomposites of LDHs and carbon xerogels (CX) supported on nickel foam (NF) substrate were prepared to investigate the role of carbon xerogel. The results show that NiFe-LDH/CX/NF is an efficient electrocatalyst for methanol oxidation with a current density that reaches 400 mA·m-2 compared to 250 and 90 mA·cm-2 for NiFe-LDH/NF and NF, respectively. In addition, all LDH/CX/NF nanocomposites show excellent stability for methanol oxidation. A clear relationship is observed between the electrodes crystallite size and their activity to methanol oxidation. The smaller the crystallite size, the higher the current density delivered. Additionally, the presence of carbon xerogel in the nanocomposites offer 3D interconnected micro/mesopores, which facilitate both mass and electron transport.
Collapse
Affiliation(s)
- Ghada M. Abdelrazek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
- Chemistry Department, Faculty of Engineering, Basic Science, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt
| | - Mohamed M. EL-Deeb
- Applied Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
| | - Agustín F. Pérez-Cadenas
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
- Faculty of Science, Galala University, Sokhna, Suez 43511, Egypt
| |
Collapse
|
43
|
Poorahong S, Harding DJ, Keawmorakot S, Siaj M. Free standing bimetallic nickel cobalt selenide nanosheets as three-dimensional electrocatalyst for water splitting. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Shmychkova O, Girenko D, Velichenko A. Cl
–
/ClO
–
process on SnO
2
‐based electrodes in low‐concentrated NaCl solutions. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Olesia Shmychkova
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| | - Dmitry Girenko
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| | - Alexander Velichenko
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| |
Collapse
|
45
|
Zhang S, Xu J, Cheng H, Zang C, Bian F, Sun B, Shen Y, Jiang H. Photocatalytic H 2 Evolution from Ammonia Borane: Improvement of Charge Separation and Directional Charge Transmission. CHEMSUSCHEM 2020; 13:5264-5272. [PMID: 32681615 DOI: 10.1002/cssc.202001536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Co/MII Fe layered double hydroxide (LDH) LDH photocatalysts have been designed from the aspect of employing stable half-filled Fe3+ to trap photogenerated electrons, adjusting the MII -O-Fe oxo-bridged structure to optimize the short-range directional charge transmission and intercalating oxometallate anions into the LDH to further improve light absorption along with electron-hole separation and non-noble metal Co NP loading and reduction to form a heterojunction. These LDH-based photocatalysts are employed for photocatalytic H2 evolution from ammonia borane in aqueous solution under visible light at 298 K. The photocatalytic H2 evolution activity is greatly improved through adjustment of the MII -O-Fe oxo-bridged structure and molybdate intercalation into the LDH. Turnover frequencies of up to 113.2 min-1 are achieved with Co/CoFe-Mo. Alongside the experimental results and materials characterization, capture experiments and in situ DRIFTS analysis are carried out to study the photocatalytic hydrogen production mechanism.
Collapse
Affiliation(s)
- Sishi Zhang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Jie Xu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Hongmei Cheng
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Cuicui Zang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Fengxia Bian
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Bin Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Yu Shen
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
- Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, P. R. China
| | - Heyan Jiang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| |
Collapse
|