1
|
Kurd F, Fathi M, Shahedi M, Soltanizadeh N. Fabrication and characterization of multifunctional bioactive aerogel pads as superabsorbent - Case study: Meat preservation. Food Res Int 2025; 209:116268. [PMID: 40253189 DOI: 10.1016/j.foodres.2025.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
In this study cellulose nanofibrils (CNFs)/poly vinyl alcohol (PVA) aerogels were produced and the effect of the concentration of CNF/PVA on porosity, density, pore size, water absorption, water vapor absorption, and mechanical properties were studied. CNFs were developed using peanut shells as agricultural waste. Curcumin (CUR) was incorporated into the aerogel matrix at different concentrations (30 %, 40 %, and 50 %). The best bioactive aerogel pad was selected based on its encapsulation efficiency (80.57 ± 0.29 %), loading capacity (22.85 ± 0.22 %), and antioxidant properties (74.14 ± 0.31 %). The aerogels loaded with CUR were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The bioactive aerogel pads showed antibacterial properties against Staphylococcus aureus. The cumulative release (65 %) of CUR from the aerogel matrix for 8 days, indicates a sustained release in meat-simulated media, which is suitable for increasing the shelf life of meat. The kinetics of the release showed that the Ritger-Peppas and Peppas-Sahlin models are the best models for the meat-simulated media. The storage results indicated that the package containing the aerogels loaded with CUR could increase the shelf life of meat from 6 to 8 days compared to the package containing the aerogels without CUR and the control package. Finally, this research provides a suitable strategy in the field of food packaging to produce multifunctional antimicrobial pads based on biodegradable agricultural waste.
Collapse
Affiliation(s)
- Forouzan Kurd
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Shahedi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nafiseh Soltanizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
2
|
Al-Zu'bi M, Fan M. Nanocellulose Technologies: Production, Functionalization, and Applications in Medicine and Pharmaceuticals - A Review. J Biomed Mater Res B Appl Biomater 2025; 113:e35585. [PMID: 40260730 DOI: 10.1002/jbm.b.35585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/23/2025] [Accepted: 04/05/2025] [Indexed: 04/24/2025]
Abstract
This review provides a comprehensive analysis of nanocellulose production, characterization, and applications, with a particular focus on its use in membranes and films for healthcare applications. The diverse sources of nanocellulose, including wood-based materials, agricultural byproducts, algae, and bacteria, are explored, highlighting their renewability, environmental benefits, and adaptability for specialized applications. The review also examines various pretreatment and processing methods, such as mechanical, chemical, and enzymatic treatments, outlining their roles in achieving desirable nanocellulose properties. Additionally, surface modification techniques, including amidation and esterification, are discussed for enhancing compatibility, stability, and performance when nanocellulose is integrated into composite materials. A novel mechanochemical approach is highlighted as a sustainable and energy-efficient fibrillation technique that reduces the environmental impact of nanocellulose production. Furthermore, the chemical modification and functionalization of nanocellulose are analyzed to expand its capabilities in advanced biomedical applications, including tissue engineering scaffolds that provide structural support for cell growth, wound dressings that leverage nanocellulose's antimicrobial and moisture-retentive properties, and drug delivery systems that utilize its biocompatibility and tunable release characteristics. The review concludes with future research directions, emphasizing the need for continued optimization of processing techniques, hybrid material development, and stimuli-responsive nanocellulose systems to unlock new biomedical and industrial applications.
Collapse
Affiliation(s)
- Mohammad Al-Zu'bi
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Mizi Fan
- Department of Civil and Environmental Engineering, Brunel University of London, London, UK
| |
Collapse
|
3
|
Li C, Zhang X, Chen H, Wang H, Huang J, Li T, Wang S, Dong W. Thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastics enabled by dynamically reversible thia-Michael reaction. Int J Biol Macromol 2025; 295:139567. [PMID: 39778833 DOI: 10.1016/j.ijbiomac.2025.139567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, difficulty in thermoforming and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics. Herein, a thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastic (H-HEC) is fabricated by introducing thia-Michael-based reversible crosslinked structure into hydroxyethyl cellulose. This is the first instance of integrating thia-Michael-based crosslinked structure into cellulose derivatives. The resulting H-HEC can be thermoformed and remolded without adding any plasticizers. Besides, the obtained H-HEC exhibit excellent overall properties, such as a high thermal decomposition temperature of 366 °C, a high water contact angle of 108°, a high transmittance of 90 % and good mechanical properties. Additionally, H-HEC combines impressive transparency with effective UV-shielding properties. We envision that this work provides a novel method to prepare thermoformable cellulose-based bioplastics with good water resistance, thermostability, transparency and mechanical properties. The combined thermoformability and superior overall performances will promote the practical application of cellulose-based bioplastics and contribute to the replacement of petroleum-based polymer by cellulose-based bioplastics.
Collapse
Affiliation(s)
- Chongyang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Hang Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haitang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
4
|
Asadnia M, Sadat-Shojai M. Recent perspective of synthesis and modification strategies of cellulose nanocrystals and cellulose nanofibrils and their beneficial impact in scaffold-based tissue engineering: A review. Int J Biol Macromol 2025; 293:139409. [PMID: 39746422 DOI: 10.1016/j.ijbiomac.2024.139409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Outstanding properties of nanocellulose provide opportunities for novel applications in various fields, particularly tissue engineering. Despite of numerous useful characteristics of nanocellulose, its production methods suffer from the lack of control of morphology, high cost, and the use of organic solvents. On the other hand, hydrophilicity of nanocellulose is a significant challenge for its dispersion as a reinforcement in hydrophobic polymers matrix. Therefore, sustainable production methods and well-tuning interfacial characteristics of nanocellulose have been identified as critical steps in their development. This review article discusses the numerous preparation methods and surface modification strategies of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to help nanocellulose users obtain the appropriate material for their desired application. We also cover various polymer/nanocellulose scaffolds that are reported in the literature and investigate the effect of CNC and CNF on their mechanical, thermal and biological properties. Moreover, we provide several scientific figures and tables for a better understanding of the explored topics. Finally, we evaluate the opportunities and challenges of nanocellulose industrialization in the field of tissue engineering. Overall, this review guides researchers towards a deeper understanding of nanocellulose production processes, changing their properties using surface modification methods, and subsequently their performance in scaffold-based tissue engineering.
Collapse
Affiliation(s)
- Milad Asadnia
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
5
|
Zhang C, Wang Y, Yin Z, Yan Y, Wang Z, Wang H. Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. Int J Biol Macromol 2024; 277:134445. [PMID: 39098685 DOI: 10.1016/j.ijbiomac.2024.134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
As a widely used water-based fracturing fluid, the performance of hydroxypropyl guar gum fracturing fluid is closely related to the degree of crosslinking, the quantitative characterization of which can reveal a detailed crosslinking mechanism and guide the preparation of fracturing fluid gels with an excellent performance. However, the commonly used high-temperature rheology method for evaluating the performance of fracturing fluids only qualitatively reflects the degree of crosslinking. In this study, low-field nuclear magnetic resonance (LF-NMR) was used to characterize the degree of crosslinking in guar gum fracturing fluid gels. The spin-spin relaxation time of the H proton in guar gum was molecularly analyzed using LF-NMR. The viscoelastic properties met the requirements when the crosslinking degree of the gel was 88-94 %. The transformation of the linear structure into a membrane structure during the crosslinking process of the guar gum fracturing fluid was confirmed by freeze-drying and scanning electron microscopy (SEM) from a microscopic perspective. The changing trend of the microstructure and viscoelastic properties of the fracturing fluid gel under different crosslinker dosages was consistent with changes in the degree of crosslinking. The LF-NMR test process is non-destructive to the gel structure, and the test results demonstrate good accuracy and repeatability.
Collapse
Affiliation(s)
- Chuanbao Zhang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yanling Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Zichen Yin
- Jinan Vocational College, Jinan 250103, PR China
| | - Yujie Yan
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ziyue Wang
- The University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill NC27599, USA
| | - Hangyu Wang
- The University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill NC27599, USA
| |
Collapse
|
6
|
Nicu R, Lisa G, Darie-Nita RN, Avadanei MI, Bargan A, Rusu D, Ciolacu DE. Tailoring the Structure and Physico-Chemical Features of Cellulose-Based Hydrogels Using Multi-Epoxy Crosslinking Agents. Gels 2024; 10:523. [PMID: 39195052 DOI: 10.3390/gels10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogel features can be designed and optimized using different crosslinking agents to meet specific requirements. In this regard, the present work investigates the physico-chemical features of cellulose-based hydrogels, designed by using different epoxy crosslinkers from the same glycidyl family, namely epichlorohydrin (ECH), 1,4-butanediol diglycidyl ether (BDDE), and trimethylolpropane triglycidyl ether (TMPTGE). The effect of the crosslinker's structure (from simple to branched) and functionality (mono-, bi- and tri-epoxy groups) on the hydrogels' features was studied. The performances of the hydrogels were investigated through the gel fraction, as well as by ATR-FTIR, DVS, SEM, DSC, and TG analyses. Also, the swelling and rheological behaviors of the hydrogels were examined. The advantages and limitations of each approach were discussed and a strong correlation between the crosslinker structure and the hydrogel properties was established. The formation of new ether bonds was evidenced by ATR-FTIR spectroscopy. It was emphasized that the pore size is directly influenced by the crosslinker type, namely, it decreases with the increasing number of epoxy groups from the crosslinker molecule, i.e., from 46 ± 11.1 µm (hydrogel CE, with ECH) to 12.3 ± 2.5 µm (hydrogel CB, with BDDE) and 6.7 ± 1.5 µm (hydrogel CT, with TMPTGE). The rheological behavior is consistent with the swelling data and hydrogel morphology, such as CE with the highest Qmax and the largest pore size being relatively more elastic than CB and CT. Instead, the denser matrices obtained by using crosslinkers with more complex structures have better thermal stability. The experimental results highlight the possibility of using a specific crosslinking agent, with a defined structure and functionality, in order to establish the main characteristics of hydrogels and, implicitly, to design them for a certain field of application.
Collapse
Affiliation(s)
- Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, 700050 Iasi, Romania
| | - Raluca Nicoleta Darie-Nita
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mihaela Iuliana Avadanei
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Alexandra Bargan
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Daniela Rusu
- Department of Physics of Polymers and Polymeric Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Diana Elena Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
7
|
Ibrahim MA, Salama A, Zahran F, Abdelfattah MS, Alsalme A, Bechelany M, Barhoum A. Fabrication of cellulose nanocrystals/carboxymethyl cellulose/zeolite membranes for methylene blue dye removal: understanding factors, adsorption kinetics, and thermodynamic isotherms. Front Chem 2024; 12:1330810. [PMID: 38370094 PMCID: PMC10869571 DOI: 10.3389/fchem.2024.1330810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
This study introduces environmentally-friendly nanocellulose-based membranes for AZO dye (methylene blue, MB) removal from wastewater. These membranes, made of cellulose nanocrystals (CNCs), carboxymethyl cellulose (CMC), zeolite, and citric acid, aim to offer eco-friendly water treatment solutions. CNCs, obtained from sugarcane bagasse, act as the foundational material for the membranes. The study aims to investigate both the composition of the membranes (CMC/CNC/zeolite/citric acid) and the critical adsorption factors (initial MB concentration, contact time, temperature, and pH) that impact the removal of the dye. After systematic experimentation, the optimal membrane composition is identified as 60% CNC, 15% CMC, 20% zeolites, and 5% citric acid. This composition achieved a 79.9% dye removal efficiency and a 38.3 mg/g adsorption capacity at pH 7. The optimized membrane exhibited enhanced MB dye removal under specific conditions, including a 50 mg adsorbent mass, 50 ppm dye concentration, 50 mL solution volume, 120-min contact time, and a temperature of 25°C. Increasing pH from neutral to alkaline enhances MB dye removal efficiency from 79.9% to 94.5%, with the adsorption capacity rising from 38.3 mg/g to 76.5 mg/g. The study extended to study the MB adsorption mechanisms, revealing the chemisorption of MB dye with pseudo-second-order kinetics. Chemical thermodynamic experiments determine the Freundlich isotherm as the apt model for MB dye adsorption on the membrane surface. In conclusion, this study successfully develops nanocellulose-based membranes for efficient AZO dye removal, contributing to sustainable water treatment technologies and environmental preservation efforts.
Collapse
Affiliation(s)
- Mostafa Ahmed Ibrahim
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
- Production and R&D Unit, NanoFab Technology Company, Giza, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Fouad Zahran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
- Gulf University for Science and Technology, GUST, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Sarangi PK, Srivastava RK, Sahoo UK, Singh AK, Parikh J, Bansod S, Parsai G, Luqman M, Shadangi KP, Diwan D, Lanterbecq D, Sharma M. Biotechnological innovations in nanocellulose production from waste biomass with a focus on pineapple waste. CHEMOSPHERE 2024; 349:140833. [PMID: 38043620 DOI: 10.1016/j.chemosphere.2023.140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
New materials' synthesis and utilization have shown many critical challenges in healthcare and other industrial sectors as most of these materials are directly or indirectly developed from fossil fuel resources. Environmental regulations and sustainability concepts have promoted the use of natural compounds with unique structures and properties that can be biodegradable, biocompatible, and eco-friendly. In this context, nanocellulose (NC) utility in different sectors and industries is reported due to their unique properties including biocompatibility and antimicrobial characteristics. The bacterial nanocellulose (BNC)-based materials have been synthesized by bacterial cells and extracted from plant waste materials including pineapple plant waste biomass. These materials have been utilized in the form of nanofibers and nanocrystals. These materials are found to have excellent surface properties, low density, and good transparency, and are rich in hydroxyl groups for their modifications to other useful products. These materials are well utilized in different sectors including biomedical or health care centres, nanocomposite materials, supercapacitors, and polymer matrix production. This review explores different approaches for NC production from pineapple waste residues using biotechnological interventions, approaches for their modification, and wider applications in different sectors. Recent technological developments in NC production by enzymatic treatment are critically discussed. The utilization of pineapple waste-derived NC from a bioeconomic perspective is summarized in the paper. The chemical composition and properties of nanocellulose extracted from pineapple waste may have unique characteristics compared to other sources. Pineapple waste for nanocellulose production aligns with the principles of sustainability, waste reduction, and innovation, making it a promising and novel approach in the field of nanocellulose materials.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, 795004, Manipur, India
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, 530045, India
| | | | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India
| | - Jigisha Parikh
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Shama Bansod
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Ganesh Parsai
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Mohammad Luqman
- Chemical Engineering Department, College of Engineering, Taibah University, Yanbu Al-Bahr-83, Al-Bandar District 41911, Kingdom of Saudi Arabia
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Deborah Lanterbecq
- Laboratoire de Biotechnologie et Biologie Appliquée, CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium
| | - Minaxi Sharma
- Laboratoire de Biotechnologie et Biologie Appliquée, CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium.
| |
Collapse
|
9
|
Huynh N, Valle-Delgado JJ, Fang W, Arola S, Österberg M. Tuning the water interactions of cellulose nanofibril hydrogels using willow bark extract. Carbohydr Polym 2023; 317:121095. [PMID: 37364945 DOI: 10.1016/j.carbpol.2023.121095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Cellulose nanofibrils (CNFs) are increasingly used as precursors for foams, films and composites, where water interactions are of great importance. In this study, we used willow bark extract (WBE), an underrated natural source of bioactive phenolic compounds, as a plant-based modifier for CNF hydrogels, without compromising their mechanical properties. We found that the introduction of WBE into both native, mechanically fibrillated CNFs and TEMPO-oxidized CNFs increased considerably the storage modulus of the hydrogels and reduced their swelling ratio in water up to 5-7 times. A detailed chemical analysis revealed that WBE is composed of several phenolic compounds in addition to potassium salts. Whereas the salt ions reduced the repulsion between fibrils and created denser CNF networks, the phenolic compounds - which adsorbed readily on the cellulose surfaces - played an important role in assisting the flowability of the hydrogels at high shear strains by reducing the flocculation tendency, often observed in pure and salt-containing CNFs, and contributed to the structural integrity of the CNF network in aqueous environment. Surprisingly, the willow bark extract exhibited hemolysis activity, which highlights the importance of more thorough investigations of biocompatibility of natural materials. WBE shows great potential for managing the water interactions of CNF-based products.
Collapse
Affiliation(s)
- Ngoc Huynh
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Wenwen Fang
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Suvi Arola
- FinnCERES Materials Bioeconomy Cluster, Finland; Sustainable Products and Materials, Functional Cellulose Team, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Monika Österberg
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
10
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
11
|
Kouhdareh J, Keypour H, Alavinia S, Maryamabadi A. Pd(II)-immobilized on a novel covalent imine framework (COF-BASU1) as an efficient catalyst for asymmetric Suzuki coupling. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydr Polym 2022; 295:119899. [DOI: 10.1016/j.carbpol.2022.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/19/2022]
|
13
|
Wang Y, Si X, Chen J, Ren Z, Zhu X, Lu F. Efficient preparation of cellulose nanofibers in high yield using low concentration of organic acid. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yubao Wang
- Zhengzhou University Henan Institute of Advanced Technology CHINA
| | - Xiaoqin Si
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Jiali Chen
- Zhengzhou University Henan Institute of Advanced Technology CHINA
| | - Zhiwen Ren
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Xuhai Zhu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Fang Lu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis Dalian national laboratory for clean energy 457 zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
14
|
Effect of polymer-polymer interactions on the flow behavior of some polysaccharide-based hydrogel blends. Carbohydr Polym 2022; 287:119352. [DOI: 10.1016/j.carbpol.2022.119352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
|
15
|
Jiang Z, Ngai T. Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review. Polymers (Basel) 2022; 14:polym14081533. [PMID: 35458283 PMCID: PMC9032711 DOI: 10.3390/polym14081533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
The application of cellulose in the food packaging field has gained increasing attention in recent years, driven by the desire for sustainable products. Cellulose can replace petroleum-based plastics because it can be converted to biodegradable and nontoxic polymers from sustainable natural resources. These products have increasingly been used as coatings, self-standing films, and paperboards in food packaging, owing to their promising mechanical and barrier properties. However, their utilization is limited because of the high hydrophilicity of cellulose. With the presence of a large quantity of functionalities within pristine cellulose and its derivatives, these building blocks provide a unique platform for chemical modification via covalent functionalization to introduce stable and permanent functionalities to cellulose. A primary aim of chemical attachment is to reduce the probability of component leaching in wet and softened conditions and to improve the aqueous, oil, water vapor, and oxygen barriers, thereby extending its specific use in the food packaging field. However, chemical modification may affect the desirable mechanical, thermal stabilities and biodegradability exhibited by pristine cellulose. This review exhaustively reports the research progress on cellulose chemical modification techniques and prospective applications of chemically modified cellulose for use in food packaging, including active packaging.
Collapse
|
16
|
Ferreira GDS, da Silva DJ, Zanata L, de Souza AG, Ferreira RR, Rosa DS. Antimicrobial cotton wipes functionalized with Melaleuca alternifolia Pickering emulsions stabilized with cellulose nanofibrils. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Goh M, Tae G. Mesenchymal stem cell-encapsulated cellulose nanofiber microbeads and enhanced biological activities by hyaluronic acid incorporation. Carbohydr Polym 2022; 280:119026. [PMID: 35027128 DOI: 10.1016/j.carbpol.2021.119026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Cell microencapsulation is a process to entrap viable and functional cells within a biocompatible and semi-permeable matrix to provide a favorable microenvironment to the cells. Cellulose nanofiber (CNF), a low-cost and sustainable cellulose-derived natural polymer, has been studied as a matrix for 3D stem cell culture in the form of a bulk hydrogel. Here, the preparation of CNF microbeads for the long-term 3D culture of human adipose-derived stem cells (hADSCs) was demonstrated. Furthermore, hyaluronic acid (HA) was physically incorporated into the stem cell encapsulated CNF microbeads with various molecular weights and concentrations to investigate its potential in enhancing the cellular bioactivities. The beneficial effects of HA incorporation on encapsulated cells were significant compared to CNF microbeads, especially with 700 kDa molecular weight and 0.2% in concentration in terms of cell proliferation (~2 times) and VEGF secretion (~2 times) while maintaining their stemness. All the results demonstrated that the HA-incorporated CNF microbeads could serve as a promising microencapsulation matrix for hADSCs.
Collapse
Affiliation(s)
- MeeiChyn Goh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH. Recent progress in cellulose-based composites towards flame retardancy applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Kopač T, Abrami M, Grassi M, Ručigaj A, Krajnc M. Polysaccharide-based hydrogels crosslink density equation: A rheological and LF-NMR study of polymer-polymer interactions. Carbohydr Polym 2022; 277:118895. [PMID: 34893297 DOI: 10.1016/j.carbpol.2021.118895] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
A simple relation between pendant groups of polymers in hydrogels is introduced to determine the crosslink density of (complex) hydrogel systems (mixtures of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) modified nanocellulose, alginate, scleroglucan and Laponite in addition of crosslinking agents). Furthermore, the rheological properties and their great potential connection to design complex hydrogel systems with desired properties have been thoroughly investigated. Hydrogel structures governing internal friction and flow resistance were described by the predominant effect of ionic, hydrogen, and electrostatic interactions. The relationship between rheological properties and polymer-polymer interactions in the hydrogel network is explained and expressed in a new mathematical model for determining the crosslink density of (crosslinked) hydrogels based on single or mixture of polymer systems. In the end, the combined used of rheology and low field nuclear magnetic resonance spectroscopy (LF-NMR) for the characterization of hydrogel networks is developed.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Michela Abrami
- University of Trieste, Department of Engineering and Architecture, Building B, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- University of Trieste, Department of Engineering and Architecture, Building B, via Valerio 6, I-34127 Trieste, Italy
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, Chen D. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126755. [PMID: 34364213 DOI: 10.1016/j.jhazmat.2021.126755] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Water and soil contamination due to potentially toxic elements (PTEs) represents a critical threat to the global ecosystem and human health. Naturally abundant resources have significant advantages as adsorbent materials for environmental remediation over manufactured materials such as nanostructured materials and activated carbons. These advantages include cost-effectiveness, eco-friendliness, sustainability, and nontoxicity. In this review, we firstly compare the characteristics of representative adsorbent materials including bentonite, zeolite, biochar, biomass, and effective modification methods that are frequently used to enhance their adsorption capacity and kinetics. Following this, the adsorption pathways and sites are outlined at an atomic level, and an in-depth understanding of the structure-property relationships are provided based on surface functional groups. Finally, the challenges and perspectives of some emerging naturally abundant resources such as lignite are examined. Although both unamended and modified naturally abundant resources face challenges associated with their adsorption performance, cost performance, energy consumption, and secondary pollution, these can be tackled by using advanced techniques such as tailored modification, formulated mixing and reorganization of these materials. Recent studies on adsorbent materials provide a strong foundation for the remediation of PTEs in soil and water. We speculate that the pursuit of effective modification strategies will generate remediation processes of PTEs better suited to a wider variety of practical application conditions.
Collapse
Affiliation(s)
- Bing Han
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| | - Anthony J Weatherley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Abdelhamid HN, Mathew AP. Cellulose-Based Materials for Water Remediation: Adsorption, Catalysis, and Antifouling. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.790314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellulose-based materials have been advanced technologies that used in water remediation. They exhibit several advantages being the most abundant biopolymer in nature, high biocompatibility, and contain several functional groups. Cellulose can be prepared in several derivatives including nanomaterials such as cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibrils (TOCNF). The presence of functional groups such as carboxylic and hydroxyls groups can be modified or grafted with organic moieties offering extra functional groups customizing for specific applications. These functional groups ensure the capability of cellulose biopolymers to be modified with nanoparticles such as metal-organic frameworks (MOFs), graphene oxide (GO), silver (Ag) nanoparticles, and zinc oxide (ZnO) nanoparticles. Thus, they can be applied for water remediation via removing water pollutants including heavy metal ions, organic dyes, drugs, and microbial species. Cellulose-based materials can be also used for removing microorganisms being active as membranes or antibacterial agents. They can proceed into various forms such as membranes, sheets, papers, foams, aerogels, and filters. This review summarized the applications of cellulose-based materials for water remediation via methods such as adsorption, catalysis, and antifouling. The high performance of cellulose-based materials as well as their simple processing methods ensure the high potential for water remediation.
Collapse
|
22
|
|
23
|
Jackson J, Dietrich C, Shademani A, Manso A. The Manufacture and Characterization of Silver Diammine Fluoride and Silver Salt Crosslinked Nanocrystalline Cellulose Films as Novel Antibacterial Materials. Gels 2021; 7:gels7030104. [PMID: 34449599 PMCID: PMC8395774 DOI: 10.3390/gels7030104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
There is an unmet need for biocompatible, anti-infective, and mechanically strong hydrogels. This study investigated the use of poly vinyl alcohol (PVA), polysaccharides, and nanocrystalline cellulose (CNC) to deliver silver in a controlled manner for possible use against oral or wound bacteria. Silver was included in solvent cast films as silver diammine fluoride (SDF) or as nitrate, sulphate, or acetate salts. Hydrogel formation was assessed by swelling determinations and silver release was measured using inductively coupled plasma methods. Antibacterial studies were performed using Gram-positive and negative bacteria turbidity assays. PVA formed homogenous, strong films with SDF and swelled gently (99% hydrolyzed) or vigorously with dissolution (88% hydrolyzed) and released silver slowly or quickly, respectively. CNC-SDF films swelled over a week and formed robust hydrogels whereas CNC alone (no silver) disintegrated after two days. SDF loaded CNC films released silver slowly over 9 days whereas films crosslinked with silver salts were less robust and swelled and released silver more quickly. All silver loaded films showed good antibacterial activity. CNC may be crosslinked with silver in the form of SDF (or any soluble silver salt) to form a robust hydrogel suitable for dental use such as for exposed periodontal debridement areas.
Collapse
Affiliation(s)
- John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - Claudia Dietrich
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.D.); (A.M.)
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ali Shademani
- Department of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Adriana Manso
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.D.); (A.M.)
| |
Collapse
|
24
|
Abstract
Raw wood was subjected to sequential oxidation to produce 2,3,6-tricarboxycellulose (TCC) nanofibers with a high surficial charge of 1.14 mmol/g in the form of carboxylate groups. Three oxidation steps, including nitro-oxidation, periodate, and sodium chlorite oxidation, were successfully applied to generate TCC nanofibers from raw wood. The morphology of extracted TCC nanofibers measured using TEM and AFM indicated the average length, width, and thickness were in the range of 750 ± 110, 4.5 ± 1.8, and 1.23 nm, respectively. Due to high negative surficial charges on TCC, it was studied for its absorption capabilities against Pb2+ ions. The remediation results indicated that a low concentration of TCC nanofibers (0.02 wt%) was able to remove a wide range of Pb2+ ion impurities from 5–250 ppm with an efficiency between 709–99%, whereby the maximum adsorption capacity (Qm) was 1569 mg/g with R2 0.69531 calculated from Langmuir fitting. It was observed that the high adsorption capacity of TCC nanofibers was due to the collective effect of adsorption and precipitation confirmed by the FTIR and SEM/EDS analysis. The high carboxylate content and fiber morphology of TCC has enabled it as an excellent substrate to remove Pb2+ ions impurities.
Collapse
|
25
|
Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H. Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS NANO 2021; 15:3849-3874. [PMID: 33710860 DOI: 10.1021/acsnano.0c09678] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Naturally derived nanocellulose (NC) is a renewable, biodegradable nanomaterial with high strength, low density, high surface area, and tunable surface chemistry, which allows its interaction with other polymers and nanomaterials in a controlled manner. In recent years, NC aerogel has gathered a lot of attention due to environmental concerns. This review presents recent developments of NC-based aerogels and their controlled interactions with other polymers and nanomaterials for thermal applications that include electronic devices, the apparel industry, superinsulating materials, and flame-retardant smart building materials. After going through the distinctive properties of NC aerogels, they are orderly categorized and discussed as thermally insulated, thermally conductive, and flame-retardant materials.
Collapse
Affiliation(s)
- Sandeep Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Pradyumn Paliwal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Aditya Subhedar
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
26
|
Coldebella R, Gentil M, Berger C, Dalla Costa HW, Pedrazzi C, Labidi J, Delucis RA, Missio AL. Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva ( Maclura tinctoria) Heartwood Extract. Polymers (Basel) 2021; 13:polym13060908. [PMID: 33809622 PMCID: PMC8002037 DOI: 10.3390/polym13060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
Aerogels are 3-D nanostructures of non-fluid colloidal interconnected porous networks consisting of loosely packed bonded particles that are expanded throughout their volume by gas and exhibit ultra-low density and high specific surface area. Cellulose-based aerogels can be obtained from hydrogels through a drying process, replacing the solvent (water) with air and keeping the pristine three-dimensional arrangement. In this work, hybrid cellulose-based aerogels were produced and their potential for use as dressings was assessed. Nanofibrilated cellulose (NFC) hydrogels were produced by a co-grinding process in a stone micronizer using a kraft cellulosic pulp and a phenolic extract from Maclura tinctoria (Tajuva) heartwood. NFC-based aerogels were produced by freeze followed by lyophilization, in a way that the Tajuva extract acted as a functionalizing agent. The obtained aerogels showed high porosity (ranging from 97% to 99%) and low density (ranging from 0.025 to 0.040 g·cm-3), as well a typical network and sheet-like structure with 100 to 300 μm pores, which yielded compressive strengths ranging from 60 to 340 kPa. The reached antibacterial and antioxidant activities, percentage of inhibitions and water uptakes suggest that the aerogels can be used as fluid absorbers. Additionally, the immobilization of the Tajuva extract indicates the potential for dentistry applications.
Collapse
Affiliation(s)
- Rodrigo Coldebella
- Laboratório de Produtos Florestais (PPGEF), Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil; (R.C.); (M.G.); (C.B.); (H.W.D.C.); (C.P.)
| | - Marina Gentil
- Laboratório de Produtos Florestais (PPGEF), Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil; (R.C.); (M.G.); (C.B.); (H.W.D.C.); (C.P.)
| | - Camila Berger
- Laboratório de Produtos Florestais (PPGEF), Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil; (R.C.); (M.G.); (C.B.); (H.W.D.C.); (C.P.)
| | - Henrique W. Dalla Costa
- Laboratório de Produtos Florestais (PPGEF), Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil; (R.C.); (M.G.); (C.B.); (H.W.D.C.); (C.P.)
| | - Cristiane Pedrazzi
- Laboratório de Produtos Florestais (PPGEF), Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil; (R.C.); (M.G.); (C.B.); (H.W.D.C.); (C.P.)
| | - Jalel Labidi
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastián, Guipuzcoa, Spain
- Correspondence: (J.L.); (R.A.D.); (A.L.M.)
| | - Rafael A. Delucis
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPGCEM), Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
- Programa de Pós-Graduação em Ciência Ambientais (PPGCAmb), Centro de Engenharias, Universidade Federal de Pelotas, 96010-450 Pelotas, Brazil
- Correspondence: (J.L.); (R.A.D.); (A.L.M.)
| | - André L. Missio
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPGCEM), Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
- Programa de Pós-Graduação em Ciência Ambientais (PPGCAmb), Centro de Engenharias, Universidade Federal de Pelotas, 96010-450 Pelotas, Brazil
- Correspondence: (J.L.); (R.A.D.); (A.L.M.)
| |
Collapse
|
27
|
Ee LY, Yau Li SF. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects. NANOSCALE ADVANCES 2021; 3:1167-1208. [PMID: 36132876 PMCID: PMC9418582 DOI: 10.1039/d0na00408a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/26/2020] [Indexed: 05/08/2023]
Abstract
Emerging cellulose nanomaterials extracted from agricultural biomasses have recently received extensive attention due to diminishing fossil resources. To further reduce the carbon footprints and wastage of valuable resources, additive manufacturing techniques of new nanocellulosic materials have been developed. Studies on the preparation and characterization of 3D-printable functional nanocellulosic materials have facilitated a deeper understanding into their desirable attributes such as high surface area, biocompatibility, and ease of functionalization. In this critical review, we compare and highlight the different methods of extracting nanocellulose from biorenewable resources and the strategies for transforming the obtained nanocellulose into nanocomposites with high 3D printability. Optimistic technical applications of 3D-printed nanocellulose in biomedical, electronics, and environmental fields are finally described and evaluated for future perspectives.
Collapse
Affiliation(s)
- Liang Ying Ee
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| |
Collapse
|
28
|
Fu Y, Li X, Yang Z, Duan X, Ma Z, Han B. Increasing straw surface functionalities for enhanced adsorption property. BIORESOURCE TECHNOLOGY 2021; 320:124393. [PMID: 33202344 DOI: 10.1016/j.biortech.2020.124393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
A simple low-temperature partial-oxidation process was demonstrated as an effective technology for reed straw modification towards environmental remediation. At an optimal temperature of 180 °C, the straw materials exhibited a remarkable colour change from light yellow to dark brown, increased methylene blue (MB) uptake by 1.8 times, enhanced removal efficiency from 34.5% to 92.8%, and a high yield of 77.2%. Spectroscopic characterization and Boehm titration proved that the amount of surface oxygen (O)-containing functional groups significantly increased after modification. A strong linear correlation (R2 = 0.93) existed between total amounts of O-containing functional groups and MB uptake for modification temperatures below 180 °C, whereas blockage of the pore entrances and competition with metallic cations must be taken into account for samples generated from excess heating (>180 °C). These results provided insights into designing promising technologies for sustainable environmental management through reutilization of agricultural waste.
Collapse
Affiliation(s)
- Yusheng Fu
- College of Chemistry and Environmental Science, Hebei University. Baoding 071002, PR China
| | - Xiangyu Li
- College of Resources and Environmental Sciences, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhixin Yang
- College of Resources and Environmental Sciences, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, PR China; Hebei Industrial Technology Institute of Microbial Fertilizers, Langfang 065003, PR China
| | - Xiaofei Duan
- School of Chemistry, Faculty of Science, The University of Melbourne 3010, Australia
| | - Zhiling Ma
- College of Chemistry and Environmental Science, Hebei University. Baoding 071002, PR China
| | - Bing Han
- College of Chemistry and Environmental Science, Hebei University. Baoding 071002, PR China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; Institute of Life Science and Green Development, Hebei University. Baoding 071002, PR China.
| |
Collapse
|
29
|
Kopač T, Krajnc M, Ručigaj A. A mathematical model for pH-responsive ionically crosslinked TEMPO nanocellulose hydrogel design in drug delivery systems. Int J Biol Macromol 2020; 168:695-707. [PMID: 33246006 DOI: 10.1016/j.ijbiomac.2020.11.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022]
Abstract
Ionically crosslinked hydrogels based on TEMPO nanocelullose and alginate were prepared to develop a generalized pH value, temperature and biopolymer concentration dependent mathematical model. The distinctive attention was in the demonstration of hydrogen bonds effects in the mathematical model, prevailing especially in the field of low crosslink densities of TEMPO nanocellulose hydrogel in acid medium. Accordingly, alginate hydrogels were subjected to the research as comparable samples with less significant hydrogel bonds effect. The equation was built upon the determination of the average mesh size in a TEMPO nanocellulose and alginate hydrogel network and studying its changes in different pH release environments. Based on rheological measurements of TEMPO nanocellulose and alginate from the basic and acidic release environment, the mechanism of swelling and shrinkage was thoroughly discussed as well as the influence of substituent groups, ionic interactions and hydrogen bonds in different pH medium were evaluated. Due to the protonation of carboxylic groups, TEMPO nanocellulose and alginate hydrogels shrink in an acid environment. The presented approach will accelerate, improve and reduce the cost of research in the field of controlled release technology with target drug delivery.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
30
|
Zhao M, Zhang S, Fang G, Huang C, Wu T. Directionally-Grown Carboxymethyl Cellulose/Reduced Graphene Oxide Aerogel with Excellent Structure Stability and Adsorption Capacity. Polymers (Basel) 2020; 12:polym12102219. [PMID: 32992626 PMCID: PMC7601747 DOI: 10.3390/polym12102219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
A novel three-dimensional carboxymethyl cellulose (CMC)/reduced graphene oxide (rGO) composite aerogel crosslinked by poly (methyl vinyl ether-co-maleic acid)/poly (ethylene glycol) system via a directional freezing technique exhibits high structure stability while simultaneously maintaining its excellent adsorption capacity to remove organic dyes from liquid. A series of crosslinked aerogels with different amounts of GO were investigated for their adsorption capacity of methylene blue (MB), which were found to be superb adsorbents, and the maximum adsorption capacity reached 520.67 mg/g with the incorporation of rGO. The adsorption kinetics and isotherm studies revealed that the adsorption process followed the pseudo-second-order model and the Langmuir adsorption model, and the adsorption was a spontaneous process. Furthermore, the crosslinked aerogel can be easily recycled after washing with dilute HCl solution, which could retain over 97% of the adsorption capacity after recycling five times. These excellent properties endow the crosslinked CMC/rGO aerogel’s potential in wastewater treatment and environment protection.
Collapse
Affiliation(s)
- Mengke Zhao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China;
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China;
- Correspondence: (S.Z.); (G.F.)
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (C.H.); (T.W.)
- Correspondence: (S.Z.); (G.F.)
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (C.H.); (T.W.)
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (C.H.); (T.W.)
| |
Collapse
|
31
|
Mianehrow H, Lo Re G, Carosio F, Fina A, Larsson PT, Chen P, Berglund LA. Strong Reinforcement Effects in 2D Cellulose Nanofibril-Graphene Oxide (CNF-GO) Nanocomposites due to GO-Induced CNF Ordering. JOURNAL OF MATERIALS CHEMISTRY. A 2020; 8:17608-17620. [PMID: 33796318 PMCID: PMC8009442 DOI: 10.1039/d0ta04406g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanocomposites from native cellulose with low 2D nanoplatelet content are of interest as sustainable materials combining functional and structural performance. Cellulose nanofibril-graphene oxide (CNF-GO) nanocomposite films are prepared by a physical mixing-drying method, with focus on low GO content, the use of very large GO platelets (2-45μm) and nanostructural characterization using synchrotron x-ray source for WAXS and SAXS. These nanocomposites can be used as transparent coatings, strong films or membranes, as gas barriers or in laminated form. CNF nanofibrils with random in-plane orientation, form a continuous non-porous matrix with GO platelets oriented in-plane. GO reinforcement mechanisms in CNF are investigated, and relationships between nanostructure and suspension rheology, mechanical properties, optical transmittance and oxygen barrier properties are investigated as a function of GO content. A much higher modulus reinforcement efficency is observed than in previous polymer-GO studies. The absolute values for modulus and ultimate strength are as high as 17 GPa and 250 MPa at a GO content as small as 0.07 vol%. The remarkable reinforcement efficiency is due to improved organization of the CNF matrix; and this GO-induced mechanism is of general interest for nanostructural tailoring of CNF-2D nanoplatelet composites.
Collapse
Affiliation(s)
- Hanieh Mianehrow
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Giada Lo Re
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2, 412 96 Gothenburg, Sweden
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Via Teresa Michel 5, 15121 Alessandria, Italy
| | - Alberto Fina
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Via Teresa Michel 5, 15121 Alessandria, Italy
| | - Per Tomas Larsson
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
- RISE Bioeconomy, Drottning Kristinas Väg 61, SE-11486 Stockholm, Sweden
| | - Pan Chen
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
- Beijing Engineering Research Center of Cellulose and its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Lars A Berglund
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| |
Collapse
|
32
|
Teo HL, Wahab RA. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. Int J Biol Macromol 2020; 161:1414-1430. [PMID: 32791266 DOI: 10.1016/j.ijbiomac.2020.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
Abstract
There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
Collapse
Affiliation(s)
- Hwee Li Teo
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
33
|
Liang L, Zhang S, Goenaga GA, Meng X, Zawodzinski TA, Ragauskas AJ. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Front Chem 2020; 8:570. [PMID: 32733852 PMCID: PMC7359072 DOI: 10.3389/fchem.2020.00570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, porous aerogels were prepared by directional freeze-drying via cross-linking cellulose nanocrystals (CNCs) with poly(methyl vinyl ether-co-maleic acid) (PMVEMA) and poly(ethylene glycol) (PEG). The thermal properties and physical adsorption performance toward cation methylene blue dye of the obtained CNC aerogels were investigated. The maximum degradation temperature was increased from 324°C of CNCs to 355°C of cross-linked CNC aerogels. The dye adsorption isotherm results showed that the maximum methylene blue adsorption capacity of CNC aerogels was 116.2 mg g−1, according to the Langmuir model, which was mainly due to the electrostatic attractions between negatively charged carboxyl groups or sulfonate groups on the CNC aerogles and cation MB molecules. The reusability test showed that the CNC aerogels contained the same dye adsorption performance in five adsorption/desorption cycles. Overall, this study described an ideal alternative for water purification with high dye adsorption capacity and enhanced physical performance.
Collapse
Affiliation(s)
- Luna Liang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shuyang Zhang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gabriel A Goenaga
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States.,Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, United States.,Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
34
|
Niinivaara E, Cranston ED. Bottom-up assembly of nanocellulose structures. Carbohydr Polym 2020; 247:116664. [PMID: 32829792 DOI: 10.1016/j.carbpol.2020.116664] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Nanocelluloses, both cellulose nanofibrils and cellulose nanocrystals, are gaining research traction due to their viability as key components in commercial applications and industrial processes. Significant efforts have been made to understand both the potential of assembling nanocelluloses, and the limits and prospectives of the resulting structures. This Review focuses on bottom-up techniques used to prepare nanocellulose-only structures, and details the intermolecular and surface forces driving their assembly. Additionally, the interactions that contribute to their structural integrity are discussed along with alternate pathways and suggestions for improved properties. Six categories of nanocellulose structures are presented: (1) powders, beads, and droplets; (2) capsules; (3) continuous fibres; (4) films; (5) hydrogels; and (6) aerogels and dried foams. Although research on nanocellulose assembly often focuses on fundamental science, this Review also provides insight on the potential utilization of such structures in a wide array of applications.
Collapse
Affiliation(s)
- Elina Niinivaara
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland.
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
Walther A, Lossada F, Benselfelt T, Kriechbaum K, Berglund L, Ikkala O, Saito T, Wågberg L, Bergström L. Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials. Biomacromolecules 2020; 21:2536-2540. [PMID: 32233473 DOI: 10.1021/acs.biomac.0c00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nanocellulose-based materials and nanocomposites show extraordinary mechanical properties with high stiffness, strength, and toughness. Although the last decade has witnessed great progress in understanding the mechanical properties of these materials, a crucial challenge is to identify pathways to introduce high wet strength, which is a critical parameter for commercial applications. Because of the waterborne fabrication methods, nanocellulose-based materials are prone to swelling by both adsorption of moist air or liquid water. Unfortunately, there is currently no best practice on how to take the swelling into account when reporting mechanical properties at different relative humidity or when measuring the mechanical properties of fully hydrated materials. This limits and in parts fully prevents comparisons between different studies. We review current approaches and propose a best practice for measuring and reporting mechanical properties of wet nanocellulose-based materials, highlighting the importance of swelling and the correlation between mechanical properties and volume expansion.
Collapse
Affiliation(s)
- Andreas Walther
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Francisco Lossada
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Lars Berglund
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Olli Ikkala
- Molecular Materials, Department of Applied Physics, Aalto University, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| |
Collapse
|
36
|
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020; 8:392. [PMID: 32435633 PMCID: PMC7218176 DOI: 10.3389/fchem.2020.00392] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Mehdi Derradji
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nanang Masruchin
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M. Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
37
|
Ji A, Zhang S, Bhagia S, Yoo CG, Ragauskas AJ. 3D printing of biomass-derived composites: application and characterization approaches. RSC Adv 2020; 10:21698-21723. [PMID: 35516598 PMCID: PMC9054612 DOI: 10.1039/d0ra03620j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/29/2020] [Indexed: 01/05/2023] Open
Abstract
Biomass-derived 3D printing has attracted interests because of its developing technology and availability with renewable materials as well as compatible characteristics for many applications.
Collapse
Affiliation(s)
- Anqi Ji
- Department of Chemical Engineering
- State University of New York College of Environmental Science and Forestry
- Syracuse
- USA
| | - Shuyang Zhang
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| | | | - Chang Geun Yoo
- Department of Chemical Engineering
- State University of New York College of Environmental Science and Forestry
- Syracuse
- USA
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Biosciences Division
| |
Collapse
|