1
|
Fatima A, Shahzadi A, Majeed A, Al-Rawi SS, Ibrahim AH, Iqbal MA, Qaleel F. Green Catalysis: Water as a Sustainable Medium in Organocatalyzed Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8451-8479. [PMID: 40119848 DOI: 10.1021/acs.langmuir.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
The use of organocatalysts has increased significantly in recent years due to their tremendous applications in green solvents. Thus, using water as a solvent has evolved as a critical factor. Organocatalysts are efficient and sustainable agents for promoting chemical reactions in water. The literature has been extensively reviewed, and the use of various organocatalysts for three fundamental C-C bond-forming processes─the Aldol, Michael, and Mannich reactions in aqueous media─have been compiled in this study. Organocatalysts can overcome the limitations of conventional organic solvents by achieving high reaction rates and regioselectivity in water. This Review highlights the advantages of organocatalysts in aqueous media for these key reactions. It discusses the principles behind designing effective organocatalysts, focusing on their impact on selectivity, sustainability, and reaction efficiency. This study also summarizes the most significant advancements in sustainable organic reactions over the past decade.
Collapse
Affiliation(s)
- Anfal Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sawsan S Al-Rawi
- Biology Education Department, Tishk International University, 44001 Erbil, Iraq
| | - Ahmad H Ibrahim
- Pharmacy Department, Tishk International University, 44001 Erbil, Iraq
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Faisal Qaleel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Zhu C, Jiang W, Ma D. Copper-Catalyzed Intramolecular Aldehyde-Ketone Nucleophilic Additions for the Synthesis of Chromans Bearing a Tertiary Alcohol Motif. J Org Chem 2023. [PMID: 38152030 DOI: 10.1021/acs.joc.3c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The synthesis of chroman-3-ol derivatives via intramolecular nucleophilic additions has been established. Aldehydes can be used as alkyl carbanion equivalents via reductive polarity reversal which is facilitated by a copper catalyst and N-heterocyclic carbene ligand under mild conditions. The key to success is the difference in reaction activity between aldehydes and ketones. Finally, this methodology also can be used to construct other cyclic structures containing tertiary alcohols including tetraline, cyclohexane, indan, and 9,10-dihydrophenanthrene.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wenbo Jiang
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|
3
|
Némethová V, Krištofíková D, Mečiarová M, Šebesta R. Asymmetric Organocatalysis Under Mechanochemical Conditions. CHEM REC 2023:e202200283. [PMID: 36703542 DOI: 10.1002/tcr.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Asymmetric organocatalysis is a robust methodology providing access to numerous valuable compounds while having green chemistry principles in mind. The realization of organocatalytic transformation under solvent-free mechanochemical conditions brings additional benefits in terms of yields, selectivities, and, last but not least overall improved sustainability. This overview describes developments in the use of mechanochemistry as a vehicle for asymmetric organocatalytic transformations. The material is organized according to main catalytic activation modes, starting with covalent activation and proceeding to non-covalent activation modes. The advantages of mechanochemical organocatalytic reactions are particularly highlighted, but in some cases also, limitations are mentioned. Possibilities for target compound synthesis are also discussed.
Collapse
Affiliation(s)
- Viktória Némethová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
4
|
Jones A, Williams MTJ, Morrill LC, Browne DL. Mechanical Activation of Zero-Valent Metal Reductants for Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2022; 12:13681-13689. [PMID: 36366760 PMCID: PMC9638985 DOI: 10.1021/acscatal.2c03117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 12/04/2022]
Abstract
The cross-electrophile coupling of either twisted-amides or heteroaryl halides with alkyl halides, enabled by ball-milling, is herein described. The operationally simple nickel-catalyzed process has no requirement for inert atmosphere or dry solvents and delivers the corresponding acylated or heteroarylated products across a broad range of substrates. Key to negating the necessity of inert reaction conditions is the mechanical activation of the raw metal terminal reductant: manganese in the case of twisted amides and zinc for heteroaryl halides.
Collapse
Affiliation(s)
- Andrew
C. Jones
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Matthew T. J. Williams
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Duncan L. Browne
- School
of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, U.K.
| |
Collapse
|
5
|
Peňaška T, Modrocká V, Stankovianska K, Mečiarová M, Rakovský E, Šebesta R. Organocatalytic Diastereodivergent Enantioselective Formal oxa-Diels-Alder Reaction of Unsaturated Ketones with Enoates Under Liquid-Assisted Grinding Conditions. CHEMSUSCHEM 2022; 15:e202200028. [PMID: 35146952 DOI: 10.1002/cssc.202200028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Chiral heterocycles occur in many compounds of interest, but their efficient synthesis is challenging. This study concerns the enantioselective and diastereoselective synthesis of densely substituted chiral pyran derivatives. Diastereodivergence of the oxa-Diels-Alder reaction is achieved by using either a bifunctional amino-thiourea or a monofunctional quinine organocatalyst under ball-milling conditions. Liquid-assisted grinding proves a highly efficient means of affording pyrans in high yield, with high enantiomeric purities and short reaction times.
Collapse
Affiliation(s)
- Tibor Peňaška
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Viktória Modrocká
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Klára Stankovianska
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
6
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
7
|
Nicholson WI, Howard JL, Magri G, Seastram AC, Khan A, Bolt RRA, Morrill LC, Richards E, Browne DL. Ball-Milling-Enabled Reactivity of Manganese Metal*. Angew Chem Int Ed Engl 2021; 60:23128-23133. [PMID: 34405513 PMCID: PMC8596600 DOI: 10.1002/anie.202108752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 01/17/2023]
Abstract
Efforts to generate organomanganese reagents under ball-milling conditions have led to the serendipitous discovery that manganese metal can mediate the reductive dimerization of arylidene malonates. The newly uncovered process has been optimized and its mechanism explored using CV measurements, radical trapping experiments, EPR spectroscopy, and solution control reactions. This unique reactivity can also be translated to solution whereupon pre-milling of the manganese is required.
Collapse
Affiliation(s)
| | - Joseph L. Howard
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Giuseppina Magri
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Alex C. Seastram
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Adam Khan
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Louis C. Morrill
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Emma Richards
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
8
|
Nicholson WI, Howard JL, Magri G, Seastram AC, Khan A, Bolt RRA, Morrill LC, Richards E, Browne DL. Ball‐Milling‐Enabled Reactivity of Manganese Metal**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Joseph L. Howard
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Giuseppina Magri
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Alex C. Seastram
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Adam Khan
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| | - Louis C. Morrill
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Emma Richards
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| |
Collapse
|
9
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
10
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
11
|
Satyam K, Ramarao J, Suresh S. N-Heterocyclic carbene (NHC)-catalyzed intramolecular benzoin condensation-oxidation. Org Biomol Chem 2021; 19:1488-1492. [PMID: 33522549 DOI: 10.1039/d0ob02606a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NHC-Catalyzed intramolecular benzoin condensation-oxidation is developed for the expedient synthesis of diverse cyclic 1,2-diketones incorporated in dibenzo-fused seven-membered heterocycles in good to excellent yields, under ambient conditions. The presented carbene-catalyzed transformation appears to proceed through the benzoin intermediate followed by aerobic oxidation.
Collapse
Affiliation(s)
- Killari Satyam
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jakkula Ramarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Vetica F, Bortolami M, Petrucci R, Rocco D, Feroci M. Electrogenerated NHCs in Organic Synthesis: Ionic Liquids vs Organic Solvents Effects. CHEM REC 2021; 21:2130-2147. [PMID: 33507627 DOI: 10.1002/tcr.202000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
In the last twenty years, N-heterocyclic carbenes (NHCs) have been extensively studied for their application as organocatalysts in stereoselective synthesis as well as ligands for transition metals-promoted synthetic methodologies. Derived mainly from azolium salts, NHCs have demonstrated exceptional versatility in their generation usually performed by deprotonation or reduction (chemical or electrochemical). In particular, the generation of NHC under electrochemical conditions, starting from azolium-based ionic liquids, has proven to be a successful green approach and demonstrated wide applicability in organic synthesis. In this Personal Account, the application of electrogenerated NHCs in organic synthesis will be discussed, with a particular attention to the different reactivity in ionic liquids compared to classical organic solvents.
Collapse
Affiliation(s)
- Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| |
Collapse
|
13
|
Williams MJ, Morrill LC, Browne DL. Expedient Organocatalytic Aza-Morita-Baylis-Hillman Reaction through Ball-Milling. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:17876-17881. [PMID: 33614300 PMCID: PMC7885690 DOI: 10.1021/acssuschemeng.0c07320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Indexed: 05/08/2023]
Abstract
A ball-milling enabled tertiary amine catalyzed aza-Morita-Baylis-Hillman reaction is reported. The reaction process does not require solvent, has significantly shorter reaction times than previous methods and is reported on a range of imines and acrylate Michael acceptors across than 26 examples. A 12-fold scaled-up example is also reported as well as experimental comparisons to solution-based experiments and neat-stirred reactions.
Collapse
Affiliation(s)
- Matthew
T. J. Williams
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- E-mail:
| | - Duncan L. Browne
- School
of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, United Kingdom
- E-mail:
| |
Collapse
|
14
|
Lukin S, Stolar T, Lončarić I, Milanović I, Biliškov N, di Michiel M, Friščić T, Halasz I. Mechanochemical Metathesis between AgNO 3 and NaX (X = Cl, Br, I) and Ag 2XNO 3 Double-Salt Formation. Inorg Chem 2020; 59:12200-12208. [PMID: 32806016 DOI: 10.1021/acs.inorgchem.0c01196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we describe real-time, in situ monitoring of mechanochemical solid-state metathesis between silver nitrate and the entire series of sodium halides, on the basis of tandem powder X-ray diffraction and Raman spectroscopy monitoring. The mechanistic monitoring reveals that reactions of AgNO3 with NaX (X = Cl, Br, I) differ in reaction paths, with only the reaction with NaBr providing the NaNO3 and AgX products directly. The reaction with NaI revealed the presence of a novel, short-lived intermediate phase, while the reaction with NaCl progressed the slowest through the well-defined Ag2ClNO3 intermediate double salt. While the corresponding iodide and bromide double salts were not observed as intermediates, all three are readily prepared as pure compounds by milling equimolar mixtures of AgX and AgNO3. The in situ observation of reactive intermediates in these simple metathesis reactions reveals a surprising resemblance of reactions involving purely ionic components to those of molecular organic solids and cocrystals. This study demonstrates the potential of in situ reaction monitoring for mechanochemical reactions of ionic compounds as well as completes the application of these techniques to all major compound classes.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Tomislav Stolar
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Igor Milanović
- Department of Physics (010), Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000, Belgrade, Serbia
| | - Nikola Biliškov
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marco di Michiel
- ESRF-the European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8 Montreal, Canada
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|