1
|
Liang Z, Nafis MS, Rodriguez D, Ban C. Surface Science and Engineering for Electrochemical Materials. Acc Chem Res 2024; 57:3102-3112. [PMID: 39378162 DOI: 10.1021/acs.accounts.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
ConspectusIn electrochemical energy storage systems, the reversible storage capacity of battery materials often degrades due to parasitic reactions at the electrode-electrolyte interface, transitional metal dissolution, and metallic dendrite growth at the surface. Surface engineering techniques offer the opportunity to modify the composition and structure of a surface, thereby enabling control over chemical reactions occurring at the surface and manipulating chemical interactions at the solid-solid or solid-liquid interface. These modifications can help stabilize the surface of electrode materials and prevent unwanted reactions with electrolytes without changing the original properties of the bulk structure. This allows for achieving full theoretical capacity and maximizing battery material capacity retention with minimal overpotentials. In the past decade, our teams have been working on developing a variety of surface engineering techniques. These include applying atomic and molecular layer deposition (ALD and MLD), templating, doping, and coating via wet-chemical processes to stabilize the surfaces of electrode materials. The aim is to mitigate parasitic side-reactions without impeding charge transfer kinetics, suppress dendrite growth, and ultimately improve the electrode performance.This Account summarizes the research conducted in our research laboratory with an aim to improve battery cycling durability and efficiency by modifying electrode surfaces. We have employed techniques such as ALD, MLD, templating, and wet-chemical processes to illustrate how the stabilized surface improves the performance of lithium-ion (Li-ion), solid-state electrolytes and magnesium-metal (Mg-metal) batteries. For instance, by applying ultrathin layers of inorganic (e.g., Al2O3) or organic-inorganic coatings (e.g., alucone, lithicone, and polyamides) to the surface of LiNixMnyCozO2 (x + y + z = 1, NMC) and silicon (Si) electrodes─usually just a few angstroms or nanometers thick─we have observed notable improvements in cycling efficiency and durability. When using ultrathick electrodes, the traditional electrode fabrication has a problem with high tortuosity, which hinders both rate capability and long-term cycling. To solve this issue, three-dimensional templates have been employed to reduce electrode tortuosity, enabling high-rate performance and long-term cycling. In the case of Mg-metal batteries, the buildup of an insulating MgO layer due to side reactions with electrolytes blocks Mg2+ ion transport, which can ultimately cause the battery to fail. To address this issue, we have developed an artificial solid-electrolyte interface using cyclized polyacrylonitrile and magnesium trifluoromethanesulfonate. This interface prevents the reduction of the carbonate electrolyte while allowing Mg2+ diffusion, ultimately boosting overall cell performance.This Account also discusses the significance of choosing suitable materials and effective surface engineering methods with the objective of enhancing surface properties while preserving the bulk properties of the electrodes. It is believed that surface modification and engineering can not only significantly improve the electrochemical performance of existing battery materials but also facilitate the development of new battery materials that were previously incompatible with current electrolytes. By highlighting these aspects, this Account underscores the transformative potential of surface modification and engineering in battery technology, paving the way for future innovations in energy storage solutions.
Collapse
Affiliation(s)
- Zhiming Liang
- Paul M. Randy Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mohammad Sufiyan Nafis
- Paul M. Randy Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dakota Rodriguez
- Paul M. Randy Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chunmei Ban
- Paul M. Randy Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Firdaus AM, Hawari NH, Adios CG, Nasution PM, Peiner E, Wasisto HS, Sumboja A. Unlocking High-Current Performance in Silicon Anode: Synergistic Phosphorus Doping and Nitrogen-Doped Carbon Encapsulation to Enhance Lithium Diffusivity. Chem Asian J 2024; 19:e202400036. [PMID: 38414228 DOI: 10.1002/asia.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
The silicon (Si) offers enormous theoretical capacity as a lithium-ion battery (LIB) anode. However, the low charge mobility in Si particles hinders its application for high current loading. In this study, ball-milled phosphorus-doped Si nanoparticles encapsulated with nitrogen-doped carbon (P-Si@N-C) are employed as an anode for LIBs. P-doped Si nanoparticles are first obtained via ball-milling and calcination of Si with phosphoric acid. N-doped carbon encapsulation is then introduced via carbonization of the surfactant-assisted polymerization of pyrrole monomer on P-doped Si. While P dopant is required to support the stability at high current density, the encapsulation of Si particles with N-doped carbon is influential in enhancing the overall Li+ diffusivity of the Si anode. The combined approaches improve the anode's Li+ diffusivity up to tenfold compared to the untreated anode. It leads to exceptional anode stability at a high current, retaining 87 % of its initial capacity under a large current rate of 4000 mA g-1. The full-cell comprising P-Si@N-C anode and LiFePO4 cathode demonstrates 94 % capacity retention of its initial capacity after 100 cycles at 1 C. This study explores the effective strategies to improve Li+ diffusivity for high-rate Si-based anode.
Collapse
Affiliation(s)
- Arief Muhammad Firdaus
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Naufal Hanif Hawari
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Celfi Gustine Adios
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Paramadina Masihi Nasution
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Erwin Peiner
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, Braunschweig, 38106, Germany
| | | | - Afriyanti Sumboja
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
- Research Collaboration Center for Advanced Energy Materials, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
3
|
Wang S, Cai Z, Cao R, Ma Z, Wu Q, Moin M, Ahsan Z, Ma Y, Song G, Yang W, Wen C. Facile synthesis of multi-phase (Si+SiO 2)@C anode materials for lithium-ion batteries. Dalton Trans 2024; 53:4119-4126. [PMID: 38315146 DOI: 10.1039/d3dt04075e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To bring about a revolution in energy storage through Li-ion batteries, it is crucial to develop a scalable preparation method for Si-based composite anodes. However, the severe volume expansion and poor ionic transport properties of Si-based composites present significant challenges. Previous research focused on SiO and nano Si/C composites to address these issues. In this study, mechanical milling was used to introduce a SiOx layer onto the surface of Si by mixing Si and SiO2 in a 1 : 1 mass ratio. The resulting Si+SiO2 composites (denoted as SS50) exhibited an initial coulombic efficiency (ICE) of 73.5% and high rate performance. To further stabilize the overall structure, kerosene was introduced as a carbon source precursor to generate a coating layer. The resulting multiphase composite structure (SiOx+SiO2+C), designated as SS50-900C, demonstrated a capacity retention of 79.5% over 280 cycles at its capacity of 487 mA h g-1. These results suggest that a cost-effective mechanical ball milling refinement of Si+SiO2 and a gas-phase encapsulation process can significantly improve the electrochemical performance of Si-based composites.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Zhenfei Cai
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Rui Cao
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Ziyang Ma
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Qinyu Wu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Muhmmad Moin
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Zishan Ahsan
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Yangzhou Ma
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Guangsheng Song
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Weidong Yang
- Future Manufacturing Flagship, Commonwealth Scientific and Industry Research Organization, Melbourne, Victoria 3168, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
4
|
Lee IH, Jin Y, Jang HS, Whang D. Enhancing the Stability and Initial Coulombic Efficiency of Silicon Anodes through Coating with Glassy ZIF-4. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:18. [PMID: 38202473 PMCID: PMC10780738 DOI: 10.3390/nano14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The high capacity of electrodes allows for a lower mass of electrodes, which is essential for increasing the energy density of the batteries. According to this, silicon is a promising anode candidate for Li-ion batteries due to its high theoretical capacity. However, its practical application is hampered by the significant volume expansion of silicon during battery operation, resulting in pulverization and contact loss. In this study, we developed a stable Li-ion anode that not only solves the problem of the short lifetime of silicon but also preserves the initial efficiency by using silicon nanoparticles covered with glassy ZIF-4 (SZ-4). SZ-4 suppresses silicon pulverization, contact loss, etc. because the glassy ZIF-4 wrapped around the silicon nanoparticles prevents additional SEI formation outside the silicon surface due to the electrically insulating characteristics of glassy ZIF-4. The SZ-4 realized by a simple heat treatment method showed 74% capacity retention after 100 cycles and a high initial efficiency of 78.7%.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (I.-H.L.); (Y.J.)
| | - Yongsheng Jin
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (I.-H.L.); (Y.J.)
| | - Hyeon-Sik Jang
- School of Semiconductor Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dongmok Whang
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (I.-H.L.); (Y.J.)
| |
Collapse
|
5
|
Zhang S, Zhang T, Dong B, Chen J, Meng C. Metal silicates for supercapacitors derived from the multistep treatment of natural green algaes. J Colloid Interface Sci 2023; 630:11-20. [DOI: 10.1016/j.jcis.2022.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
6
|
Lin W, Wang F, Wang H, Li H, Fan Y, Chan D, Chen S, Tang Y, Zhang Y. Thermal-Stable Separators: Design Principles and Strategies Towards Safe Lithium-Ion Battery Operations. CHEMSUSCHEM 2022; 15:e202201464. [PMID: 36254787 DOI: 10.1002/cssc.202201464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Lithium-ion batteries (LIBs) are momentous energy storage devices, which have been rapidly developed due to their high energy density, long lifetime, and low self-discharge rate. However, the frequent occurrence of fire accidents in laptops, electric vehicles, and mobile phones caused by thermal runaway of the inside batteries constantly reminds us of the urgency in pursuing high-safety LIBs with high performance. To this end, this Review surveyed the state-of-the-art developments of high-temperature-resistant separators for highly safe LIBs with excellent electrochemical performance. Firstly, the basic properties of separators (e. g., thickness, porosity, pore size, wettability, mechanical strength, and thermal stability) in constructing commercialized LIBs were introduced. Secondly, the working mechanisms of advanced separators with different melting points acting in the thermal runaway stage were discussed in terms of improving battery safety. Thirdly, rational design strategies for constructing high-temperature-resistant separators for LIBs with high safety were summarized and discussed, including graft modification, blend modification, and multilayer composite modification strategies. Finally, the current obstacles and future research directions in the field of high-temperature-resistant separators were highlighted. These design ideas are expected to be applied to other types of high-temperature-resistant energy storage systems working under extreme conditions.
Collapse
Affiliation(s)
- Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Feng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Heng Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - You Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
7
|
Alkali etching zinc and manganese silicates derived from natural green algaes for supercapacitors with enhanced electrochemical properties. J Colloid Interface Sci 2022; 623:135-145. [DOI: 10.1016/j.jcis.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
|
8
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
9
|
Yun JH, Whang TK, Ahn WJ, Lee YS, Im JS. Control of cyclic stability and volume expansion on graphite-SiO x -C hierarchical structure for Li-ion battery anodes. RSC Adv 2022; 12:6552-6560. [PMID: 35424601 PMCID: PMC8982039 DOI: 10.1039/d1ra08901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022] Open
Abstract
To increase the energy density of today's batteries, studies on adding Si-based materials to graphite have been widely conducted. However, adding a Si-based material in the slurry mixing step suffers from low distribution due to the self-aggregation property of the Si-based material. Herein, a hierarchical structure is proposed to increase the integrity by using APS to provide a bonding effect between graphite and SiO x . Additionally, to endow a protection layer, carbon is coated on the surface using the CVD method. The designed structure demonstrates enhanced integrity based on electrochemical performance. The MSG (methane decomposed SiO x @G) electrode demonstrates a high ICE of 85.6% with 429.8 mA h g-1 initial discharge capacity. In addition, the MSG anode has superior capacity retention (89.3%) after 100 cycles, with enhanced volumetric expansion (12.7%) after 50 cycles. We believe that the excellent electrochemical performance of MSG is attributed to increased integrity by using APS (3-aminopropyltrimethoxysilane) with a CVD carbon coating.
Collapse
Affiliation(s)
- Jae Hyeon Yun
- C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT) 141 Gajeong-ro Yuseong-Gu Daejeon 34114 Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam University 99 Daehak-ro Yuseong-gu Daejeon 34134 Republic of Korea
| | - Tae Kyung Whang
- C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT) 141 Gajeong-ro Yuseong-Gu Daejeon 34114 Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam University 99 Daehak-ro Yuseong-gu Daejeon 34134 Republic of Korea
| | - Won Jun Ahn
- C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT) 141 Gajeong-ro Yuseong-Gu Daejeon 34114 Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam University 99 Daehak-ro Yuseong-gu Daejeon 34134 Republic of Korea
| | - Young-Seak Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam University 99 Daehak-ro Yuseong-gu Daejeon 34134 Republic of Korea
| | - Ji Sun Im
- C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT) 141 Gajeong-ro Yuseong-Gu Daejeon 34114 Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) 217 Gajeong-ro Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
10
|
Optimized design of 3D nitrogen-doped graphene-like carbon derived from g-C3N4 encapsulated nano-Si as high-performance anode for lithium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
You S, Tan H, Wei L, Tan W, Chao Li C. Design Strategies of Si/C Composite Anode for Lithium-Ion Batteries. Chemistry 2021; 27:12237-12256. [PMID: 34132434 DOI: 10.1002/chem.202100842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 11/10/2022]
Abstract
Silicon-based materials that have higher theoretical specific capacity than other conventional anodes, such as carbon materials, Li2 TiO3 materials and Sn-based materials, become a hot topic in research of lithium-ion battery (LIB). However, the low conductivity and large volume expansion of silicon-based materials hinders the commercialization of silicon-based materials. Until recent years, these issues are alleviated by the combination of carbon-based materials. In this review, the preparation of Si/C materials by different synthetic methods in the past decade is reviewed along with their respective advantages and disadvantages. In addition, Si/C materials formed by silicon and different carbon-based materials is summarized, where the influences of carbons on the electrochemical performance of silicon are emphasized. Lastly, future research direction in the material design and optimization of Si/C materials is proposed to fill the current gap in the development of efficient Si/C anode for LIBs.
Collapse
Affiliation(s)
- Shunzhang You
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - HuiTeng Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Licheng Wei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Maddipatla R, Loka C, Lee KS. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54608-54618. [PMID: 33231419 DOI: 10.1021/acsami.0c14978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Si-based anode materials have attracted considerable attention for use in high-capacity lithium-ion batteries (LIBs), but their practical application is hindered by huge volume changes and structural instabilities that occur during lithiation/delithiation and low-conductivity. In this regard, we report a novel Si-nanocomposite by modulating the ultrathin surface oxide of nano-Si at a low temperature and highly conductive graphene-graphite matrix. The Si nanoparticles are synthesized by high-energy mechanical milling of micro-Si. The prepared Si/SiOx@C nanocomposite electrode delivers a high-discharge capacity of 1355 mAh g-1@300th cycle with an average Coulombic efficiency of 99.5% and a discharge capacity retention of ∼88% at 1C-rate (500 mA g-1). Remarkably, the nanocomposite exhibits a high initial Coulombic efficiency of ∼87% and excellent charge/discharge rate performance in the range of 0.5-5C. Moreover, a comparative investigation of the three different electrodes nano-Si, Si/SiOx, and Si/SiOx@C are presented. The exceptional electrochemical performance of Si/SiOx@C is owing to the nanosized silicon and ultrathin SiOx followed by a high-conductivity graphene-graphite matrix, since such a nanostructure is beneficial to suppress the volume changes of silicon, maintain the structural integrity, and enhance the charge transfer during cycling. The proposed nanocomposite and the synthesis method are novel, facile, and cost-effective. Consequently, the Si/SiOx@C nanocomposite can be a promising candidate for widespread application in next-generation LIB anodes.
Collapse
Affiliation(s)
- Reddyprakash Maddipatla
- Department of Advanced Materials Engineering, Kongju National University, Cheonan 31080, South Korea
| | - Chadrasekhar Loka
- Department of Advanced Materials Engineering, Kongju National University, Cheonan 31080, South Korea
| | - Kee-Sun Lee
- Department of Advanced Materials Engineering, Kongju National University, Cheonan 31080, South Korea
| |
Collapse
|
13
|
Li X, Zhang M, Yuan S, Lu C. Research Progress of Silicon/Carbon Anode Materials for Lithium‐Ion Batteries: Structure Design and Synthesis Method. ChemElectroChem 2020. [DOI: 10.1002/celc.202001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinzhi Li
- CAS Key Laboratory for Carbon Materials Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Engineering Laboratory for Carbon Fiber Technology Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
| | - Meng Zhang
- CAS Key Laboratory for Carbon Materials Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Engineering Laboratory for Carbon Fiber Technology Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shuxia Yuan
- CAS Key Laboratory for Carbon Materials Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Engineering Laboratory for Carbon Fiber Technology Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
| | - Chunxiang Lu
- CAS Key Laboratory for Carbon Materials Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Engineering Laboratory for Carbon Fiber Technology Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
| |
Collapse
|