1
|
Luo G, Liu H, Wang R, Duan C, Sun M, Lu Y, Ou Z, Hu Z. Construction of a red phosphorus-molybdenum dioxide electron-rich interface for efficient photocatalytic reduction of carbon dioxide. J Colloid Interface Sci 2025; 684:346-354. [PMID: 39798430 DOI: 10.1016/j.jcis.2024.12.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Developing efficient catalysts to enhance photoreduction carbon dioxide (CO2) into hydrocarbon fuels is a great challenge. As metallic material, molybdenum dioxide (MoO2) has very high conductivity and charge density, which make it a promising candidate as photocatalyst. However, its photocatalytic activity is limited by the serious charge recombination. How to effectively make full use of the metallic MoO2 for photocatalytic CO2 reduction is still a critical issue. The potential effective way to solve this problem is to introduce appropriate auxiliary catalysts to construct electron-rich interfaces. In this study, red phosphorus (P) is dispersed on MoO2 nanoparticles to construct electron-rich interfaces which can serve as the active site for photocatalytic CO2 reduction. The results show that the reduction of CO2 by pure MoO2 only produces carbon monoxide (CO) and methane (CH4). However, with the aid of red P, the P-MoO2 photocatalyst can produce ethylene (C2H4) with the yield of 5.43 μmol h-1 g-1, and the CO and CH4 yields are also significantly improved. Experimental results and density functional theory (DFT) calculations indicate that photogenerated carriers can migrate from MoO2 to the interface, and the reduction of CO2 occurs at the interface. This study provides a significant insight for the design of efficient photocatalysts by using metallic photocatalysts.
Collapse
Affiliation(s)
- Guanghui Luo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huimin Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chengyu Duan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengdi Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinglong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Saha C, Ghosh SK, Kumari P, Perla VK, Singh H, Mallick K. Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection. Anal Biochem 2025; 696:115660. [PMID: 39260671 DOI: 10.1016/j.ab.2024.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au-CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5-15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and l-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 μM and 0.96 μAμM⁻1cm⁻2, respectively, for iodide ion, while 0.48 μM and 5.8 μAμM⁻1cm⁻2, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au-CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.
Collapse
Affiliation(s)
- Chandan Saha
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Sarit K Ghosh
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Pooja Kumari
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Venkata K Perla
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
| | - Kaushik Mallick
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
3
|
Niu T, Mao Y, Lv Y, Li M, Liu Y, Yang P, Gu Q. Amyloid-Like Protein-Modified Carbon Nitride as a Bioinspired Material for Enhanced Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63495-63508. [PMID: 39509651 DOI: 10.1021/acsami.4c12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Modification of g-C3N4 with metal-free biomaterials through an environmentally friendly, low-energy, facile, and rapid single-step method is desired for the preparation of photocatalysts with efficient activity and high selectivity of CO2 reduction but remains a great challenge. Herein, we develop a phase-transitioned protein modification strategy for photocatalysts through superfast amyloid-like protein assembly on surfaces using a one-step sequential coating method. Metal-free carbon nitride/protein heterojunction composite photocatalysts (the phase-transitioned lysozyme (PTL), phase-transitioned bovine serum albumin (PTB), and phase-transitioned ovalbumin (PTO)-coated carbon nitride@SiO2 (CN@SiO2) and bioinspired carbon nitride hollow nanospheres (CN-HS) obtained by etching of CN@SiO2) are prepared using lysozyme, bovine serum albumin, and ovalbumin. The insulator-semiconductor heterojunctions formed at the protein-carbon nitride interface promote the migration and separation of photogenerated charges. The exposed hydrophobic alkyl and aryl groups of the surface-modified protein enable the formation of a CO2-aqueous solution-photocatalyst three-phase interface on the catalyst surface and the exposed -NH2 groups provide sites for CO2 adsorption, which effectively increases CO2 mass transfer and its adsorption as well as hydrophobicity, promoting CO2 reduction and inhibiting hydrogen production. Therefore, protein modification effectively improves the CO2 reduction activity and CO selectivity. For instance, compared to CN-HS, the CO yield of the PTL-modified CN-HS (1346.5 μmol g-1) increased by 24.5 times and the CO selectivity reached 90.5%. These findings represent a critical advancement in the surface modification of carbon nitride for CO2 reduction and the design of bioinspired materials for various applications.
Collapse
Affiliation(s)
- Ting Niu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yulu Mao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yujing Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Mengjie Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
- Key Laboratory of Hexi Corridor Resources Utilization, Hexi University, Zhangye, Gansu Province 734000, P. R. China
| |
Collapse
|
4
|
Guo QH, Zhang GL, Wu Y, Liang X, Li L, Yang JJ. Theoretical Study on the Electrocatalytic CO 2 Reduction Mechanism of Single-Atom Co Complexed Carbon-Based (Co-N χ@C) Catalysts Supported on Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46270-46279. [PMID: 39171457 DOI: 10.1021/acsami.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Electrocatalytic CO2 reduction serves as an effective strategy to tackle energy crises and mitigate greenhouse gas effects. The development of efficient and cost-effective electrocatalysts has been a research hotspot in the field. In this study, we designed four Co-doped single-atom catalysts (Co-Nχ@C) using carbon nanotubes as carriers, these catalysts included tri- and dicoordinated N-doped carbon nanoribbons, as well as tri- and dicoordinated N-doped graphene, respectively denoted as H3(H2)-Co/CNT and 3(2)-Co/CNT. The stable configurations of these Co-Nχ@C catalysts were optimized using the PBE+D3 method. Additionally, we explored the reaction mechanisms of these catalysts for the electrocatalytic reduction of CO2 into four C1 products, including CO, HCOOH, CH3OH and CH4, in detail. Upon comparing the limiting potentials (UL) across the Co-Nχ@C catalysts, the activity sequence for the electrocatalytic reduction of CO2 was H2-Co/CNT > 3-Co/CNT > H3-Co/CNT > 2-Co/CNT. Meanwhile, our investigation of the hydrogen evolution reaction (HER) with four catalysts elucidated the influence of acidic conditions on the electrocatalytic CO2 reduction process. Specifically, controlling the acidity of the solution was crucial when using the H3-Co/CNT and H2-Co/CNT catalysts, while the 3-Co/CNT and 2-Co/CNT catalysts were almost unaffected by the solution's acidity. We hope that our research will provide a theoretical foundation for designing more effective CO2 reduction electrocatalysts.
Collapse
Affiliation(s)
- Qian-Hong Guo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gui-Lin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoqin Liang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
5
|
Zhang P, Li N, Li L, Yu Y, Tuerhong R, Su X, Zhang B, Han L, Han Y. g-C 3N 4-Based Photocatalytic Materials for Converting CO 2 Into Energy: A Review. Chemphyschem 2024; 25:e202400075. [PMID: 38822681 DOI: 10.1002/cphc.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Yongchong Yu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Bin Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, P.R.China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering, He Xi University, No.846 North Circle Road, Zhangye, 734000, P.R.China
| |
Collapse
|
6
|
Xu X, Zhang X, He H, Dai L, Hu J, Si C. Graphitic Carbon Nitride Enters the Scene: A Promising Versatile Tool for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39023123 DOI: 10.1021/acs.langmuir.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generation, and carbon dioxide reduction. Due to its distinctive two-dimensional structure, excellent chemical stability, and distinctive optical and electrical properties, g-C3N4 has garnered a considerable amount of interest in the field of biomedicine in recent years. This review focuses on the fundamental properties of g-C3N4, highlighting the synthesis and modification strategies associated with the interfacial structures of g-C3N4-based materials, including heterojunction, band gap engineering, doping, and nanocomposite hybridization. Furthermore, the biomedical applications of these materials in various domains, including biosensors, antimicrobial applications, and photocatalytic degradation of medical pollutants, are also described with the objective of spotlighting the unique advantages of g-C3N4. A summary of the challenges faced and future prospects for the advancement of g-C3N4-based materials is presented, and it is hoped that this review will inspire readers to seek further new applications for this material in biomedical and other fields.
Collapse
Affiliation(s)
- Xuan Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Haodong He
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
7
|
Ma F, Luo ZM, Wang JW, Ouyang G. Highly Efficient, Noble-Metal-Free, Fully Aqueous CO 2 Photoreduction Sensitized by a Robust Organic Dye. J Am Chem Soc 2024; 146:17773-17783. [PMID: 38888951 DOI: 10.1021/jacs.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of efficient, selective, and durable CO2 photoreduction systems presents a long-standing challenge in full aqueous solutions owing to the presence of scarce CO2 and the fierce competition against H2 evolution, which is even more challenging when noble metals are not utilized. Herein, we present the facile decorations of four phosphonic acid groups on a donor-acceptor-type organic dye to obtain a water-soluble photosensitizer (4P-DPAIPN), which succeeds the excellent photophysical and photoredox properties of its prototype, exhibiting long-lived delayed fluorescence (>10 μs) in aqueous solutions. Combining 4P-DPAIPN with a cationic cobalt porphyrin catalyst has accomplished record-high apparent quantum yields of 9.4-17.4% at 450 nm for CO2-to-CO photoconversion among the precedented systems (maximum 13%) in fully aqueous solutions. Remarkable selectivity of 82-93% and turnover number of 2700 for CO production can also be achieved with this noble-metal-free system, outperforming a benchmarking ruthenium photosensitizer and a commercial organic dye under parallel conditions. Such high performances of 4P-DPAIPN can be well maintained under real sunlight. More impressively, no significant decomposition of 4P-DPAIPN was detected during the long-term photocatalysis. Eventually, the photoinduced electron transfer pathways were proposed.
Collapse
Affiliation(s)
- Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
8
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
9
|
Huo H, He H, Huang C, Guan X, Wu F, Du Y, Xing H, Kan E, Li A. Solar-driven CO 2-to-ethanol conversion enabled by continuous CO 2 transport via a superhydrophobic Cu 2O nano fence. Chem Sci 2024; 15:1638-1647. [PMID: 38303942 PMCID: PMC10829006 DOI: 10.1039/d3sc05702j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 02/03/2024] Open
Abstract
The overall photocatalytic CO2 reduction reaction presents an eco-friendly approach for generating high-value products, specifically ethanol. However, ethanol production still faces efficiency issues (typically formation rates <605 μmol g-1 h-1). One significant challenge arises from the difficulty of continuously transporting CO2 to the catalyst surface, leading to inadequate gas reactant concentration at reactive sites. Here, we develop a mesoporous superhydrophobic Cu2O hollow structure (O-CHS) for efficient gas transport. O-CHS is designed to float on an aqueous solution and act as a nano fence, effectively impeding water infiltration into its inner space and enabling CO2 accumulation within. As CO2 is consumed at reactive sites, O-CHS serves as a gas transport channel and diffuser, continuously and promptly conveying CO2 from the gas phase to the reactive sites. This ensures a stable high CO2 concentration at reactive sites. Consequently, O-CHS achieves the highest recorded ethanol formation rate (996.18 μmol g-1 h-1) to the best of our knowledge. This strategy combines surface engineering with geometric modulation, providing a promising pathway for multi-carbon production.
Collapse
Affiliation(s)
- Hailing Huo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Xin Guan
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Fang Wu
- College of Information Science and Technology, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yongping Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Hongbin Xing
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
10
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
11
|
Li T, Guo H, Wang X, Wang H, Liu L, Cui W, Sun X, Liang Y. Loading CuO on the Surface of MgO with Low-coordination Basic O2-Sites for Effective Enhanced CO2Capture and Photothermal Synergistic Catalytic Reduction of CO2to Ethanol. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
He B, Cui Y, Lei Y, Li W, Sun J. Design and application of g-C 3N 4-based materials for fuels photosynthesis from CO 2 or H 2O based on reaction pathway insights. J Colloid Interface Sci 2023; 629:825-846. [PMID: 36202027 DOI: 10.1016/j.jcis.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic CO2 reduction reaction (CRR) and hydrogen evolution reaction (HER) based on graphitic carbon nitride (g-C3N4) that is regarded as the metal-free "holy grail" photocatalyst, provide promising strategies for producing next-generation fuels, contributing to achieving carbon neutrality, alleviating energy and environment crisis. However, the activity of CRR and HER over g-C3N4 leaves much to be desired. Therefore, numerous studies have sprung up to enhance photoactivity. A comprehensive understanding of the CRR and HER reaction pathways is crucial for designing g-C3N4-based materials, further promoting efficient fuel production. Different from previous reviews that focus on g-C3N4 modification from the viewpoint of material science. In this review, we divided the multistep processes of CRR and HER into five reaction pathways and summarized the latest advances for improving each pathway of fuels synthesis through CRR or HER. Meanwhile, the existing bottleneck issues of each step were also discussed. Finally, comprehensive conclusions, including the remaining challenges, outlooks, etc., for CRR and HER over g-C3N4 were put forward. We are sure that this review will conduce to the understanding of the structure-activity relationship between CRR, HER processes, and g-C3N4 structure, which can provide the reference for developing high-powered photocatalysts, not confined to g-C3N4.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuandong Cui
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu Lei
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wenjin Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
13
|
Liu Y, Chu X, Shi A, Yao C, Ni C, Li X. Construction of 2D Bismuth Silicate Heterojunctions from Natural Mineral toward Cost-Effective Photocatalytic Reduction of CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yahui Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Xini Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Anqi Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| |
Collapse
|
14
|
Yang C, Hou Y, Luo G, Yu J, Cao S. Alkyl group-decorated g-C 3N 4 for enhanced gas-phase CO 2 photoreduction. NANOSCALE 2022; 14:11972-11978. [PMID: 35929773 DOI: 10.1039/d2nr02551e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With excellent physical/chemical stability and feasible synthesis, g-C3N4 has attracted much attention in the field of photocatalysis. However, its weak photoactivity limits its practical applications. Herein, by easily planting hydrophobic alkyl groups onto g-C3N4, the hydrophilicity of g-C3N4 can be well regulated and its specific surface area be enlarged simultaneously. Such a modification ensures enhanced CO2 capture and increased active sites. In addition, the introduction of alkyl groups endows g-C3N4 with abundant charge density and efficient separation of photoinduced excitons. All these advantages synergistically contribute to the enhanced photocatalytic CO2 reduction performance over the optimized catalyst (DCN90), and the total CO2 conversion is 7.4-fold that of pristine g-C3N4 (CN).
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Yanting Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Guoqiang Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
15
|
Marx M, Frauendorf H, Spannenberg A, Neumann H, Beller M. Revisiting Reduction of CO 2 to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. JACS AU 2022; 2:731-744. [PMID: 35373201 PMCID: PMC8970009 DOI: 10.1021/jacsau.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Construction of higher C≥2 compounds from CO2 constitutes an attractive transformation inspired by nature's strategy to build carbohydrates. However, controlled C-C bond formation from carbon dioxide using environmentally benign reductants remains a major challenge. In this respect, reductive dimerization of CO2 to oxalate represents an important model reaction enabling investigations on the mechanism of this simplest CO2 coupling reaction. Herein, we present common pitfalls encountered in CO2 reduction, especially its reductive coupling, based on established protocols for the conversion of CO2 into oxalate. Moreover, we provide an example to systematically assess these reactions. Based on our work, we highlight the importance of utilizing suitable orthogonal analytical methods and raise awareness of oxidative reactions that can likewise result in the formation of oxalate without incorporation of CO2. These results allow for the determination of key parameters, which can be used for tailoring of prospective catalytic systems and will promote the advancement of the entire field.
Collapse
Affiliation(s)
- Maximilian Marx
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Holm Frauendorf
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
16
|
Guan C, Yue X, Fan J, Xiang Q. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
“Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63824-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
More GS, Srivastava R. Efficient Activation of CO 2 over Ce-MOF-derived CeO 2 for the Synthesis of Cyclic Urea, Urethane, and Carbamate. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganesh Sunil More
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
20
|
Esen C, Antonietti M, Kumru B. Upgrading poly(styrene‐co‐divinylbenzene) beads: Incorporation of organomodified
metal‐free
semiconductor graphitic carbon nitride through suspension photopolymerization to generate photoactive resins. J Appl Polym Sci 2021. [DOI: 10.1002/app.50879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cansu Esen
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
| | - Markus Antonietti
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
| | - Baris Kumru
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
| |
Collapse
|
21
|
Hu Z, Guo W. Fibrous Phase Red Phosphorene as a New Photocatalyst for Carbon Dioxide Reduction and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008004. [PMID: 33792191 DOI: 10.1002/smll.202008004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Indexed: 06/12/2023]
Abstract
2D photocatalysts are one of the hottest issues in energy and material science. In the field of photocatalysis, a 2D material with an appropriate bandgap of 1.3 to 2.0 eV is desirable. Herein, a new kind of fibrous phase red phosphorene with a bandgap between 1.43 to 1.54 eV is obtained. This is much better than black phosphorus because the bandgap of black P depends of its layer number. The black P needs to be as thin as 1-2 layers for suitable band diagram, which is difficult to control. The fibrous red phosphorene is first used for photocatalytic CO2 reduction, and its activity is superior to the majority of mainstream photocatalysts and reaches a record-high value among phosphorus. Besides, its activity in hydrogen evolution is higher than most of the phosphorus photocatalysts. The intralayer charge transfer is much easier than interlayer transfer. The mobility of electron and hole along the phosphorene plane is about 20 times higher than that perpendicular to different layers. The activity sites is at region between the two P[21] chains. These regions are easy to be exposed for fibrous phase phosphorene, making it to exhibit high activity.
Collapse
Affiliation(s)
- Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Weiqing Guo
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| |
Collapse
|
22
|
Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J. Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003521. [PMID: 33458902 DOI: 10.1002/adma.202003521] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Solving energy and environmental problems through solar-driven photocatalysis is an attractive and challenging topic. Hence, various types of photocatalysts have been developed successively to address the demands of photocatalysis. Graphene-based materials have elicited considerable attention since the discovery of graphene. As a derivative of graphene, nitrogen-doped graphene (NG) particularly stands out. Nitrogen atoms can break the undifferentiated structure of graphene and open the bandgap while endowing graphene with an uneven electron density distribution. Therefore, NG retains nearly all the advantages of original graphene and is equipped with several novel properties, ensuring infinite possibilities for NG-based photocatalysis. This review introduces the atomic and band structures of NG, summarizes in situ and ex situ synthesis methods, highlights the mechanism and advantages of NG in photocatalysis, and outlines its applications in different photocatalysis directions (primarily hydrogen production, CO2 reduction, pollutant degradation, and as photoactive ingredient). Lastly, the central challenges and possible improvements of NG-based photocatalysis in the future are presented. This study is expected to learn from the past and achieve progress toward the future for NG-based photocatalysis.
Collapse
Affiliation(s)
- Chuanbiao Bie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Huogen Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N. T., Hong Kong, 999077, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
23
|
Emelyanov MA, Stoletova NV, Lisov AA, Medvedev MG, Smol'yakov AF, Maleev VI, Larionov VA. An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine as a bifunctional metal-templated hydrogen bond donor catalyst for fixation of CO2 with epoxides under ambient conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00464f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine operates as an efficient bifunctional hydrogen bond donor catalyst in cycloaddition of epoxides with CO2 under ambient conditions and solvent- and co-catalyst-free conditions.
Collapse
Affiliation(s)
- Mikhail A. Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Nadezhda V. Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Alexey A. Lisov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
| | - Michael G. Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander F. Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Vladimir A. Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| |
Collapse
|
24
|
Guerrero I, Saha A, Xavier JAM, Viñas C, Romero I, Teixidor F. Noncovalently Linked Metallacarboranes on Functionalized Magnetic Nanoparticles as Highly Efficient, Robust, and Reusable Photocatalysts in Aqueous Medium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56372-56384. [PMID: 33284598 DOI: 10.1021/acsami.0c17847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3'-Co(1,2-C2B9H11)2]- (H[1]), termed MSNPs-NH2@H[1], are highly stable and do not produce any leakage of the photoredox catalyst H[1] in water. The magnetite MNPs were coated with SiO2 to provide colloidal stability and silanol groups to be tethered to amine-containing units. These were the MSNPs-NH2 on which was anchored, in water, the cobaltabis(dicarbollide) complex H[1] to obtain MSNPs-NH2@H[1]. Both MSNPs-NH2 and MSNPs-NH2@H[1] were evaluated to study the morphology, characterization, and colloidal stability of the MNPs produced. The heterogeneous MSNP-NH2@H[1] system was studied for the photooxidation of alcohols, such as 1-phenylethanol, 1-hexanol, 1,6-hexanediol, or cyclohexanol among others, using catalyst loads of 0.1 and 0.01 mol %. Surfactants were introduced to prevent the aggregation of MNPs, and cetyl trimethyl ammonium chloride was chosen as a surfactant. This provided adequate stability, without hampering quick magnetic separation. The results proved that the catalysis could be speeded up if aggregation was prevented. The recyclability of the catalytic system was demonstrated by performing 12 runs of the MSNPs-NH2@H[1] system, each one without loss of selectivity and yield. The cobaltabis(dicarbollide) catalyst supported on silica-coated magnetite nanoparticles has proven to be a robust, efficient, and easily reusable system for the photooxidation of alcohols in water, resulting in a green and sustainable heterogeneous catalytic system.
Collapse
Affiliation(s)
- Isabel Guerrero
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Arpita Saha
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Jewel Ann Maria Xavier
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| |
Collapse
|
25
|
Shit SC, Shown I, Paul R, Chen KH, Mondal J, Chen LC. Integrated nano-architectured photocatalysts for photochemical CO 2 reduction. NANOSCALE 2020; 12:23301-23332. [PMID: 33107552 DOI: 10.1039/d0nr05884j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal-organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | | | |
Collapse
|
26
|
Yu L, Peel GK, Cheema FH, Lawrence WS, Bukreyeva N, Jinks CW, Peel JE, Peterson JW, Paessler S, Hourani M, Ren Z. Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system. MATERIALS TODAY PHYSICS 2020; 15:100249. [PMID: 34173438 DOI: 10.1016/j.mtphys.2020.100279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via air-conditioning systems poses a significant threat for the continued escalation of the current coronavirus disease (COVID-19) pandemic. Considering that SARS-CoV-2 cannot tolerate temperatures above 70 °C, here we designed and fabricated efficient filters based on heated nickel (Ni) foam to catch and kill SARS-CoV-2. Virus test results revealed that 99.8% of the aerosolized SARS-CoV-2 was caught and killed by a single pass through a novel Ni-foam-based filter when heated up to 200 °C. In addition, the same filter was also used to catch and kill 99.9% of Bacillus anthracis, an airborne spore. This study paves the way for preventing transmission of SARS-CoV-2 and other highly infectious airborne agents in closed environments.
Collapse
Affiliation(s)
- L Yu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA
| | - G K Peel
- Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA
| | - F H Cheema
- Department of Biomedical & Clinical Sciences, University of Houston College of Medicine, Houston, TX 77204, USA
| | - W S Lawrence
- Aerobiology Division, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - N Bukreyeva
- Preclinical Studies Core, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - C W Jinks
- Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA
| | - J E Peel
- Aerobiology Division, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - J W Peterson
- Aerobiology Division, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - S Paessler
- Preclinical Studies Core, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - M Hourani
- Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA
| | - Z Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA
| |
Collapse
|
27
|
Kumru B, Antonietti M. Colloidal properties of the metal-free semiconductor graphitic carbon nitride. Adv Colloid Interface Sci 2020; 283:102229. [PMID: 32795670 DOI: 10.1016/j.cis.2020.102229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
The metal-free, polymeric semiconductor graphitic carbon nitride (g-CN) family is an emerging class of materials and has striking advantages compared to other semiconductors, i.e. ease of tunability, low cost and synthesis from abundant precursors in a chemical environment. Efforts have been done to improve the properties of g-CN, such as photocatalytic efficiency, designing novel composites, processability and scalability towards discovering novel applications as a remedy for the problems that we are facing today. Despite the fact that the main efforts to improve g-CN come from a catalysis perspective, many fundamental possibilities arise from the special colloidal properties of carbon nitride particles, from synthesis to applications. This review will display how typical colloid chemistry tools can be employed to make 'better g-CNs' and how up to now overseen properties can be levered by integrating a colloid and interface perspective into materials chemistry. Establishing a knowledge on the origins of colloidal behavior of g-CN will be the core of the review.
Collapse
Affiliation(s)
- Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
28
|
Patel J, Yuan X, Marinho SM, Leibl W, Remita H, Aukauloo A. Visible light-driven simultaneous water oxidation and quinone reduction by a nano-structured conjugated polymer without co-catalysts. Chem Sci 2020; 11:7324-7328. [PMID: 32953035 PMCID: PMC7480499 DOI: 10.1039/d0sc02122a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
In artificial photosynthesis, chemists are aiming to borrow principles from natural photosynthesis to develop photoelectrochemical cells (PEC) for water splitting. The water plastoquinone photo-oxidoreductase enzyme, also known as photosystem II, uses light to perform the four-electron, four-proton oxidation of water to dioxygen and stores reducing equivalents in reduced forms of quinones which are ultimately used in dark reactions for the synthesis of energy-rich molecules. We report a nano-structured semiconducting conjugated polymer based on poly(diphenylbutadiyne) (nano-PDPB) and its photocatalytic activities towards the water oxidation reaction under visible light irradiation when dispersed in water in the absence of any sacrificial agents or co-catalysts. Charge recovery at the nano-PDPB directly or delayed in time was exemplified by the reduction of quinone acting as a hydrogen reservoir. In the absence of quinones as electron acceptors H2O2 formation was detected, stemming from the partial reduction of O2.
Collapse
Affiliation(s)
- Jully Patel
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
| | - Xiaojiao Yuan
- Institut de Chimie Physique (ICP) , UMR 8000 CNRS , Université Paris Sud , Université Paris-Saclay , F-91405 Orsay Cedx , France .
| | - Stéphanie Mendes Marinho
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
| | - Winfried Leibl
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
| | - Hynd Remita
- Institut de Chimie Physique (ICP) , UMR 8000 CNRS , Université Paris Sud , Université Paris-Saclay , F-91405 Orsay Cedx , France .
| | - Ally Aukauloo
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
- Institut de Chimie Moléculaire et des Matériaux d'Orsay , UMR-CNRS 8182 , Université Paris-Sud , Paris-Saclay , F-91405 Orsay , France .
| |
Collapse
|