1
|
Li H, Liang J, Ren M, Wahia H, Chen L, Yagoub AEA, Zhou C. Modification of walnut shell lignin nanoparticles through deep eutectic solvent for application in active food packaging films. Int J Biol Macromol 2025; 309:143046. [PMID: 40216128 DOI: 10.1016/j.ijbiomac.2025.143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/13/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The depletion and polluting nature of fossil fuels, coupled with the threat to human health posed by microplastics generated from plastic packaging, have underscored the significance of renewable resources in addressing environmental degradation. Among these, biomass has emerged as a prominent contender. The complex molecular structure of lignocellulose and limitations of conventional pretreatments hinder its efficient utilization. To address this, a ternary deep eutectic solvent (DES) was developed to extract bioactive lignin nanoparticles (LNPs) from walnut shells. Employing a continuous processing platform, 56.84 % of the lignin was converted into LNPs via DES and anti-solvent precipitation. Ethylene glycol in the DES preserved lignin's side-chain functionality, yielding LNPs with a ζ-potential of -28.29 mV, a particle size of 203.48 nm, and superior antioxidant activity compared to LNPs prepared by traditional DES. Electrostatic and non-covalent interactions between LNPs and ε-polylysine (ε-PL) within a polyvinyl alcohol (PVA) matrix produced a composite film with a tensile strength of 33.32 MPa, 90 % UV-blocking efficiency, and 60 % microbial growth inhibition. When applied to fresh walnut packaging, the film's gradual release of LNPs suppressed mold proliferation via phenolic hydroxyl groups, reduced oxidative degradation of nutrients, and extended shelf life. This study introduces a scalable, circular approach to repurposing agricultural waste into biodegradable active packaging, aligning lignin valorization with sustainable food preservation strategies.
Collapse
Affiliation(s)
- Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Huang H, Zhang X, Ma L, Liao Y. Reductive Catalytic Fractionation of Lignocellulose Toward Propyl- or Propenyl-Substituted Monomers and Mechanistic Understanding. Angew Chem Int Ed Engl 2025:e202502545. [PMID: 40193070 DOI: 10.1002/anie.202502545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Reductive catalytic fractionation (RCF) is a promising technology that can selectively extract lignin in biomass and depolymerize it. Here, we prepared one low Ru loading catalyst (Ru0.8/C) for RCF of biomass to selectively produce different lignin oils (both monomers and oligomers) under different reaction atmospheres. The yield of phenolic monomers reached 46.0wt.% (rich in 4-propylguaiacol and 4-propylsyringol) in the RCF of birch wood under high H2 pressure and using methanol as the solvent. But, under N2 atmosphere the dominant monomers shifted to 4-(prop-1-enyl)guaiacol and 4-(prop-1-enyl)syringol (79.6% selectivity) with 35.8wt.% yield of total monomers using the same catalyst. The developed catalyst can also transform native lignin in other biomasses such as pine and corn stover. Mechanistic investigation using different model compounds and deuteration indicates that removal of the Cγ─OH in methanol-extracted lignin fragments occurred before obtaining the monomeric lignin fragment, and the Cα─OH and β─O─4 bonds were then cleaved simultaneously to form 4-(prop-1-enyl) substituted monomers. The results are distinct from the reported mechanism that the precursors of the propyl and prop-1-enyl substituted monomers are monolignols with removal of the Cγ─OH at the monomeric level. Thus, this work provided novel insights into the reaction pathway of (native) lignin depolymerization.
Collapse
Affiliation(s)
- Haiyun Huang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P.R. China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P.R. China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P.R. China
| | - Yuhe Liao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
| |
Collapse
|
3
|
Miao G, Wong JL, Chew JJ, Khaerudini DS, Sunarso J, Xu F. Deep eutectic solvent pretreatment of oil palm biomass: Promoted lignin pyrolysis and enzymatic digestibility of solid residues. Int J Biol Macromol 2025; 293:138847. [PMID: 39725101 DOI: 10.1016/j.ijbiomac.2024.138847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.56 % and 95.63 %, respectively, for EFB and 75.95 % and 88.60 %, for MSF. Uncondensed lignin enriched with 71.79-81.61 % of β-O-4 bonds was obtained from EFB and MSF using ChCl/OA/EG. 2D HSQC NMR and the density functional theory calculation confirmed that substituting the lignin Cα position by ethylene glycol changed the local potentials of the β-O-4 bonds, impeding the attack of protons (H+). The higher β-O-4 linkage content in ChCl/OA/EG-Ls led to the formation of several oxygenated alkyl methoxy phenols and alkyl methoxy phenols were promoted during the pyrolysis. Moreover, molecular dynamics simulations showed that the main factor affecting lignin extraction and dissolution in this study was the diffusion coefficient of lignin in DESs.
Collapse
Affiliation(s)
- Guohua Miao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jung Lin Wong
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Jiuan Jing Chew
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Deni Shidqi Khaerudini
- Research Center for Advanced Materials, National Research and Innovation Agency, Bld. 440 Kawasan Puspiptek Serpong, South Tangerang 15314, Banten, Indonesia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
4
|
Rajan K, Berton P, Rogers RD, Shamshina JL. Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers (Basel) 2024; 16:3438. [PMID: 39684183 DOI: 10.3390/polym16233438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
By reflecting on the history and environmental impact of conventional biorefining, such as kraft pulping, we aim to explore important questions about how natural polymers can be more sustainably sourced to develop bio-products and reduce reliance on plastics. Since the Industrial Revolution, chemical pulping processes have enabled the mass production of cellulosic products from woody biomass. Kraft pulping, which dominates within modern pulp and paper mills, has significantly contributed to environmental pollution and carbon emissions due to sulfurous byproducts and its high water and energy consumption. While chemical pulping technologies have advanced over time, with improvements aimed at enhancing sustainability and economic feasibility, conventional biorefineries still face challenges related to biomass conversion efficiency and environmental impact. For example, efforts to fully utilize wood resources, such as isolating lignin from black liquor, have made limited progress. This perspective provides a thoughtful examination of the growth of chemical pulping, particularly the kraft process, in the production of consumer goods and its environmental consequences. It also presents key insights into the bottlenecks in developing truly sustainable biomass conversion technologies and explores potential alternatives to traditional chemical pulping.
Collapse
Affiliation(s)
- Kalavathy Rajan
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, AL 35403, USA
| | - Julia L Shamshina
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Zhang Z, Guo G, Yang H, Csechala L, Wang Z, Cziegler C, Zijlstra DS, Lahive CW, Zhang X, Bornscheuer UT, Deuss PJ. One-Pot Catalytic Cascade for the Depolymerization of the Lignin β-O-4 Motif to Non-phenolic Dealkylated Aromatics. Angew Chem Int Ed Engl 2024; 63:e202410382. [PMID: 39083320 DOI: 10.1002/anie.202410382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Indexed: 11/03/2024]
Abstract
Aromatic monomers obtained by selective depolymerization of the lignin β-O-4 motif are typically phenolic and contain (oxygenated) alkyl substitutions. This work reveals the potential of a one-pot catalytic lignin β-O-4 depolymerization cascade strategy that yields a uniform set of methoxylated aromatics without alkyl side-chains. This cascade consists of the selective acceptorless dehydrogenation of the γ-hydroxy group, a subsequent retro-aldol reaction that cleaves the Cα-Cβ bond, followed by in situ acceptorless decarbonylation of the formed aldehydes. This three-step cascade reaction, catalyzed by an iridium(I)-BINAP complex, resulted in 75 % selectivity for 1,2-dimethoxybenzene from G-type lignin dimers, alongside syngas (CO : H2≈1.4 : 1). Applying this method to a synthetic G-type polymer, 11 wt % 1,2-dimethoxybenzene was obtained. This versatile compound can be easily transformed into 3,4-dimethoxyphenol, a valuable precursor for pharmaceutical synthesis, through an enzymatic catalytic approach. Moreover, the hydrodeoxygenation potential of 1,2-dimethoxybenzene offers a pathway to produce valuable cyclohexane or benzene derivatives, presenting enticing opportunities for sustainable chemical transformations without the necessity for phenolic mixture upgrading via dealkylation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ge Guo
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Huaizhou Yang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lina Csechala
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010, Graz, Austria
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Douwe S Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ciaran W Lahive
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Xiangping Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
7
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Jadhav P, Bhuyar P, Misnon II, Rahim MHA, Roslan R. Advancement of lignin into bioactive compounds through selective organic synthesis methods. Int J Biol Macromol 2024; 276:134061. [PMID: 39043289 DOI: 10.1016/j.ijbiomac.2024.134061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement. This review provides an in-depth examination of the progress made in understanding the complex structure of lignin and developing innovative approaches to exploit its potential. Specifically, the types of lignins covered include softwood Kraft lignin, hardwood organosolv lignin, and soda lignin. This work is divided into three parts: first, the transformation of lignin into bioactive molecules with chemically active centres and functionalised hydroxyl groups through depolymerisation; second, kinetic modelling techniques essential for understanding the chemical kinetics of lignin and enabling significant scaling up in the conversion of organic molecules; third, efficient catalytic pathways for synthesising molecules with anticancer and antibacterial properties. In conclusion, this comprehensive review spurs further investigations into lignin-derived bioactive compounds, their applications, and the advancement of sustainable processes.
Collapse
Affiliation(s)
- Pramod Jadhav
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia
| | - Prakash Bhuyar
- International College (MJU-IC), Maejo University, Chiang Mai 50290, Thailand
| | - Izan Izwan Misnon
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia
| | - Mohd Hasbi Ab Rahim
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia
| | - Rasidi Roslan
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia.
| |
Collapse
|
9
|
Okabe Y, Ohgitani E, Mazda O, Watanabe T. Anti-SARS-CoV-2 activity of microwave solvolysis lignin from woody biomass. Int J Biol Macromol 2024; 275:133556. [PMID: 38955295 DOI: 10.1016/j.ijbiomac.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The global pandemic caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had profoundly detrimental effects on our society. To combat this highly pathogenic virus, we turned our attention to an abundant renewable natural aromatic polymer found in wood. Through a chemical modification of Eucalyptus and Japanese cedar wood via acidic microwave solvolysis in equivolume mixture of 2 % (w/w) aqueous H2SO4, ethylene glycol, and toluene at 190 °C. Subsequently, we separated the resulting solvolysis products through extractions with toluene, ethyl acetate, and ethanol. Among these products, the ethyl acetate extract from Eucalyptus wood (eEAE) demonstrated the highest inhibition effects against the novel SARS-CoV-2. We further divided eEAE into four fractions, and a hexane extract from the ethanol-soluble portion, termed eEAE3, exhibited the most substantial inhibitory rate at 93.0 % when tested at a concentration of 0.5 mg/mL. Analyzing eEAE3 using pyrolysis gas chromatography-mass spectrometry revealed that its primary components are derived from lignin. Additionally, 1H-13C edited-heteronuclear single quantum coherence nuclear magnetic resonance analysis showed that the solvolysis process cleaved major lignin interunit linkages. Considering the abundance and renewability of lignin, the lignin-derived anti-SARS-CoV-2 agent presents a promising potential for application in suppressing infections within our everyday environment.
Collapse
Affiliation(s)
- Yumi Okabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
10
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Afanasenko AM, Wu X, De Santi A, Elgaher WAM, Kany AM, Shafiei R, Schulze MS, Schulz TF, Haupenthal J, Hirsch AKH, Barta K. Clean Synthetic Strategies to Biologically Active Molecules from Lignin: A Green Path to Drug Discovery. Angew Chem Int Ed Engl 2024; 63:e202308131. [PMID: 37840425 DOI: 10.1002/anie.202308131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.
Collapse
Affiliation(s)
- Anastasiia M Afanasenko
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Alessandra De Santi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | | | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
- Institute for Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
| |
Collapse
|
12
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Dong L, Wang Y, Dong Y, Zhang Y, Pan M, Liu X, Gu X, Antonietti M, Chen Z. Sustainable production of dopamine hydrochloride from softwood lignin. Nat Commun 2023; 14:4996. [PMID: 37591869 PMCID: PMC10435513 DOI: 10.1038/s41467-023-40702-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Dopamine is not only a widely used commodity pharmaceutical for treating neurological diseases but also a highly attractive base for advanced carbon materials. Lignin, the waste from the lignocellulosic biomass industry, is the richest source of renewable aromatics on earth. Efficient production of dopamine direct from lignin is a highly desirable target but extremely challenging. Here, we report an innovative strategy for the sustainable production of dopamine hydrochloride from softwood lignin with a mass yield of 6.4 wt.%. Significantly, the solid dopamine hydrochloride is obtained by a simple filtration process in purity of 98.0%, which avoids the tedious separation and purification steps. The approach begins with the acid-catalyzed depolymerization, followed by deprotection, hydrogen-borrowing amination, and hydrolysis of methoxy group, transforming lignin into dopamine hydrochloride. The technical economic analysis predicts that this process is an economically competitive production process. This study fulfills the unexplored potential of dopamine hydrochloride synthesis from lignin.
Collapse
Affiliation(s)
- Lin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| | - Yuguo Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Yin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Mingzhu Pan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China.
- Leibniz-Institute for Catalysis, University of Rostock, Albert Einstein Street, 29a, Rostock, 18059, Germany.
| |
Collapse
|
14
|
Terholsen H, Meyer JRH, Zhang Z, Deuss PJ, Bornscheuer UT. Chemoenzymatic Cascade Reaction for the Valorization of the Lignin Depolymerization Product G-C2-Dioxolane Phenol. CHEMSUSCHEM 2023; 16:e202300168. [PMID: 36826410 DOI: 10.1002/cssc.202300168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
Combining solid acid catalysts with enzyme reactions in aqueous environments is challenging because either very acidic conditions inactivate the enzymes, or the solid acid catalyst is neutralized. In this study, Amberlyst-15 encapsulated in polydimethylsiloxane (Amb-15@PDMS) is used to deprotect the lignin depolymerization product G-C2 dioxolane phenol in a buffered system at pH 6.0. This reaction is directly coupled with the biocatalytic reduction of the released homovanillin to homovanillyl alcohol by recombinant horse liver alcohol dehydrogenase, which is subsequently acylated by the promiscuous acyltransferase/hydrolase PestE_I208A_L209F_N288A in a one-pot system. The deprotection catalyzed with Amb-15@PDMS attains up to 97 % conversion. Overall, this cascade enables conversions of up to 57 %.
Collapse
Affiliation(s)
- Henrik Terholsen
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Jule R H Meyer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Zhenlei Zhang
- Faculty of Science and Engineering, Chemical Technology, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Peter J Deuss
- Faculty of Science and Engineering, Chemical Technology, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
15
|
Li F, Lv W, Huang D, Zeng C, Wang R. Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents. Molecules 2023; 28:molecules28104088. [PMID: 37241829 DOI: 10.3390/molecules28104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The molecular weight of lignin extracted from lignocellulosic biomass is an important factor in determining its valorization in industrial processes. Herein, this work aims to explore the extraction of high molecular weight and bioactive lignin from water chestnut shells under mild conditions. Five kinds of deep eutectic solvents were prepared and applied to isolate lignin from water chestnut shells. The extracted lignin was further characterized with element analysis, gel permeation chromatography, and Ultraviolet-visible and Fourier-transform infrared spectroscopy. The distribution of pyrolysis products was identified and quantified with thermogravimetric analysis-Fourier-transform infrared spectroscopy and pyrolysis-gas chromatograph-mass spectrometry. The results showed that choline chloride/ethylene glycol/p-toluenesulfonic acid (1:1.8:0.2 molar ratio) exhibited the highest fractionation efficiency for lignin (84.17% yield) at 100 °C for 2 h. Simultaneously, the lignin showed high purity (90.4%), high relative molecular weight (37,077 g/mol), and excellent uniformity. Furthermore, the aromatic ring structure of lignin remained intact, consisting mainly of p-hydroxyphenyl, syringl, and guaiacyl subunits. The lignin generated a large number of volatile organic compounds during the depolymerization process, mainly composed of ketones, phenols, syringols, guaiacols, esters, and aromatic compounds. Finally, the antioxidant activity of the lignin sample was evaluated with the 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay; the lignin from water chestnut shells showed excellent antioxidant activity. These findings confirm that lignin from water chestnut shells has a broad application prospect in valuable chemicals, biofuels and bio-functional materials.
Collapse
Affiliation(s)
- Feng Li
- Ethnic Medicinal Plant Resources Development Engineering Research Center of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Wenzhi Lv
- Ethnic Medicinal Plant Resources Development Engineering Research Center of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Dena Huang
- Ethnic Medicinal Plant Resources Development Engineering Research Center of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Chenglu Zeng
- Ethnic Medicinal Plant Resources Development Engineering Research Center of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Runping Wang
- Ethnic Medicinal Plant Resources Development Engineering Research Center of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| |
Collapse
|
16
|
Sirviö JA, Mikola M, Ahola J, Heiskanen JP, Filonenko S, Ämmälä A. Highly effective fractionation chemistry to overcome the recalcitrance of softwood lignocellulose. Carbohydr Polym 2023; 312:120815. [PMID: 37059543 DOI: 10.1016/j.carbpol.2023.120815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
The efficient fractionation and thus production of individual biomass components are pivotal processes in the biorefinery concept. However, the recalcitrant nature of lignocellulose biomass, especially in the case of softwood, is one of the main obstacles to the wider application of biomass-based chemicals and materials. In this study, the use of aqueous acidic systems in the presence of thiourea was studied for the fractionation of softwood in mild conditions. Despite relatively low temperature (100 °C) and treatment times (30-90 min), notable high lignin removal efficiency (approximately 90 %) was obtained. Chemical characterization and the isolation of minor fraction of cationic, water-soluble lignin indicated that the fractionation proceed via nucleophilic addition of thiourea to lignin, resulting in dissolution of lignin in acidic water in relatively mild conditions. Besides high fractionation efficiency, both fiber and lignin fractions were obtained with bright color, significantly elevating their usability in material applications.
Collapse
Affiliation(s)
- Juho Antti Sirviö
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland.
| | - Marja Mikola
- Chemical Process Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Juha Ahola
- Chemical Process Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Juha P Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | | | - Ari Ämmälä
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| |
Collapse
|
17
|
Lignocellulosic Biorefinery Technologies: A Perception into Recent Advances in Biomass Fractionation, Biorefineries, Economic Hurdles and Market Outlook. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Lignocellulosic biomasses (LCB) are sustainable and abundantly available feedstocks for the production of biofuel and biochemicals via suitable bioconversion processing. The main aim of this review is to focus on strategies needed for the progression of viable lignocellulosic biomass-based biorefineries (integrated approaches) to generate biofuels and biochemicals. Processing biomass in a sustainable manner is a major challenge that demands the accomplishment of basic requirements relating to cost effectiveness and environmental sustainability. The challenges associated with biomass availability and the bioconversion process have been explained in detail in this review. Limitations associated with biomass structural composition can obstruct the feasibility of biofuel production, especially in mono-process approaches. In such cases, biorefinery approaches and integrated systems certainly lead to improved biofuel conversion. This review paper provides a summary of mono and integrated approaches, their limitations and advantages in LCB bioconversion to biofuel and biochemicals.
Collapse
|
18
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
19
|
Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. Int J Biol Macromol 2022; 209:1882-1892. [PMID: 35489620 DOI: 10.1016/j.ijbiomac.2022.04.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/16/2023]
Abstract
Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.
Collapse
|
20
|
Wu X, Liao Y, Bomon J, Tian G, Bai ST, Van Aelst K, Zhang Q, Vermandel W, Wambacq B, Maes BUW, Yu J, Sels BF. Lignin-First Monomers to Catechol: Rational Cleavage of C-O and C-C Bonds over Zeolites. CHEMSUSCHEM 2022; 15:e202102248. [PMID: 34927813 DOI: 10.1002/cssc.202102248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A catalytic route is developed to synthesize bio-renewable catechol from softwood-derived lignin-first monomers. This process concept consists of two steps: 1) O-demethylation of 4-n-propylguaiacol (4-PG) over acidic beta zeolites in hot pressurized liquid water delivering 4-n-propylcatechol (4-PC); 2) gas-phase C-dealkylation of 4-PC providing catechol and propylene over acidic ZSM-5 zeolites in the presence of water. With large pore sized beta-19 zeolite as catalyst, 4-PC is formed with more than 93 % selectivity at nearly full conversion of 4-PG. The acid-catalyzed C-dealkylation over ZSM-5 zeolite with medium pore size gives a catechol yield of 75 %. Overall, around 70 % catechol yield is obtained from pure 4-PG, or 56 % when starting from crude 4-PG monomers obtained from softwood by lignin-first RCF biorefinery. The selective cleavage of functional groups from biobased platform molecules through a green and sustainable process highlights the potential to shift feedstock from fossil oil to biomass, providing drop ins for the chemicals industry.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Yuhe Liao
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
| | - Jeroen Bomon
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Guilong Tian
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Korneel Van Aelst
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Walter Vermandel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ben Wambacq
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
21
|
Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip B. V. Scholten
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| | - Monique B. Figueirêdo
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| |
Collapse
|
22
|
Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon BH, Kim TH. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. BIORESOURCE TECHNOLOGY 2022; 346:126591. [PMID: 34929325 DOI: 10.1016/j.biortech.2021.126591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Effective pretreatment of lignocellulosic biomass (LCB) is one of the most important steps in biorefinery, ensuring the quality and commercial viability of the overall bioprocess. Lignin recalcitrance in LCB is a major bottleneck in biological conversion as the polymerization of lignin with hemicellulose hinders enzyme accessibility and further bioconversion to fuels and chemicals. Therefore, there is a need to delignify LCB to ease further bioprocessing. The efficiency of delignification, quality and quantity of the desired products, and generation of inhibitors depend upon the type of pretreatment employed. This review summarizes different single and integrated physicochemical pretreatments for delignification. Additionally, conditions required for effective delignification and the advantages and drawbacks of each method were evaluated. Advances in overcoming the recalcitrance of residual lignin to saccharification and the methods to recover lignin after delignification are also discussed. Efficient lignin recovery and valorization strategies provide an avenue for the sustainable lignocellulose biorefinery.
Collapse
Affiliation(s)
- Sumitha Banu Jamaldheen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Youngin 16890, Gyeonggi-do, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
23
|
Chen J, Tan X, Miao C, Zhang Y, Yuan Z, Zhuang X. A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system. BIORESOURCE TECHNOLOGY 2021; 342:125963. [PMID: 34852441 DOI: 10.1016/j.biortech.2021.125963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A novel ternary solvent system for organosolv fractionation of lignocellulosic biomass, named APW process, which is composed of acetone, phenoxyethanol and water with the advantages of monophasic deconstruction and biphasic separation of components was developed. Through fractionation of amorpha as a case study, a monophasic APW solution (acetone/phenoxyethanol/water = 5:11:4, volume ratio) with the best lignin affinity was constructed based on Hansen solubility parameters. According to Taguchi experimental design, the optimal conditions were 130 °C, 70 min, 0.15 M sulfuric acid and 20 LSR. Under optimal conditions, removal of lignin and hemicellulose reached 95.60% and 98.39%, respectively. While 80.48% of cellulose was retained in residue and its digestibility was 80.36%. Then, 83.74% of hemicellulose was recovered from aqueous as sugars, and 35.64% of lignin was recovered by precipitation. Moreover, APW process also have effective fractionation of sugarcane bagasse, corn cob and pine, cellulose and hemicellulose recovery were both over 80%.
Collapse
Affiliation(s)
- Jiazhao Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuesong Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Changlin Miao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Collaborative Innovation Centre of Biomass Energy, Zhengzhou 450002, PR China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
24
|
Liu Y, Deak N, Wang Z, Yu H, Hameleers L, Jurak E, Deuss PJ, Barta K. Tunable and functional deep eutectic solvents for lignocellulose valorization. Nat Commun 2021; 12:5424. [PMID: 34521828 PMCID: PMC8440657 DOI: 10.1038/s41467-021-25117-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired 'stabilization' function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high β-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the β-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.
Collapse
Affiliation(s)
- Yongzhuang Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Noemi Deak
- Karl-Franzens University of Graz, Institute of Chemistry, Graz, Austria
| | - Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Haipeng Yu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Lisanne Hameleers
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Edita Jurak
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Karl-Franzens University of Graz, Institute of Chemistry, Graz, Austria.
| |
Collapse
|
25
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
26
|
Zijlstra DS, de Korte J, de Vries EPC, Hameleers L, Wilbers E, Jurak E, Deuss PJ. Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Front Chem 2021; 9:655983. [PMID: 34041222 PMCID: PMC8141753 DOI: 10.3389/fchem.2021.655983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93-96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M H2SO4 at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the β-aryl ether (β-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high β-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high β-O-4 butanosolv lignin in excellent yields.
Collapse
Affiliation(s)
- Douwe Sjirk Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Joren de Korte
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Ernst P. C. de Vries
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Lisanne Hameleers
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Erwin Wilbers
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Edita Jurak
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Peter Joseph Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
28
|
Huang C, Zhan Y, Cheng J, Wang J, Meng X, Zhou X, Fang G, Ragauskas AJ. Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment. BIORESOURCE TECHNOLOGY 2021; 326:124696. [PMID: 33508646 DOI: 10.1016/j.biortech.2021.124696] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 05/12/2023]
Abstract
Herein, we established a novel deep eutectic solvent (DES) using lignin-derived guaiacol as hydrogen bond donor (HBD). The sole ChCl/guaiacol system was found to be inefficient for the fractionation of wheat straw (WS), while the incorporation of trace AlCl3 significantly facilitated the degradation of hemicellulose and lignin, resulting in a complete enzymatic digestibility of the pretreated WS. Further, this study revealed that the DES-degraded lignin was readily precipitated during the washing process, and thus hindered the enzymatic hydrolysis of poplar and bamboo (with hydrolysis yield of 42.03% and 71.67%, respectively). Alkali washing offers a possible approach to remove the precipitated lignin, after which a near 100% hydrolysis yield was also obtained for poplar and bamboo.
Collapse
Affiliation(s)
- Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Xuelian Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
29
|
De Santi A, Monti S, Barcaro G, Zhang Z, Barta K, Deuss PJ. New Mechanistic Insights into the Lignin β-O-4 Linkage Acidolysis with Ethylene Glycol Stabilization Aided by Multilevel Computational Chemistry. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:2388-2399. [PMID: 33585085 PMCID: PMC7874265 DOI: 10.1021/acssuschemeng.0c08901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Indexed: 06/01/2023]
Abstract
Acidolysis in conjunction with stabilization of reactive intermediates has emerged as one of the most powerful methods of lignin depolymerization that leads to high aromatic monomer yields. In particular, stabilization of reactive aldehydes using ethylene glycol results in the selective formation of the corresponding cyclic acetals (1,3-dioxolane derivatives) from model compounds, lignin, and even from softwood lignocellulose. Given the high practical utility of this method for future biorefineries, a deeper understanding of the method is desired. Here, we aim to elucidate key mechanistic questions utilizing a combination of experimental and multilevel computational approaches. The multiscale computational protocol used, based on ReaxFF molecular dynamics, represents a realistic scenario, where a typical experimental setup can be reproduced confidently given the explicit molecules of the solute, catalyst, and reagent. The nudged elastic band (NEB) approach allowed us to characterize the key intermolecular interactions involved in the reaction paths leading to crucial intermediates and products. The high level of detail obtained clearly revealed for the first time the unique role of sulfuric acid as a proton donor and acceptor in lignin β-O-4 acidolysis as well as the reaction pathways for ethylene glycol stabilization, and the difference in reactivity between compounds with different methoxy substituents.
Collapse
Affiliation(s)
- Alessandra De Santi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Susanna Monti
- CNR-ICCOM−
Institute of Chemistry of Organometallic Compounds, via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Barcaro
- CNR-IPCF−Institute
for Chemical and Physical Processes, via Moruzzi 1, 56124 Pisa, Italy
| | - Zhenlei Zhang
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Peter J. Deuss
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
30
|
Van Aelst K, Van Sinay E, Vangeel T, Cooreman E, Van den Bossche G, Renders T, Van Aelst J, Van den Bosch S, Sels BF. Reductive catalytic fractionation of pine wood: elucidating and quantifying the molecular structures in the lignin oil. Chem Sci 2020; 11:11498-11508. [PMID: 34094394 PMCID: PMC8162782 DOI: 10.1039/d0sc04182c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
In-depth structural analysis of biorefined lignin is imperative to understand its physicochemical properties, essential for its efficient valorization to renewable materials and chemicals. Up to now, research on Reductive Catalytic Fractionation (RCF) of lignocellulose biomass, an emerging biorefinery technology, has strongly focused on the formation, separation and quantitative analysis of the abundant lignin-derived phenolic monomers. However, detailed structural information on the linkages in RCF lignin oligomers, constituting up to 50 wt% of RCF lignin, and their quantification, is currently lacking. This study discloses new detailed insights into the pine wood RCF lignin oil's molecular structure through the combination of fractionation and systematic analysis, resulting in the first assignment of the major RCF-derived structural units in the 1H-13C HSQC NMR spectrum of the RCF oligomers. Specifically, β-5 γ-OH, β-5 ethyl, β-1 γ-OH, β-1 ethyl, β-β 2x γ-OH, β-β THF, and 5-5 inter-unit linkages were assigned unambiguously, resulting in the quantification of over 80% of the lignin inter-unit linkages and end-units. Detailed inspection of the native lignin inter-unit linkages and their conversion reveals the occurring hydrogenolysis chemistry and the unambiguous proof of absence of lignin fragment condensation during proper RCF processing. Overall, the study offers an advanced analytical toolbox for future RCF lignin conversion and lignin structural analysis research, and valuable insights for lignin oil valorization purposes.
Collapse
Affiliation(s)
- K Van Aelst
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - E Van Sinay
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - T Vangeel
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - E Cooreman
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - G Van den Bossche
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - T Renders
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - J Van Aelst
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - S Van den Bosch
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - B F Sels
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
31
|
Karlsson M, Giummarella N, Lindén PA, Lawoko M. Toward a Consolidated Lignin Biorefinery: Preserving the Lignin Structure through Additive-Free Protection Strategies. CHEMSUSCHEM 2020; 13:4666-4677. [PMID: 32530110 PMCID: PMC7540675 DOI: 10.1002/cssc.202000974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Indexed: 05/22/2023]
Abstract
As part of the continuing efforts in lignin-first biorefinery concepts, this study concerns a consolidated green processing approach to obtain high yields of hemicelluloses and lignin with a close to native molecular structure, leaving a fiber fraction enriched in crystalline cellulose. This is done by subcritical water extraction of hemicelluloses followed by organosolv lignin extraction. This initial report focuses on a detailed characterization of the lignin component, with the aim of unravelling processing strategies for the preservation of the native linkages while still obtaining good yields and high purity. To this effect, a static cycle process is developed as a physical protection strategy for lignin, and advanced NMR analysis is applied to study structural changes in lignin. Chemical protection mechanisms in the cyclic method are also reported and contrasted with the mechanisms in a reference batch extraction process where the role of homolytic cleavage in subsequent repolymerization reactions is elucidated.
Collapse
Affiliation(s)
- Maria Karlsson
- Wallenberg Wood Science Center, Department of Fiber and Polymer, TechnologySchool of ChemistryRoyal Institute of Technology, KTHTeknikringen 56–58100 44StockholmSweden
| | - Nicola Giummarella
- Wallenberg Wood Science Center, Department of Fiber and Polymer, TechnologySchool of ChemistryRoyal Institute of Technology, KTHTeknikringen 56–58100 44StockholmSweden
- Division of Wood Chemistry and Pulp technology, Department of Fiber and Polymer TechnologySchool of ChemistryRoyal Institute of Technology, KTHTeknikringen 56–58100 44StockholmSweden
| | - Pär A. Lindén
- Wallenberg Wood Science Center, Department of Fiber and Polymer, TechnologySchool of ChemistryRoyal Institute of Technology, KTHTeknikringen 56–58100 44StockholmSweden
| | - Martin Lawoko
- Wallenberg Wood Science Center, Department of Fiber and Polymer, TechnologySchool of ChemistryRoyal Institute of Technology, KTHTeknikringen 56–58100 44StockholmSweden
- Division of Wood Chemistry and Pulp technology, Department of Fiber and Polymer TechnologySchool of ChemistryRoyal Institute of Technology, KTHTeknikringen 56–58100 44StockholmSweden
| |
Collapse
|
32
|
Korányi TI, Fridrich B, Pineda A, Barta K. Development of 'Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass. Molecules 2020; 25:E2815. [PMID: 32570887 PMCID: PMC7356833 DOI: 10.3390/molecules25122815] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/20/2023] Open
Abstract
Currently, valorization of lignocellulosic biomass almost exclusively focuses on the production of pulp, paper, and bioethanol from its holocellulose constituent, while the remaining lignin part that comprises the highest carbon content, is burned and treated as waste. Lignin has a complex structure built up from propylphenolic subunits; therefore, its valorization to value-added products (aromatics, phenolics, biogasoline, etc.) is highly desirable. However, during the pulping processes, the original structure of native lignin changes to technical lignin. Due to this extensive structural modification, involving the cleavage of the β-O-4 moieties and the formation of recalcitrant C-C bonds, its catalytic depolymerization requires harsh reaction conditions. In order to apply mild conditions and to gain fewer and uniform products, a new strategy has emerged in the past few years, named 'lignin-first' or 'reductive catalytic fractionation' (RCF). This signifies lignin disassembly prior to carbohydrate valorization. The aim of the present work is to follow historically, year-by-year, the development of 'lignin-first' approach. A compact summary of reached achievements, future perspectives and remaining challenges is also given at the end of the review.
Collapse
Affiliation(s)
- Tamás I. Korányi
- Surface Chemistry and Catalysis Department, Centre for Energy Research, Konkoly Thege M. u. 29-33, 1121 Budapest, Hungary
| | - Bálint Fridrich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (B.F.); (K.B.)
| | - Antonio Pineda
- Department of Organic Chemistry, University of Cordoba, Ed. Marie Curie (C 3), Campus of Rabanales, Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain;
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (B.F.); (K.B.)
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
33
|
Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 2020; 4:311-330. [PMID: 37127959 DOI: 10.1038/s41570-020-0187-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/26/2022]
Abstract
A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals.
Collapse
|