1
|
Lu X, Yan K, Yu Z, Wang J, Liu R, Zhang R, Qiao Y, Xiong J. Transition metal phosphides: synthesis nanoarchitectonics, catalytic properties, and biomass conversion applications. CHEMSUSCHEM 2024; 17:e202301687. [PMID: 38221143 DOI: 10.1002/cssc.202301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Developing inexpensive and efficient catalysts for biomass hydrogenation or hydrodeoxygenation (HDO) is essential for efficient energy conversion. Transition metal phosphides (TMPs), with the merits of abundant active sites, unique physicochemical properties, tunable component structures, and excellent catalytic activities, are recognized as promising biomass hydrogenation or HDO catalytic materials. Nevertheless, the biomass hydrogenation or HDO catalytic applications of TMPs are still limited by various complexities and inherent performance bottlenecks, and thus their future development and utilization remain to be systematically sorted out and further explored. This review summarizes the current popular strategies for the preparation of TMPs. Subsequently, based on the structural and electronic properties of TMPs, the catalytic activity origins of TMPs in biomass hydrogenation or HDO is elucidated. Additionally, the application of TMPs in efficient biomass hydrogenation or HDO catalysis, as well as highly targeted multiscale strategies to enhance the catalytic performance of TMPs, are comprehensively described. Finally, large-scale amplification synthesis, rational construction of TMP-based catalysts and in-depth study of the catalytic mechanism are also mentioned as challenges and future directions in this research field. Expectedly, this review can provide professional and targeted guidance for the rational design and practical application of TMPs biomass hydrogenation or HDO catalysts.
Collapse
Affiliation(s)
- Xuebin Lu
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Kai Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Runyu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| |
Collapse
|
2
|
Constructing the heterostructure of sulfide and layered double hydroxide as bifunctional electrocatalyst for overall water splitting. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Bahuguna G, Cohen A, Harpak N, Filanovsky B, Patolsky F. Single-Step Solid-State Scalable Transformation of Ni-Based Substrates to High-Oxidation State Nickel Sulfide Nanoplate Arrays as Exceptional Bifunctional Electrocatalyst for Overall Water Splitting. SMALL METHODS 2022; 6:e2200181. [PMID: 35491235 DOI: 10.1002/smtd.202200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen, undoubtedly the next-generation fuel for supplying the world's energy demands, needs economically scalable bifunctional electrocatalysts for its sustainable production. Non-noble transition metal-based electrocatalysts are considered an economic solution for water splitting applications. A single-step solid-state approach for the economically scalable transformation of Ni-based substrates into single-crystalline nickel sulfide nanoplate arrays is developed. X-ray diffraction and transmission electron microscopy measurements reveal the influence of the transformation temperature on the crystal growth direction, which in turn can manipulate the chemical state at the catalyst surface. Ni-based sulfide formed at 450 °C exhibits an enhanced concentration of electrocatalytically-active Ni3+ at their surface and a reduced electron density around sulfur atoms, optimal for efficient H2 production. The Ni-based sulfide electrocatalysts display exceptional electrocatalytic performance for both oxygen and hydrogen evolution, with overpotentials of 170 and 90 mV respectively. Remarkably, the two-electrode cell for overall electrolysis of alkaline water demonstrates an ultra-low cell potential of 1.46 V at 10 mA cm-2 and 1.69 V at 100 mA cm-2 . In addition to the exceptionally low water-splitting cell voltage, this self-standing electrocatalyst is of binderfree nature, with the electrode preparation being a low-cost and single-step process, easily scalable to industrial scales.
Collapse
Affiliation(s)
- Gaurav Bahuguna
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Adam Cohen
- Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nimrod Harpak
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Boris Filanovsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Fernando Patolsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
4
|
Li J, Gao C, Wang H, Li B, Zhao S, Kim YD, Liu Z, Du X, Peng Z. Surface Modulation of 3D Porous CoNiP Nanoarrays In Situ Grown on Nickel Foams for Robust Overall Water Splitting. Int J Mol Sci 2022; 23:ijms23105290. [PMID: 35628102 PMCID: PMC9141634 DOI: 10.3390/ijms23105290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The careful design of nanostructures and multi-compositions of non-noble metal-based electrocatalysts for highly efficient electrocatalytic hydrogen and oxygen evolution reaction (HER and OER) is of great significance to realize sustainable hydrogen release. Herein, bifunctional electrocatalysts of the three-dimensional (3D) cobalt-nickel phosphide nanoarray in situ grown on nickel foams (CoNiP NA/NF) were synthesized through a facile hydrothermal method followed by phosphorization. Due to the unique self-template nanoarray structure and tunable multicomponent system, the CoNiP NA/NF samples present exceptional activity and durability for HER and OER. The optimized sample of CoNiP NA/NF-2 afforded a current density of 10 mA cm−2 at a low overpotential of 162 mV for HER and 499 mV for OER, corresponding with low Tafel slopes of 114.3 and 79.5 mV dec−1, respectively. Density functional theory (DFT) calculations demonstrate that modulation active sites with appropriate electronic properties facilitate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H* and *OOH intermediates, resulting in an optimized energy barrier for HER and OER. The 3D nanoarray structure, with a large specific surface area and abundant ion channels, can enrich the electroactive sites and enhance mass transmission. This work provides novel strategies and insights for the design of robust non-precious metal catalysts.
Collapse
Affiliation(s)
- Jianpeng Li
- College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (H.W.); (B.L.); (Z.L.); (Z.P.)
| | - Caiyan Gao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Haiyang Wang
- College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (H.W.); (B.L.); (Z.L.); (Z.P.)
| | - Baojun Li
- College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (H.W.); (B.L.); (Z.L.); (Z.P.)
| | - Shufang Zhao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea; taylorbjt096-@naver.com (S.Z.); (Y.D.K.)
| | - Young Dok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea; taylorbjt096-@naver.com (S.Z.); (Y.D.K.)
| | - Zhongyi Liu
- College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (H.W.); (B.L.); (Z.L.); (Z.P.)
| | - Xin Du
- College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (H.W.); (B.L.); (Z.L.); (Z.P.)
- Correspondence:
| | - Zhikun Peng
- College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China; (J.L.); (H.W.); (B.L.); (Z.L.); (Z.P.)
| |
Collapse
|
5
|
Li X, Xing J, Chen J, Liu C, Qi X. Promoting the Phosphidation Process using an Oxygen Vacancy Precursor for Efficient Hydrogen Evolution Reaction. Chem Asian J 2021; 16:3604-3609. [PMID: 34506068 DOI: 10.1002/asia.202100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Indexed: 11/08/2022]
Abstract
Based on previous works, most of the transition metal phosphides (TMPs) were directly prepared by decomposing NaH2 PO2 with the precursors at high temperatures, which resulted in different degrees of phosphidation in the final product. Therefore, it is necessary to design an innovative approach to enhance the degree of phosphidation in the material using crystal defects. Here, oxygen-vacancy iron oxide/iron foam (Ov-Fe2 O3 /IF) was firstly prepared by generating oxygen vacancy in situ in an iron foam through heating in vacuum conditions. Subsequently, FeP/IF was formed by phosphating Ov-Fe2 O3 /IF. Under the effects of oxygen vacancies, oxygen-vacancy iron oxide could be completely phosphatized to produce more active sites on the surface of the material. This, in turn, could result in a catalyst with exceptional hydrogen evolution activity. Thus, the successful fabrication of FeP/IF demonstrated in this work provides an effective and feasible way for the preparation of other high-efficiency catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jingbo Xing
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Junwei Chen
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chao Liu
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiaopeng Qi
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
6
|
Gao H, Zang J, Wang Y, Zhou S, Tian P, Song S, Tian X, Li W. One-step preparation of cobalt-doped NiS@MoS2 core-shell nanorods as bifunctional electrocatalyst for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Hu Y, Yu H, Qi L, Dong J, Yan P, Taylor Isimjan T, Yang X. Interface Engineering of Needle-Like P-Doped MoS 2 /CoP Arrays as Highly Active and Durable Bifunctional Electrocatalyst for Overall Water Splitting. CHEMSUSCHEM 2021; 14:1565-1573. [PMID: 33484489 DOI: 10.1002/cssc.202002873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Developing a bifunctional water splitting catalyst with high efficiency and low cost are crucial in the electrolysis water industry. Here, we report a rational design and simple preparation method of MoS2 -based bifunctional electrocatalyst on carbon cloth (CC). The optimized P-doped MoS2 @CoP/CC catalyst presents low overpotentials for the hydrogen (HER) and oxygen evolution reactions (OER) of 64 and 282 mV in alkaline solution as well as 72 mV HER overpotential in H2 SO4 at a current density of 10 mA cm-2 . Furthermore, P-MoS2 @CoP/CC as a bifunctional catalyst delivered relatively low cell voltages of 1.83 and 1.97 V at high current densities of 500 and mA cm-2 in 30 % KOH. The two-electrode system showed a remarkable stability for 30 h, even outperformed the benchmark RuO2 ||Pt/C catalyst. The excellent electrochemical performance can be credited to the unique microstructure, high surface area, and the synergy between metal species. This study presents a possible alternative for noble metal-based catalysts to overcome the challenges of industrial applications.
Collapse
Affiliation(s)
- Yan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hongbo Yu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Luoluo Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiaxin Dong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
8
|
Liu C, Zhu H, Lu S, Duan F, Du M. High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj04509a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the in situ synthesis of FeCoNiCuMnN high entropy alloy nitrides with unique integrated nanowire/nanosheet architecture on carbon cloth by hydrothermal reaction and subsequent calcination.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|