1
|
Chen M, Wu C, Yang D. The reaction between CO 2 and chloroform in anion-functionalized ionic liquids with the formation of trichloroacetates. Chem Commun (Camb) 2025; 61:6913-6916. [PMID: 40213919 DOI: 10.1039/d5cc00786k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Here, 1,2,4-triazolide-based ionic liquids (ILs), N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium 1,2,4-triazolide ([MOEN211][Triz]) and tetraethylammonium 1,2,4-triazolide ([N2222][Triz]), are used to capture CO2. The interaction results suggest that CO2 reacts with the anion [Triz]- to form carbamate species. Surprisingly, when deuterated chloroform (CDCl3) or chloroform (CHCl3) is added into the absorption system at room temperature, it is found that CO2 can react with not only the [Triz]- anion but also CDCl3 (or CHCl3) to form carbamate and trichloroacetate species, respectively. In other words, CO2 can easily react with cheap CHCl3 in the presence of [Triz]-based ILs to form valuable chemical trichloroacetate under ambient conditions. Moreover, the formation of trichloroacetate can also be detected in the systems containing imidazolide ([Im]-) and pyrazolide ([Pyr]-) ILs. The findings of this work may provide another useful route for carbon capture and utilization.
Collapse
Affiliation(s)
- Mingzhe Chen
- School of Science, China University of Geosciences, Beijing 100083, China.
| | - Congyi Wu
- School of Science, China University of Geosciences, Beijing 100083, China.
| | - Dezhong Yang
- School of Science, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
2
|
Moazezbarabadi A, Kammer A, Alberico E, Junge H, Beller M. Amino Acid-Based Ionic Liquids-Aided CO 2 Hydrogenation to Methanol. CHEMSUSCHEM 2025; 18:e202401813. [PMID: 39520398 PMCID: PMC11960586 DOI: 10.1002/cssc.202401813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study explored the use of amino acid-based ionic liquids to facilitate the conversion of carbon dioxide (CO2) into methanol through catalytic hydrogenation. Combining tetrabutylammonium L-argininate (TBA⋅Arg) with the ruthenium Ru-MACHO-BH complex allowed achieving significant yields of methanol under optimized conditions, with a turnover number (TON) up to 700. By systematically varying key reaction parameters, we demonstrated that the TBA⋅Arg ionic liquid promotes the efficient hydrogenation pathway leading to methanol formation, thus offering a sustainable approach to CO2 valorization. These findings underscore the potential of amino acid-based ionic liquids in catalyzing the transformation of CO2 into valuable chemicals, contributing to carbon mitigation efforts.
Collapse
Affiliation(s)
- Ayeshe Moazezbarabadi
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
- Istituto di Chimica Biomolecolare – CNRtr. La Crucca 307100SassariItaly
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
3
|
Zhu C, Wood H, Carbone P, D'Agostino C, de Visser SP. CO 2 adsorption in natural deep eutectic solvents: insights from quantum mechanics and molecular dynamics. Phys Chem Chem Phys 2025; 27:2381-2394. [PMID: 39810564 DOI: 10.1039/d4cp03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
CO2 capture is an important process for mitigating CO2 emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO2 capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability. Natural deep eutectic solvents, a class of eutectic solvents using materials of natural origin, have been developed, which compared to ionic liquids are low-cost and more environmentally benign. However, very little is known on the details at a molecular level that govern the CO2 adsorption in these systems and what the limits are of the adsorption features. Elucidating such aspects would represent a step forward in the design and implementation of such promising systems in mitigating CO2 emissions. Herein, we report a computational study on the mechanisms and characteristics of CO2 adsorption in natural deep eutectic solvents containing arginine/glycerol mixtures. We establish details of the hydrogen bonding effects that drive the carbon dioxide capture in systems composed of L-arginine and glycerol using molecular dynamics and quantum mechanics simulations. Our findings indicate that, although both arginine and glycerol contain multiple atoms capable of acting as hydrogen bond donors and hydrogen bond acceptors, L-arginine primarily functions as the hydrogen bond acceptor while glycerol serves as the hydrogen bond donor in most interactions. Furthermore, both compounds contribute hydrogen bond donors that participate in CO2 binding. This study provides valuable insights into the behaviour of CO2 adsorption in natural deep eutectic solvents and enhances our understanding from the perspective of hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chengxu Zhu
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Hannah Wood
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paola Carbone
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, 40131, Bologna, Italy
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Villa R, Ruiz FJ, Velasco F, Nieto S, Porcar R, Garcia-Verdugo E, Lozano P. A Green Chemo-Enzymatic Approach for CO 2 Capture and Transformation into Bis(cyclic carbonate) Esters in Solvent-Free Media. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:15033-15043. [PMID: 39421635 PMCID: PMC11481583 DOI: 10.1021/acssuschemeng.4c04102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
A sustainable approach for CO2 capture and chemo-enzymatic transformation into bis(cyclic carbonate) esters from CO2, glycidol, and organic anhydrides under solvent-free conditions has been demonstrated. The chemo-enzymatic process is based on two consecutive catalytic steps, which can be executed through separated operations or within a one-pot combo system, taking advantage of the synergic effects that emerge from integrating ionic liquid (IL) technologies and biocatalysts. In a first step, lipase-catalyzed transesterification and esterification reactions of different diacyl donors (e.g., glutaric anhydride, succinic anhydride, dimethyl succinate, etc.) with glycidol in solvent-free under mild reaction conditions (70 °C, 6 h) produce the corresponding diglycidyl ester derivatives in up to 41% yield. By a second step, the synthesis of bis(cyclic carbonate) esters was carried out as a result of the cycloaddition reaction of CO2 (from an exhausted gas source, 15% CO2 purity) on these diglycidyl esters, catalyzed by the covalently attached 1-decyl-2-methylimidazolium IL (supported ionic liquid-like phase, SILLP), in solvent-free condition, leading up to 65% yield after 8 h at 45 °C and 1 MPa CO2 pressure. Both key elements of the reaction system (biocatalyst and SILLP) were successfully recovered and reused for at least 5 operational cycles. Finally, different metrics have been applied to assess the greenness of the solvent-free chemo-enzymatic synthesis of bis(cyclic carbonate) esters here reported.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Francisco J. Ruiz
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Francisco Velasco
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Susana Nieto
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Raul Porcar
- Departamento
de Quimica Organica e Inorganica, Universidad
Jaime I, E-12071 Castellon, Spain
- Departamento
de Química Orgánica y Bio-orgánica, Facultad
de Ciencias, Universidad Nacional de Educación
a Distancia, UNED, Avda. Esparta, 28232 Las Rozas, Madrid, Spain
| | - Eduardo Garcia-Verdugo
- Departamento
de Quimica Organica e Inorganica, Universidad
Jaime I, E-12071 Castellon, Spain
| | - Pedro Lozano
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
5
|
Ghorai A, Chung H. Ionic Lignin Polymers for Controlled CO 2 Capture, Release, and Conversion into High-Value Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406610. [PMID: 39003612 DOI: 10.1002/adma.202406610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Indexed: 07/15/2024]
Abstract
In this study, an innovative and cost-effective ionic polymer for CO2 capture and utilization for the first time, using abundant and nonfood-based biomass lignin is reported. The modified ionic polymer synthesizes through the reaction of glycidyltrimethylammonium chloride with lignin under alkaline conditions to yield quaternary ammonium ionic functionality. Subsequently, the hydroxide-based pure ionic lignin polymer is employed for CO2 capture from both direct air and concentrated CO2 sources at room temperature and atmospheric pressure. Structural characterization of the polymers is accomplished through 1H, 13C, and 2D-heteronuclear single quantum coherence (HSQC) NMR, and FT-IR spectroscopy. The CO2 capture process is established through the formation of bicarbonate ions alongside the presence of CO2. The captured CO2 is precisely quantified by using inverse-gated proton decoupled 13C NMR with an internal standard (trioxane). Remarkably, the captured-CO2 amounts of ionic lignin polymer are 1.06 mmol g-1 (47 mg g-1) from concentrated-CO2 source and 0.60 mmol g-1 (26 mg g-1) from direct-air. The captured-CO2 in ionic lignin polymer is released in controlled manner and utilized in the synthesis of cyclic carbonate, showcasing the productive application of the captured carbon. Moreover, the fully controlled recovering of ionic lignin polymer achieves via repeated CO2 release ↔ CO2 capture.
Collapse
Affiliation(s)
- Arijit Ghorai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA
| |
Collapse
|
6
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
7
|
da Silva Alvim R, Esio Bresciani A, Alves RMB. Formic acid stability in different solvents by DFT calculations. J Mol Model 2024; 30:67. [PMID: 38345658 DOI: 10.1007/s00894-024-05849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024]
Abstract
CONTEXT New technologies have been developed toward the use of green energies. The production of formic acid (FA) from carbon dioxide (CO[Formula: see text]) hydrogenation with H[Formula: see text] is a sustainable process for H[Formula: see text] storage. However, the FA adduct stabilization is thermodynamically dependent on the type of solvent and thermodynamic conditions. The results suggest a wide range of dielectric permittivity values between the dimethyl sulfoxide (DMSO) and water solvents to stabilize the FA in the absence of base. The thermodynamics analysis and the infrared and charge density difference results show that the formation of the FA complex with H[Formula: see text]O is temperature dependent and has a major influence on aqueous solvents compared to the FA adduct with amine, in good agreement with the experiment. In these conditions, the stability thermodynamic of the FA molecule may be favorable at non-organic solvents and dielectric permittivity values closer to water. Therefore, a mixture of aqueous solvents with possible ionic composition could be used to increase the thermodynamic stability of H[Formula: see text] storage in CO[Formula: see text] conversion processes. METHODS Using the Quantum ESPRESSO package, density functional theory (DFT) calculations were performed with periodic boundary conditions, and the electronic wave functions were expanded in plane waves. For the exchange-correlation functional, we use the vdW-DF functional with the inclusion of van der Waals (vdW) forces. Electron-ion interactions are treated by the projector augmented wave (PAW) method with pseudopotentials available in the PSlibrary repository. The wave functions and the electronic densities were expanded employing accurate cut-off energies of 6.80[Formula: see text]10[Formula: see text] and 5.44[Formula: see text]10[Formula: see text] eV, respectively. The electronic density was computed from the wave functions calculated at the [Formula: see text]-point in the first Brillouin-zone. Each structural optimization was minimized according to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, with force and energy convergence criteria of 25 meV[Formula: see text]Å[Formula: see text] and 1.36 meV, respectively. The electrostatic solvation effects were performed by the [Formula: see text] package with the Self-Consistent Continuum Solvation (SCCS) approach.
Collapse
Affiliation(s)
- Raphael da Silva Alvim
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Antonio Esio Bresciani
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Rita Maria Brito Alves
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
8
|
Zanatta M, García-Verdugo E, Sans V. Direct Air Capture and Integrated Conversion of Carbon Dioxide into Cyclic Carbonates with Basic Organic Salts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9613-9619. [PMID: 37425281 PMCID: PMC10324388 DOI: 10.1021/acssuschemeng.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Direct air capture and integrated conversion is a very attractive strategy to reduce CO2 concentration in the atmosphere. However, the existing capturing processes are technologically challenging due to the costs of the processes and the low concentration of CO2. The efficient valorization of the CO2 captured could help overcome many techno-economic limitations. Here, we present a novel economical methodology for direct air capture and conversion that is able to efficiently convert CO2 from the air into cyclic carbonates. The new approach employs commercially available basic ionic liquids, works without the need for sophisticated and expensive co-catalysts or sorbents and under mild reaction conditions. The CO2 from atmospheric air was efficiently captured by IL solution (0.98 molCO2/molIL) and, subsequently, completely converted into cyclic carbonates using epoxides or halohydrins potentially derived from biomass as substrates. A mechanism of conversion was evaluated, which helped to identify relevant reaction intermediates based on halohydrins, and consequently, a 100% selectivity was obtained using the new methodology.
Collapse
Affiliation(s)
- Marcileia Zanatta
- Institute
of Advanced Materials (INAM), Univesitat
Jaume I, Avda Sos Baynat
s/n, Castellón 12071, Spain
| | - Eduardo García-Verdugo
- Departamento
de Química Inorgánica y Orgánica, Grupo de Química Sostenible y Supramolecular
Universidad Jaume I, E-12071 Castellón, Spain
| | - Victor Sans
- Institute
of Advanced Materials (INAM), Univesitat
Jaume I, Avda Sos Baynat
s/n, Castellón 12071, Spain
| |
Collapse
|
9
|
Zhao H, Baker GA. Functionalized Ionic Liquids for CO 2 Capture under Ambient Pressure. GREEN CHEMISTRY LETTERS AND REVIEWS 2022; 16:2149280. [PMID: 37304337 PMCID: PMC10254919 DOI: 10.1080/17518253.2022.2149280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 06/13/2023]
Abstract
Ionic liquids (ILs) have been widely explored as alternative solvents for carbon dioxide (CO2) capture and utilization. However, most of these processes are under pressures significantly higher than atmospheric level, which not only levies additional equipment and operation costs, but also makes the large-scale CO2 capture and conversion less practical. In this study, we rationally designed glycol ether-functionalized imidazolium, phosphonium and ammonium ILs containing acetate (OAc-) or Tf2N- anions, and found these task-specific ILs could solubilize up to 0.55 mol CO2 per mole of IL (or 5.9 wt% CO2) at room temperature and atmospheric pressure. Although acetate anions enabled a better capture of CO2, Tf2N- anions are more compatible with alcohol dehydrogenase (ADH), which is a key enzyme involved in the cascade enzymatic conversion of CO2 to methanol. Our promising results indicate the possibility of CO2 capture under ambient pressure and its enzymatic conversion to valuable commodity.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Yuan DF, Zhang YR, Wang LS. Dipole-Bound State, Photodetachment Spectroscopy, and Resonant Photoelectron Imaging of Cryogenically-Cooled 2-Cyanopyrrolide. J Phys Chem A 2022; 126:6416-6428. [PMID: 36097646 DOI: 10.1021/acs.jpca.2c04405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Valence-bound anions with polar neutral cores can have diffuse dipole-bound excited states just below the electron detachment threshold. Because of the similarity in geometry and vibrational frequencies between the dipole-bound states (DBSs) and the corresponding neutrals, DBSs have been exploited as intermediate states to conduct resonant photoelectron spectroscopy (PES), resulting in highly non-Franck-Condon photoelectron spectra via vibrational autodetachment and providing much richer vibrational information than conventional PES. Here, we report a photodetachment and high-resolution photoelectron imaging study of the 2-cyanopyrrolide anion, cooled in a cryogenic ion trap. The electron affinity of the 2-cyanopyrrolyl radical is measured to be 3.0981 ± 0.0006 eV (24 988 ± 5 cm-1). A DBS is observed for 2-cyanopyrrolide at 240 cm-1 below its detachment threshold using photodetachment spectroscopy. Twenty-three above-threshold vibrational resonances (Feshbach resonances) of the DBS are observed. Resonant PES is conducted at each Feshbach resonance, yielding a wealth of vibrational information about the 2-cyanopyrrolyl radical. Resonant two-photon PES confirms the s-like dipole-bound orbital and reveals a relatively long lifetime of the bound zero-point level of the DBS. Fundamental frequencies for 19 vibrational modes (out of a total of 24) are obtained for the cyanopyrrolyl radical, including six out-of-plane modes. The current work provides important spectroscopic information about 2-cyanopyrrolyl, which should be valuable for the study of this radical in combustion or astronomical environments.
Collapse
Affiliation(s)
- Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Liu B, Guo W, Gebbie MA. Tuning Ionic Screening To Accelerate Electrochemical CO 2 Reduction in Ionic Liquid Electrolytes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beichen Liu
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Wenxiao Guo
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Matthew A. Gebbie
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Paiva TG, Zanatta M, Cabrita EJ, Bernardes CE, Corvo MC. DMSO/IL solvent systems for cellulose dissolution: Binary or ternary mixtures? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Miró R, Fernández-Llamazares E, Godard C, Díaz de los Bernardos M, Gual A. Synergism between iron porphyrin and dicationic ionic liquids: tandem CO 2 electroreduction–carbonylation reactions. Chem Commun (Camb) 2022; 58:10552-10555. [DOI: 10.1039/d2cc03641j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a simple procedure that drastically reduces the E(Fei/Fe0) and E0cat of the FeIIITPP·Cl catalyst via a synergetic effect with the imidazolium dications of the IL electrolyte, and its application in tandem carbonylations.
Collapse
Affiliation(s)
- Roger Miró
- Fundació EURECAT, Unitat de Tecnologia Química, C/Marceli Domingo 2, 43007 Tarragona, Spain
| | | | - Cyril Godard
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marceli Domingo 1, 43007 Tarragona, Spain
| | | | - Aitor Gual
- Fundació EURECAT, Unitat de Tecnologia Química, C/Marceli Domingo 2, 43007 Tarragona, Spain
| |
Collapse
|
14
|
Deng B, Huang M, Zhao X, Mou S, Dong F. Interfacial Electrolyte Effects on Electrocatalytic CO 2 Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| | - Ming Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Xiaoli Zhao
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Shiyong Mou
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Fan Dong
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| |
Collapse
|
15
|
Wang Z, Wang Z, Chen J, Wu C, Yang D. The Influence of Hydrogen Bond Donors on the CO 2 Absorption Mechanism by the Bio-Phenol-Based Deep Eutectic Solvents. Molecules 2021; 26:molecules26237167. [PMID: 34885746 PMCID: PMC8658771 DOI: 10.3390/molecules26237167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, deep eutectic solvents (DESs), a new type of solvent, have been studied widely for CO2 capture. In this work, the anion-functionalized deep eutectic solvents composed of phenol-based ionic liquids (ILs) and hydrogen bond donors (HBDs) ethylene glycol (EG) or 4-methylimidazole (4CH3-Im) were synthesized for CO2 capture. The phenol-based ILs used in this study were prepared from bio-derived phenols carvacrol (Car) and thymol (Thy). The CO2 absorption capacities of the DESs were determined. The absorption mechanisms by the DESs were also studied using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and mass spectroscopy. Interestingly, the results indicated that CO2 reacted with both the phenolic anions and EG, generating the phenol-based carbonates and the EG-based carbonates, when CO2 interacted with the DESs formed by the ILs and EG. However, CO2 only reacted with the phenolic anions when the DESs formed by the ILs and 4CH3-Im. The results indicated that the HBDs impacted greatly on the CO2 absorption mechanism, suggesting the mechanism can be tuned by changing the HBDs, and the different reaction pathways may be due to the steric hinderance differences of the functional groups of the HBDs.
Collapse
|
16
|
Peng Y, Szeto KC, Santini CC, Daniele S. Study of the Parameters Impacting the Photocatalytic Reduction of Carbon Dioxide in Ionic Liquids. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yulan Peng
- Université Lyon 1 CNRS-UMR 5265 C2P2-CPE Lyon 69616 Villeurbanne cedex France
| | - Kai C. Szeto
- Université Lyon 1 CNRS-UMR 5265 C2P2-CPE Lyon 69616 Villeurbanne cedex France
| | | | - Stéphane Daniele
- Université Lyon 1 CNRS-UMR 5265 C2P2-CPE Lyon 69616 Villeurbanne cedex France
| |
Collapse
|
17
|
Greco R, Lloret V, Rivero-Crespo MÁ, Hirsch A, Doménech-Carbó A, Abellán G, Leyva-Pérez A. Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. JACS AU 2021; 1:786-794. [PMID: 34240079 PMCID: PMC8243323 DOI: 10.1021/jacsau.1c00107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather than Lewis acid reactions. These results open new avenues not only in the use of ionic liquids as acid catalysts/solvents but also in the preparation of surfactant-free, well-defined ionic liquid microemulsions.
Collapse
Affiliation(s)
- Rossella Greco
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicent Lloret
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Miguel Ángel Rivero-Crespo
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Andreas Hirsch
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Antonio Doménech-Carbó
- Departament
de Química Analítica, Universitat
de València, Dr.
Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Abellán
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Valencia, Spain
- . Phone: +34963544074. Fax: +34963543273
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
- . Phone: +34963877800. Fax: +349638 77809
| |
Collapse
|
18
|
Zhang Z, Liu S, Ma J, Wu T. A depth-suitable and water-stable trap for CO 2 capture. RSC Adv 2021; 11:15748-15752. [PMID: 35481201 PMCID: PMC9029154 DOI: 10.1039/d1ra01268a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
In terms of CO2 capture and storage (CCS), it is highly desired to substitute of high efficiency process for the applied one which is far from the ideal one. Physical processes cannot capture CO2 effectively, meanwhile CO2 desorption is energy-intensive in chemical processes. Herein, a depth-suitable and water-stable trap for CO2 capture was discovered. Carboxylates can react with polybasic acid roots by forming united hydrogen bonds. Carboxylate ionic liquid (IL) aqueous solutions can absorb one equimolar CO2 chemically under ambient pressure, and its CO2 desorption is easy, similar to that in physical absorption/desorption processes. When used as aqueous solutions, carboxylate ILs can replace alkanolamines directly in the applied CCS process, and the efficiency is enhanced significantly due to the low regenerating temperature. CO2 (or polybasic acids) can be used as a polarity switch for ILs and surfactants. A new method for producing carboxylate ILs is also proposed. Carboxylates can react with carbonic acid and form two united hydrogen bonds, which is depth-suitable for CO2 capture.![]()
Collapse
Affiliation(s)
- Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
19
|
Moya C, Hospital-Benito D, Santiago R, Lemus J, Palomar J. Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|