1
|
Huang X, Gao J, Qin Y, Du D, Liu R, Shi Y, Wang C, Zhang Z, Zhang J, Sun J, Li T, Yin L, Wang R. Revealing the Effect of the Microstructure on Potassium Storage Behavior in a Two-Dimensional Mesoporous Carbon Anode. ACS NANO 2024. [PMID: 39088247 DOI: 10.1021/acsnano.4c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hard carbon is considered as the most promising anode material for potassium-ion energy storage devices. Substantial progress has been made in exploring advanced hard carbons to solve the issues of sluggish kinetics and large volume changes caused by the large radius of K+. However, the relationship between their complicated microstructures and the K+ charge storage behavior is still not fully explored. Herein, a series of two-dimensional mesoporous carbon microcoins (2D-MCMs) with tunable microstructures in heteroatom content and graphitization degree are synthesized by a facile hard-template method and follow a temperature-controllable annealing process. It is found that high heteroatom content makes for surface-driven K+ storage behavior, which increases the capacity-contribution ratio from a high potential region, while a high graphitization degree makes for K+ intercalation behavior, which increases the capacity-contribution ratio from a low potential region. Electrochemical results from a three-electrode Swagelok cell demonstrate that a 2D-MCM anode with more capacity contribution from a low working region allows the porous carbon cathode to be operated in a much wider electrochemical window, thus storing more charge. As a result, potassium-ion capacitors based on the optimized 2D-MCM anode deliver a high energy density of 113 Wh kg-1 and an exhilarating power density of 51,000 W kg-1.
Collapse
Affiliation(s)
- Xinli Huang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Jing Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Yuying Qin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Danni Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Renbo Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Yuanchang Shi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinfeng Sun
- School of Material Science & Engineering, University of Jinan, Jinan 250024, China
| | - Tao Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| |
Collapse
|
2
|
Cai J, Ding Y, Bai R, Zhang C, Zhang X, Sun H, Wang G. Versatile potassium vanadium fluorophosphate (KVPO 4F) composites as Dual-Function cathode and anode materials for Potassium-Ion hybrid capacitors. J Colloid Interface Sci 2023; 651:534-543. [PMID: 37562296 DOI: 10.1016/j.jcis.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Potassium-based energy storage has emerged as a promising alternative for advanced energy storage systems, driven by the abundance of potassium, fast ion migration, and low standard electrode potential. Hybrid capacitors, which combine the desirable characteristics of batteries and supercapacitors, offer a compelling solution for efficient energy storage. In this study, we present the development of versatile composite materials, specifically potassium vanadium fluorophosphate (KVPO4F) composites, utilizing a sol-gel method. These composites enable tunable potassium storage and charge transport kinetics within regulated voltage windows, serving as both cathode and anode materials. The anode composite, composed of KVPO4F and hierarchical porous carbon (HPC), exhibited exceptional stability over 400 cycles within a low-voltage window. On the other hand, the cathode composite, consisting of battery-like KVPO4F and physisorption activated carbon (AC), demonstrated great potential as a cathode material, striking a balance between specific energy and cycle life within a regulated high-voltage window. By integrating KVPO4F/C as the anode and KVPO4F/AC as the cathode, we successfully created potassium-ion hybrid capacitors (PIHCs) that showcased an impressive capacity retention of 83% after 10,000 cycles within a high voltage window of 0.5-4.3 V. Furthermore, to explore the application of these materials in miniaturized energy storage, we fabricated potassium-ion micro hybrid capacitors (PIMHCs) with interdigitated electrodes. These devices exhibited a high areal energy density of 18.8 μWh cm-2 at a power density of 111.6 μW cm-2, indicating their potential for compact energy storage systems. The results of this study demonstrate the versatility and efficacy of the developed KVPO4F composite materials, highlighting their potential for future advancements in potassium-based energy storage technologies.
Collapse
Affiliation(s)
- Jiazhen Cai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yifang Ding
- The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, Materials Research Institute (MRI), The Pennsylvania State University, University Park 16802, PA, USA
| | - Ruijun Bai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chengwei Zhang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xin Zhang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Hongtao Sun
- The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, Materials Research Institute (MRI), The Pennsylvania State University, University Park 16802, PA, USA.
| | - Gongkai Wang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
3
|
Liao P, Qiu Z, Zhang X, Yan W, Xu H, Jones C, Chen S. 3D Hierarchical Ti 3C 2T X@PANI-Reduced Graphene Oxide Heterostructure Hydrogel Anode and Defective Reduced Graphene Oxide Hydrogel Cathode for High-Performance Zinc Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48416-48430. [PMID: 37791749 DOI: 10.1021/acsami.3c11035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The practical application of supercapacitors (SCs) has been known to be restricted by low energy density, and zinc ion capacitors (ZICs) with a capacitive cathode and a battery-type anode have emerged as a unique technology that can effectively mitigate the issue. To this end, the design of electrodes with low electrochemical impedance, high specific capacitance, and outstanding reaction stability represents a critical first step. Herein, we report the synthesis of hierarchical Ti3C2TX@PANI heterostructures by uniform deposition of conductive polyaniline (PANI) polymer nanofibers on the exposed surface of the Ti3C2TX nanosheets, which are then assembled into a three-dimensional (3D) cross-linking framework by a graphene oxide (GO)-assisted self-convergence hydrothermal strategy. This resulting 3D Ti3C2TX@PANI-reduced graphene oxide (Ti3C2TX@PANI-RGO) heterostructure hydrogel shows a large surface area (488.75 F g-1 at 0.5 A g-1), outstanding electrical conductivity, and fast reaction kinetics, making it a promising electrode material. Separately, defective RGO (DRGO) hydrogels are prepared by a patterning process, and they exhibit a broad and uniform distribution of mesopores, which is conducive to ion transport with an excellent specific capacitance (223.52 F g-1 at 0.5 A g-1). A ZIC is subsequently constructed by utilizing Ti3C2TX@PANI-RGO as the anode and DRGO as the cathode, which displays an extensive operating voltage (0-3.0 V), prominent energy density (1060.96 Wh kg-1 at 761.32 W kg-1, 439.87 Wh kg-1 at 9786.86 W kg-1), and durable cycle stability (retaining 67.9% of the original capacitance after 4000 cycles at 6 A g-1). This study underscores the immense prospect of the Ti3C2TX-based heterostructure hydrogel and DRGO as a feasible anode and cathode for ZICs, respectively.
Collapse
Affiliation(s)
- Peng Liao
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenjie Yan
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Colton Jones
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
4
|
3D ordered amorphous and porous TiO 2 framework anode with low insertion barrier and fast kinetics for K-ion hybrid capacitors. J Colloid Interface Sci 2023; 638:161-172. [PMID: 36736117 DOI: 10.1016/j.jcis.2023.01.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
TiO2 is considered as a low cost, long-term stable, and safe anode for high power K-ion hybrid capacitors (KICs) due to its abundant reserve, small volume expansion rate, and sloping voltage plateau that avoids K-ion plating at high voltage polarization. However, the enhancement of its low capacity and sluggish kinetics caused by poor electroconductivity and high insertion barrier is still challenging to further develop high-performance KICs. Herein, the reduced graphene oxide (rGO) is embedded in the walls of 3D ordered macro-/mesoporous TiO2 (termed as TiO2@rGO framework) to create intimate TiO2/rGO interfaces, ensuring the effectively electron transportation during potassiation/depotassiation of TiO2 while maintaining rapid ions/electrolyte diffusion. Furthermore, the controlled amorphous TiO2 framework can further lower the lattice insertion energies, contributing to a fast accommodation of K-ion. As expected, the amorphous TiO2@rGO framework (TiO2@rGO-1) exhibits a superior rate capability (148.8 mAh g-1 at 5 A g-1) and cycling stability (171.2 mAh g-1 at 1 A g-1 after 800 cycles). The assembled KICs can reach a high energy/power density of 125.2 Wh kg-1/4267.4 W kg-1 as well as a long-term lifespan. This tactic provides a reliable and general way to design a TiO2-based anode with fast kinetics toward high-performance KICs.
Collapse
|
5
|
Qian Y, Wu B, Li Y, Pan Z, Feng S, Lin N, Qian Y. Integrating Chemical Pre-Potassiation with Pre-Modulated KF-Rich Electrolyte Interfaces for Dual-Carbon Potassium Ion Hybrid Capacitor. Angew Chem Int Ed Engl 2023; 62:e202217514. [PMID: 36622790 DOI: 10.1002/anie.202217514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Herein, a chemical pre-potassiation strategy via simultaneously treating both glucose derived carbon (GDC) anode and commercial activated carbon (CAC) cathode in potassium-naphthalene-tetrahydrofuran solution is developed for potassium ion hybrid capacitor (PIHC). Combined with in situ and ex situ characterizations, a radical reaction between pre-potassiation reagent and carbon electrodes is confirmed, which not only deactivates electrochemical irreversible sites, but also promotes to pre-form a uniform and dense KF-rich electrolyte film on the electrodes. As a result, the pre-potassiation treatment presents multiple advantages: (I) the initial Coulombic efficiency (CE) of the GDC anode increases from 45.4 % to 84.0 % with higher rate capability; (II) the CAC cathode exhibits the improved cycling CEs and stability due to the enhanced resistance to electrolyte oxidation at 4.2 V; (III) the assembled PIHC achieves a high energy density of 172.5 Wh kg-1 with cycling life over 10000 cycles.
Collapse
Affiliation(s)
- Yong Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhen Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuai Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.,College of Chemistry and Chemical Engineering, Taishan University, Shandong, 271021, P. R. China
| | - Ning Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yitai Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Liu M, Zhang W, Zheng W. Spreading the Landscape of Dual Ion Batteries: from Electrode to Electrolyte. CHEMSUSCHEM 2023; 16:e202201375. [PMID: 35997662 DOI: 10.1002/cssc.202201375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The working mechanism of a dual-ion battery (DIB) differs from that of a lithium-ion battery (LIB) in that the anions in the electrolyte of the former can be intercalated as well. Researchers have been paying close attention to this device because of its high voltage, low price, and environmental friendliness. However, DIBs are still in their early research stages, and numerous issues need to be addressed and investigated further. Initially, this Review explains how DIBs work in principle and discusses the progress of electrode materials for cathode and anode. Furthermore, since the electrolytes used as the active material, as well as anion, solvent, and additives, have a significant impact on the DIB's capacity and voltage, the current status is also presented in terms of electrolytes, followed by an outlook on confronting the challenges. A comprehensive summary from electrode to electrolyte will guide the development of next-generation DIBs.
Collapse
Affiliation(s)
- Meiqi Liu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
7
|
Zhan F, Wang H, He Q, Xu W, Chen J, Ren X, Wang H, Liu S, Han M, Yamauchi Y, Chen L. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci 2022; 13:11981-12015. [PMID: 36349101 PMCID: PMC9600411 DOI: 10.1039/d2sc04012c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2023] Open
Abstract
Metal-ion hybrid capacitors (MIHCs) hold particular promise for next-generation energy storage technologies, which bridge the gap between the high energy density of conventional batteries and the high power density and long lifespan of supercapacitors (SCs). However, the achieved electrochemical performance of available MIHCs is still far from practical requirements. This is primarily attributed to the mismatch in capacity and reaction kinetics between the cathode and anode. In this regard, metal-organic frameworks (MOFs) and their derivatives offer great opportunities for high-performance MIHCs due to their high specific surface area, high porosity, topological diversity, and designable functional sites. In this review, instead of simply enumerating, we critically summarize the recent progress of MOFs and their derivatives in MIHCs (Li, Na, K, and Zn), while emphasizing the relationship between the structure/composition and electrochemical performance. In addition, existing issues and some representative design strategies are highlighted to inspire breaking through existing limitations. Finally, a brief conclusion and outlook are presented, along with current challenges and future opportunities for MOFs and their derivatives in MIHCs.
Collapse
Affiliation(s)
- Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
8
|
Boosting capacitive energy density of conjugated molecule modified porous graphene film as high-performance electrode materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Nathan MGT, Yu H, Kim G, Kim J, Cho JS, Kim J, Kim J. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105882. [PMID: 35478355 PMCID: PMC9218662 DOI: 10.1002/advs.202105882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Indexed: 05/13/2023]
Abstract
To meet future energy demands, currently, dominant lithium-ion batteries (LIBs) must be supported by abundant and cost-effective alternative battery materials. Potassium-ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large-scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium-ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal-oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.
Collapse
Affiliation(s)
| | - Hakgyoon Yu
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Guk‐Tae Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jin‐Hee Kim
- Department of Biomedical Laboratory ScienceCollege of Health Science Cheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jung Sang Cho
- Department of Engineering ChemistryChungbuk National UniversityChungbuk28644Republic of Korea
| | - Jeha Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jae‐Kwang Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| |
Collapse
|
10
|
Zhang C, Li Q, Wang T, Miao Y, Qi J, Sui Y, Meng Q, Wei F, Zhu L, Zhang W, Cao P. An improved bioinspired strategy to construct nitrogen and phosphorus dual-doped network porous carbon with boosted kinetics potassium ion capacitors. NANOSCALE 2022; 14:6339-6348. [PMID: 35411905 DOI: 10.1039/d2nr01110g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potassium-ion capacitors (PICs) have drawn appreciable attention because PICs can masterly integrate the virtues of the high energy density of battery-type anode and high power density of capacitor-type cathode. However, the sanguine scenario involves the incompatible capacity and sluggish kinetics in the PIC device. Herein, we report the synthesis of nitrogen and phosphorus-doped network porous carbon materials (NPMCs) via a self-sacrifice template strategy, which possesses a desired three-dimensional structure and prosperous electrochemical properties for K+ storage capacity. The obtained hierarchical porous carbon delivers a high reversible capacity of 420 mA h g-1 at 0.05 A g-1 and good cycling performance owing to its high concentration of reversible carbon defects and strong charge transfer kinetics. As expected, an advanced PIC device was assembled with a working voltage as high as 4.5 V, delivering an extraordinary energy density of 81.6 W h kg-1 as well as a splendid long life. Systematic characterization analysis combined with density functional theory calculations indicates that the strategy for preparing PIC devices with outstanding performance in this work can provide new insights for the development of PICs for an extensive range of applications.
Collapse
Affiliation(s)
- Chenchen Zhang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Tongde Wang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Yidong Miao
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Jiqiu Qi
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Yanwei Sui
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Qingkun Meng
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Fuxiang Wei
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Lei Zhu
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Wen Zhang
- Department of Chemical & Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Peng Cao
- Department of Chemical & Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Wei S, Deng X, Kundu M, Ma Z, Wang J, Wang X. Bead‐Like Coal‐Derived Carbon Anodes for High Performance Potassium‐Ion Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shiwei Wei
- Taiyuan University of Technology College of Materials Sciences & Engineering CHINA
| | - Xiaoyang Deng
- Taiyuan University of Technology College of Materials Science & Engineering CHINA
| | - Manab Kundu
- SRM University: SRM Institute of Science and Technology Department of Chemistry INDIA
| | - Zizai Ma
- Taiyuan University of Technology Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization CHINA
| | - Jianxing Wang
- Sun Yat-Sen University College of Materials Science & Engineering CHINA
| | - Xiaoguang Wang
- Taiyuan University of Technology Institue of surface engineering Yingze West Street 79 030024 Taiyuan CHINA
| |
Collapse
|
12
|
Scalable synthesis of macroscopic porous carbon sheet anode for potassium-ion capacitor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang H, Huang J, Wang X, Guo Z, Liu W. Fabrication of TiN/CNTs on carbon cloth substrates via a CVD–ALD method as free-standing electrodes for zinc ion hybrid capacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj02334b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel fabrication of TiN/CNTs@CC was presented and can be used as electrodes with good flexibility and conductivity in ZIHCs.
Collapse
Affiliation(s)
- Hai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Liu S, Kang L, Henzie J, Zhang J, Ha J, Amin MA, Hossain MSA, Jun SC, Yamauchi Y. Recent Advances and Perspectives of Battery-Type Anode Materials for Potassium Ion Storage. ACS NANO 2021; 15:18931-18973. [PMID: 34860483 DOI: 10.1021/acsnano.1c08428] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potassium ion energy storage devices are competitive candidates for grid-scale energy storage applications owing to the abundancy and cost-effectiveness of potassium (K) resources, the low standard redox potential of K/K+, and the high ionic conductivity in K-salt-containing electrolytes. However, the sluggish reaction dynamics and poor structural instability of battery-type anodes caused by the insertion/extraction of large K+ ions inhibit the full potential of K ion energy storage systems. Extensive efforts have been devoted to the exploration of promising anode materials. This Review begins with a brief introduction of the operation principles and performance indicators of typical K ion energy storage systems and significant advances in different types of battery-type anode materials, including intercalation-, mixed surface-capacitive-/intercalation-, conversion-, alloy-, mixed conversion-/alloy-, and organic-type materials. Subsequently, host-guest relationships are discussed in correlation with the electrochemical properties, underlying mechanisms, and critical issues faced by each type of anode material concerning their implementation in K ion energy storage systems. Several promising optimization strategies to improve the K+ storage performance are highlighted. Finally, perspectives on future trends are provided, which are aimed at accelerating the development of K ion energy storage systems.
Collapse
Affiliation(s)
- Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China
| | - Joel Henzie
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China
| | - Jisang Ha
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Md Shahriar A Hossain
- School of Mechanical and Mining Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Sui D, Chang M, Peng Z, Li C, He X, Yang Y, Liu Y, Lu Y. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2771. [PMID: 34685207 PMCID: PMC8537845 DOI: 10.3390/nano11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Lithium-ion capacitors (LICs) are attracting increasing attention because of their potential to bridge the electrochemical performance gap between batteries and supercapacitors. However, the commercial application of current LICs is still impeded by their inferior energy density, which is mainly due to the low capacity of the cathode. Therefore, tremendous efforts have been made in developing novel cathode materials with high capacity and excellent rate capability. Graphene-based nanomaterials have been recognized as one of the most promising cathodes for LICs due to their unique properties, and exciting progress has been achieved. Herein, in this review, the recent advances of graphene-based cathode materials for LICs are systematically summarized. Especially, the synthesis method, structure characterization and electrochemical performance of various graphene-based cathodes are comprehensively discussed and compared. Furthermore, their merits and limitations are also emphasized. Finally, a summary and outlook are presented to highlight some challenges of graphene-based cathode materials in the future applications of LICs.
Collapse
Affiliation(s)
- Dong Sui
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Meijia Chang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Zexin Peng
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Changle Li
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Xiaotong He
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yanliang Yang
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yanhong Lu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
16
|
Sajjad M, Cheng F, Lu W. Research progress in transition metal chalcogenide based anodes for K-ion hybrid capacitor applications: a mini-review. RSC Adv 2021; 11:25450-25460. [PMID: 35478910 PMCID: PMC9037107 DOI: 10.1039/d1ra02445k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022] Open
Abstract
Metal ion capacitors have gained a lot of interest as a new kind of capacitor-battery hybrid energy storage system because of their high power density while maintaining energy density and a long lifetime. Potassium ion hybrid capacitors (PIHCs) have been suggested as possible alternatives to lithium-ion/sodium-ion capacitors because of the plentiful potassium supplies, and their lower standard electrode potential and low cost. However, due to the large radius of the potassium ion, PIHCs also face unsatisfactory reaction kinetics, low energy density, and short lifespan. Recently, transition metal chalcogenide (TMC)-based materials with distinctive structures and fascinating characteristics have been considered an emerging candidate for PIHCs, owing to their unique physical and chemical properties. This mini-review mainly focuses on the recent research progress on TMC-based materials for the PIHC applications summarized. Finally, the existing challenges and perspectives are given to improve further and construct advanced TMC-based electrode materials. Metal ion capacitors have gained a lot of interest as a new kind of capacitor-battery hybrid energy storage system because of their high power density while maintaining energy density and a long lifetime.![]()
Collapse
Affiliation(s)
- Muhammad Sajjad
- Institute of Energy Storage Technologies, Yunnan University Kunming 650091 P. R. China .,College of Chemical Sciences and Engineering, Yunnan University Kunming 650091 P. R. China
| | - Fang Cheng
- Institute of Energy Storage Technologies, Yunnan University Kunming 650091 P. R. China .,College of Chemical Sciences and Engineering, Yunnan University Kunming 650091 P. R. China
| | - Wen Lu
- Institute of Energy Storage Technologies, Yunnan University Kunming 650091 P. R. China .,College of Chemical Sciences and Engineering, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
17
|
Feng W, Avvaru VS, Maça RR, Hinder SJ, Rodríguez MC, Etacheri V. Realization of High Energy Density Sodium-Ion Hybrid Capacitors through Interface Engineering of Pseudocapacitive 3D-CoO-NrGO Hybrid Anodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27999-28009. [PMID: 34105351 DOI: 10.1021/acsami.1c01207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sodium-ion hybrid capacitors (SHCs) have attracted great attention owing to the improved power density and cycling stability in comparison with sodium-ion batteries. Nevertheless, the energy density (<100 Wh·kg-1) is usually limited by low specific capacity anodes (<150 mAh·g-1) and "kinetics mismatch" between the electrodes. Hence, we report a high energy density (153 Wh·kg-1) SHC based on a highly pseudocapacitive interface-engineered 3D-CoO-NrGO anode. This high-performance anode (445 mAh·g-1 @0.025 A·g-1, 135 mAh·g-1 @5.0 A·g-1) consists of CoO (∼6 nm) nanoparticles chemically bonded to the NrGO network through Co-O-C bonds. Exceptional pseudocapacitive charge storage (up to ∼81%) and capacity retention (∼80% after 5000 cycles) are also identified for this SHC. Excellent performance of the 3D-CoO-NrGO anode and SHC is owing to the synergistic effect of the CoO conversion reaction and pseudocapacitive sodium-ion storage induced by numerous Na2O/Co/NrGO nanointerfaces. Co-O-C bonds and the 3D microstructure facilitating efficient strain relaxation and charge-transfer correspondingly are also identified as vital factors accountable for the excellent electrochemical performance. The interface-engineering strategy demonstrated provides opportunities to design high-performance transition metal oxide-based anodes for advanced SHCs.
Collapse
Affiliation(s)
- Wenliang Feng
- Electrochemistry Division, IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid 28906, Spain
- Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Madrid 28040, Spain
| | - Venkata Sai Avvaru
- Electrochemistry Division, IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid 28906, Spain
- Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Madrid 28049, Spain
| | - Rudi Ruben Maça
- Electrochemistry Division, IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid 28906, Spain
- Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Madrid 28049, Spain
| | - Steven J Hinder
- Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey Guildford, Surrey GU2 7XH, United Kingdom
| | | | - Vinodkumar Etacheri
- Electrochemistry Division, IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid 28906, Spain
| |
Collapse
|
18
|
Zhang D, Li L, Deng J, Gou Y, Fang J, Cui H, Zhao Y, Shang K. Application of 2D Materials to Potassium-Ion Hybrid Capacitors. CHEMSUSCHEM 2021; 14:1974-1986. [PMID: 33829675 DOI: 10.1002/cssc.202100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Metal-ion hybrid supercapacitors (MICs) are a new type of electrochemical energy storage (EES) device, consisting of a battery-type electrode and a supercapacitor (SC)-type electrode. Exhibiting the advantages of both batteries and SCs (e. g., good energy density, excellent power density and long cycle life), these advanced energy storage devices have considerable commercial application prospects. Among MICs, potassium-ion hybrid supercapacitors (PICs) have several further advantages, including abundancy of resources, low standard electrode potential, and low cost. PICs are regarded as potential substitutes for lithium- or sodium-ion hybrid supercapacitors. However, the practical applications of PICs remain limited, owing to the imbalance of kinetics and capacity between the electrodes, the slow ion/electron diffusion rate, and the poor electrode structural stability. Recently, 2D materials with distinct structures and fascinating features have elicited widespread attention for application in PICs, thus achieving significant enhancements, ranging from charge storage capacity to reaction kinetics. This Review discusses research progress in 2D materials for PICs. Firstly, the energy storage principle and development requirements of MICs are introduced. The pivotal advantages and significant roles of 2D materials in the fabrication of PICs are then discussed in detail. Lastly, the challenges and prospects of the application of 2D materials to high-performance PICs are presented.
Collapse
Affiliation(s)
- Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Jianping Deng
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Yuchun Gou
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Junfei Fang
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Hong Cui
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Yongqiang Zhao
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Kun Shang
- College of Medicine, Yan'an University, Yan'an, 716000, P. R. China
| |
Collapse
|