1
|
Puiggené Ò, Favoino G, Federici F, Partipilo M, Orsi E, Alván-Vargas MVG, Hernández-Sancho JM, Dekker NK, Ørsted EC, Bozkurt EU, Grassi S, Martí-Pagés J, Volke DC, Nikel PI. Seven critical challenges in synthetic one-carbon assimilation and their potential solutions. FEMS Microbiol Rev 2025; 49:fuaf011. [PMID: 40175298 PMCID: PMC12010959 DOI: 10.1093/femsre/fuaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Synthetic C1 assimilation holds the promise of facilitating carbon capture while mitigating greenhouse gas emissions, yet practical implementation in microbial hosts remains relatively limited. Despite substantial progress in pathway design and prototyping, most efforts stay at the proof-of-concept stage, with frequent failures observed even under in vitro conditions. This review identifies seven major barriers constraining the deployment of synthetic C1 metabolism in microorganisms and proposes targeted strategies for overcoming these issues. A primary limitation is the low catalytic activity of carbon-fixing enzymes, particularly carboxylases, which restricts the overall pathway performance. In parallel, challenges in expressing multiple heterologous genes-especially those encoding metal-dependent or oxygen-sensitive enzymes-further hinder pathway functionality. At the systems level, synthetic C1 pathways often exhibit poor flux distribution, limited integration with the host metabolism, accumulation of toxic intermediates, and disruptions in redox and energy balance. These factors collectively reduce biomass formation and compromise product yields in biotechnological setups. Overcoming these interconnected challenges is essential for moving synthetic C1 assimilation beyond conceptual stages and enabling its application in scalable, efficient bioprocesses towards a circular bioeconomy.
Collapse
Affiliation(s)
- Òscar Puiggené
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Giusi Favoino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filippo Federici
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michele Partipilo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nienke K Dekker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sara Grassi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Martí-Pagés
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Cai T, Gao X, Qi X, Wang X, Liu R, Zhang L, Wang X. Role of the cathode chamber in microbial electrosynthesis: A comprehensive review of key factors. ENGINEERING MICROBIOLOGY 2024; 4:100141. [PMID: 39629110 PMCID: PMC11611015 DOI: 10.1016/j.engmic.2024.100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 12/06/2024]
Abstract
The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide (CO2) emissions, posing an ongoing threat to the ecological security of the Earth. Microbial electrosynthesis (MES) is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO2 into high-value products. The cathode chamber is a vital component of an MES system and its internal factors play crucial roles in improving the performance of the MES system. Therefore, this review aimed to provide a detailed analysis of the key factors related to the cathode chamber in the MES system. The topics covered include inward extracellular electron transfer pathways, cathode materials, applied cathode potentials, catholyte pH, and reactor configuration. In addition, this review analyzes and discusses the challenges and promising avenues for improving the conversion of CO2 into high-value products via MES.
Collapse
Affiliation(s)
- Ting Cai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xinyu Gao
- College of Arts & Science, University of North Carolina at Chapel Hill, Chapel Hill 27514, NC, United States
| | - Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaolei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruijun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Adams J, Clark DS. Techno-Economic Assessment of Electromicrobial Production of n-Butanol from Air-Captured CO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7302-7313. [PMID: 38621294 PMCID: PMC11064224 DOI: 10.1021/acs.est.3c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Electromicrobial production (EMP), where electrochemically generated substrates (e.g., H2) are used as energy sources for microbial processes, has garnered significant interest as a method of producing fuels and other value-added chemicals from CO2. Combining these processes with direct air capture (DAC) has the potential to enable a truly circular carbon economy. Here, we analyze the economics of a hypothetical system that combines adsorbent-based DAC with EMP to produce n-butanol, a potential replacement for fossil fuels. First-principles-based modeling is used to predict the performance of the DAC and bioprocess components. A process model is then developed to map material and energy flows, and a techno-economic assessment is performed to determine the minimum fuel selling price. Beyond assessing a specific set of conditions, this analytical framework provides a tool to reveal potential pathways toward the economic viability of this process. We show that an EMP system utilizing an engineered knallgas bacterium can achieve butanol production costs of <$6/gal ($1.58/L) if a set of optimistic assumptions can be realized.
Collapse
Affiliation(s)
- Jeremy
David Adams
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Douglas S. Clark
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Makrygiorgos G, Berliner AJ, Shi F, Clark DS, Arkin AP, Mesbah A. Data-driven flow-map models for data-efficient discovery of dynamics and fast uncertainty quantification of biological and biochemical systems. Biotechnol Bioeng 2023; 120:803-818. [PMID: 36453664 DOI: 10.1002/bit.28295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022]
Abstract
Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a coculture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems.
Collapse
Affiliation(s)
- Georgios Makrygiorgos
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, California, USA
| | - Fengzhe Shi
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Douglas S Clark
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, California, USA
| | - Ali Mesbah
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
5
|
Li Z, Fu Q, Su H, Yang W, Chen H, Zhang B, Hua L, Xu Q. Model development of bioelectrochemical systems: A critical review from the perspective of physiochemical principles and mathematical methods. WATER RESEARCH 2022; 226:119311. [PMID: 36369684 DOI: 10.1016/j.watres.2022.119311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Bioelectrochemical systems (BESs) are promising devices for wastewater treatment and bio-energy production. Since various processes are interacted and affect the overall performance of the device, the development of theoretical modeling is an efficient approach to understand the fundamental mechanisms that govern the performance of the BES. This review aims to summarize the physiochemical principle and mathematical method in BES models, which is of great importance for the establishment of an accurate model while has received little attention in previous reviews. In this review, we begin with a classification of existing models including bioelectrochemical models, electronic models, and machine learning models. Subsequently, physiochemical principles and mathematical methods in models are discussed from two aspects: one is the description of methodology how to build a framework for models, and the other is to further review additional methods that can enrich model functions. Finally, the advantages/disadvantages, extended applications, and perspectives of models are discussed. It is expected that this review can provide a viewpoint from methodologies to understand BES models.
Collapse
Affiliation(s)
- Zhuo Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, PR China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, PR China
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wei Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, PR China
| | - Hao Chen
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bo Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lun Hua
- Tsinghua University Suzhou Automotive Research Institute, Suzhou, 215200, PR China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
6
|
Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation. Metab Eng 2022; 74:191-205. [DOI: 10.1016/j.ymben.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
7
|
Kim J, Cestellos-Blanco S, Shen YX, Cai R, Yang P. Enhancing Biohybrid CO 2 to Multicarbon Reduction via Adapted Whole-Cell Catalysts. NANO LETTERS 2022; 22:5503-5509. [PMID: 35713473 DOI: 10.1021/acs.nanolett.2c01576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Catalytic CO2 conversion to renewable fuel is of utmost importance to establish a carbon-neutral society. Bioelectrochemical CO2 reduction, in which a solid cathode interfaces with CO2-reducing bacteria, represents a promising approach for renewable and sustainable fuel production. The rational design of biocatalysts in the biohybrid system is imperative to effectively reduce CO2 into valuable chemicals. Here, we introduce methanol adapted Sporomusa ovata (S. ovata) to enhance the slow metabolic activity of wild-type microorganisms to our semiconductive silicon nanowires (Si NWs) array for efficient CO2 reduction. The adapted whole-cell catalysts enable an enhancement of CO2 fixation with a superior faradaic efficiency on the poised Si NWs cathode. The synergy of the high-surface-area cathode and the adapted strain achieves a CO2-reducing current density of 0.88 ± 0.11 mA/cm2, which is 2.4-fold higher than the wild-type strain. This new generation of biohybrids using adapted S. ovata also decreases the charge transfer resistance at the cathodic interface and facilitates the faster charge transfer from the solid electrode to bacteria.
Collapse
Affiliation(s)
- Jimin Kim
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California 94720, United States
| | - Stefano Cestellos-Blanco
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California 94720, United States
| | - Yue-Xiao Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rong Cai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Abel AJ, Hilzinger JM, Arkin AP, Clark DS. Systems-informed genome mining for electroautotrophic microbial production. Bioelectrochemistry 2022; 145:108054. [DOI: 10.1016/j.bioelechem.2022.108054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
|
9
|
Ma Z, Liu D, Liu M, Cao Y, Song H. From CO<sub>2</sub> to high value-added products: Advances on carbon sequestration by <italic>Ralstonia eutropha</italic> H16. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Empower C1: Combination of Electrochemistry and Biology to Convert C1 Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:213-241. [PMID: 34518909 DOI: 10.1007/10_2021_171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The idea to somehow combine electrical current and biological systems is not new. It was subject of research as well as of science fiction literature for decades. Nowadays, in times of limited resources and the need to capture greenhouse gases like CO2, this combination gains increasing interest, since it might allow to use C1 compounds and highly oxidized compounds as substrate for microbial production by "activating" them with additional electrons. In this chapter, different possibilities to combine electrochemistry and biology to convert C1 compounds into useful products will be discussed. The chapter first shows electrochemical conversion of C1 compounds, allowing the use of the product as substrate for a subsequent biosynthesis in uncoupled systems, further leads to coupled systems of biology and electrochemical conversion, and finally reaches the discipline of bioelectrosynthesis, where electrical current and C1 compounds are directly converted by microorganisms or enzymes. This overview will give an idea about the potentials and challenges of combining electrochemistry and biology to convert C1 molecules.
Collapse
|
11
|
Yang P, Clark DS, Yaghi OM. Envisioning the “Air Economy” — Powered by Reticular Chemistry and Sunlight for Clean Air, Clean Energy, and Clean Water. MOLECULAR FRONTIERS JOURNAL 2021. [DOI: 10.1142/s2529732521400046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Addressing the three major stresses facing our planet, clean air, clean energy, and clean water, is within our reach. At present, new materials such as metal-organic frameworks and covalent organic frameworks, produced by reticular chemistry, are at the forefront of efforts to capture carbon dioxide from air and harvest water from air. We envision that the products of these two capture processes (carbon dioxide and water) can be fed into a conversion cycle in which they are used to produce fuels and chemicals via artificial photosynthesis. The use of air as a nonpolluting, cyclable, and sustainable resource for carbon and water can be powered by sunlight. We describe how the scientific basis for realizing this vision is either already achieved or being established, and that in the fullness of time this paradigm may lead to new global industries and a thriving “air economy.”
Collapse
Affiliation(s)
- Peidong Yang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Douglas S. Clark
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Omar M. Yaghi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Cabau-Peinado O, Straathof AJJ, Jourdin L. A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO 2. Front Microbiol 2021; 12:669218. [PMID: 34149654 PMCID: PMC8211901 DOI: 10.3389/fmicb.2021.669218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Up to now, computational modeling of microbial electrosynthesis (MES) has been underexplored, but is necessary to achieve breakthrough understanding of the process-limiting steps. Here, a general framework for modeling microbial kinetics in a MES reactor is presented. A thermodynamic approach is used to link microbial metabolism to the electrochemical reduction of an intracellular mediator, allowing to predict cellular growth and current consumption. The model accounts for CO2 reduction to acetate, and further elongation to n-butyrate and n-caproate. Simulation results were compared with experimental data obtained from different sources and proved the model is able to successfully describe microbial kinetics (growth, chain elongation, and product inhibition) and reactor performance (current density, organics titer). The capacity of the model to simulate different system configurations is also shown. Model results suggest CO2 dissolved concentration might be limiting existing MES systems, and highlight the importance of the delivery method utilized to supply it. Simulation results also indicate that for biofilm-driven reactors, continuous mode significantly enhances microbial growth and might allow denser biofilms to be formed and higher current densities to be achieved.
Collapse
Affiliation(s)
- Oriol Cabau-Peinado
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Ludovic Jourdin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| |
Collapse
|